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The making of 3G report of XG & Fund. Physics/WM Groups

* Four subgroups were formed with contact persons:

- Fundamental questions in gravity and particle physics (Chatziioannou &
Sotiriou)

- Extreme matter (Vitale & Yunes)

- Exotic objects and phenomena (Archisman & Pani)

- Waveform modeling and data-analysis challenges (Ajith & Plirrer)

* Preliminary draft produced in late June.

* Co-chairs Buonanno, Lehner & van den Broeck worked on preliminary draft
and produced first revised version of 3G report on Sep 28

[https://github.com/gwic-3g/3g-science-case/blob/master/work-space/xg/ X G-
VWM-report-vl.pdf]

*So far, several people have contributed to 3G report, including Arun,
Barausse, Baryakhtar, Brito, Dietrich, East, Gerosa, Harry, Hinderer, Maselli, Pfeiffer,
Pratten, Shao, Tamanini, van de Meent,Varma,Vines, Zumalacarregui,Yang, ...


https://github.com/gwic-3g/3g-science-case/blob/master/work-space/xg/XG-WM-report-v1.pdf

Binary’s masses/distance spanned by 2G detectors
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* 2G detectors will observe binary coalescences with SNR (~20) at
modest redshift (z ~0.7),and SNR > 100 at z <0.2.



Binary’s masses/distance spanned by 3G detectors
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* 3G detectors will observe binary coalescences with SNR (~20) even at
high redshift (z ~10-15), and with SNR > 100 at z <5.

* Demands on waveform accuracy are higher, modeling is more challenging.



Binary’s masses/distance spanned by 3G detectors
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* 3G detectors will observe binary coalescences with SNR (~10) up to
redshift (z ~12),and with SNR > 100 at z < 2.

* Demands on waveform accuracy are higher, modeling is more challenging.



Need to solve 2-body problem in larger region of parameter space with 3G
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* Synergy between analytical and numerical relativity is crucial.



New sources with 3G detectors: intermediate-mass black-hole inspirals

e central BH’s spin = 0.9

 eccentricity = 0.5

M = 1000M

GW frequency around 1Hz

g

* Sweeping in band for a few thousand
GW cycles, probing strong-field gravity.

* GSF is likely to be important, we need
to develop accurate waveform models.

\

GW frequency around 10 Hz



3G science by including missing physical effects: eccentricity

* How to discriminate among binary’s formation scenarios, and probe
astrophysical environment?! Eccentricity and spin-precession can
disclose this information.

AR waveform model
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* We need accurate waveform models with eccentricity also for stellar mass
BBHs.



3G science by including missing physical effects: spin-precession
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* 3G detectors will observe 102-10% events per year. We will observe unusual events.



Measuring spin-precession with 2G detectors
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Measuring spin-precession with GW 151226
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Measuring spin-precession with GW 150914
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(Abbott et al. PRL |16 (2016) 061102)
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3G science by including missing physical effects: higher harmonics
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e So far, 2G detectors observed GWV events mostly
face-on/face-off.

‘ * Face-on/face-off orientation suppress higher
>

harmonics, spin-precessional effects, making harder
to infer source’s properties.



3G science by including missing physical effects: higher harmonics
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3G science by including missing physical effects: higher harmonics

first harmonic
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3G science by including missing physical effects: higher harmonics

third harmonic
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3G science by including missing physical effects: higher harmonics

fourth harmonic
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3G science by including missing physical effects: higher harmonics

fifth harmonic
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3G science by including missing physical effects: higher harmonics

waveform

adding all five harmonics
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* We will detect unusual GWV events with 3G
detectors.

* We need accurate waveform models with higher
harmonics, spin precession & eccentricity.




Relevance of higher harmonics for 3G detectors
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Need waveforms to test GR and probe nature of compact objects

e Need AR & NR waveforms in modified theories of GR: scalar-tensor

theories, Einstein-Aether theory, dynamical Chern-Simons, Einstein-dilaton
Gauss-Bonnet theory, massive gravity theories, etc.

* Need AR & NR waveforms of binaries composed of exotic compact
objects (BH & NS mimickers), such as boson stars, gravastar, etc.

e Can we disprove the presence of BH “horizon” in binary mergers!?
QNMs not consistent with GR. Echoes. Need modeling.
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Need novel and efficient methods to solve 2-body problem

e Finite difference/spectral NR codes cannot be simply adapted to achieve
higher accuracy over longer evolutions of compact objects with large spins
and mass ratios. Novel algorithms are needed for 3G detectors.

* Genuine computations of PN/PM/GSF corrections at higher order are needed
but will not solve accuracy problem by themselves.

(credit: Justin Vines)

e EOB may combine efficiently PN/PM/GSF & NR, but it
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* Modern scattering amplitude

methods of particles applied to
2-body problem in GR!?
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is likely that it would need to be enhanced, tested and improved for 3G era.

2

* 3G detectors offer a challenging but exciting opportunity to build new methods
(universal method?) to solve 2-body problem in entire parameter space.



Question

Is there anything else we should be high-lighting in the report
about challenges in waveform modeling that would need to be
addressed and solved to achieve 3G-detector science?



