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1 Introduction

Neutron stars are precious laboratories for physics under extreme conditions. The phases and properties
of dense matter encountered inside NSs remain one of the fundamental questions of interest in nuclear
physics. Our current understanding of the neutron star interior is captured in Fig. 1. Theories of
dense matter up to densities encountered inside terrestrial nuclei (⇢0 ' 2.5 ⇥ 1014 g/cm3) are fairly
advanced and provide a description of matter in the neutron star crust and outer core. However, atPhases of Dense Matter in Neutron Stars  
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Figure 1: Internal structure of a neutron star - predicted by theory. Phase transitions to states of matter
containing de-confined quarks, hyperons and meson condensates are possible at the densities encountered
in the inner core.

densities encountered in the inner core phase transitions to exotic forms of matter containing de-confined
quarks, hyperons and/or meson condensates are possible, and their discovery would have far-reaching
implications.

The equation of state (EOS) of the outer core, where the density ⇢ ⇡ ⇢0...3⇢0, has a significant impact
on the radii of NSs with typical mass M ' 1.4 M�, and an accurate determination of the NS radius
can provide constrain the nuclear Hamiltonian and validate quantum many-body theories of nuclear
dense nuclear matter [1]. Properties of the inner core where phase transitions are likely to influence
the structure of heavier stars, plays a important role in the determination of the NS maximum mass.
Together this has motivated a significant observational [2, 3] and theoretical [1, 4] e↵ort to use multi-
messenger observations of NSs to constrain the EOS by identifying strategies to measure NS masses
and radii. Radio observations of pulsars have yielded accurate mass measurements of a handful of NSs
(see [5] for a recent review). The discovery of a massive neutron star J0348+0432 with mass M ' 2
M� [6] had far-reaching implications for the EoS of dense matter, ruling out strong first-order transitions
in the NS core [7]. However, accurate measurements of the NS radius and/or its compactness (M/R)
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Questions at the Forefront 
1. Does matter in neutron stars and neutron star mergers contain novel phases not realized 

inside nuclei and heavy-ion collisions? 


2. Can neutron star observations guide and validate theories of nuclei and nuclear matter?                                                                                                           


3. Is there a diversity in the neutron star population and what are its implications? 


4. How do nuclear and neutrino reactions shape NS merger dynamics and nucleosynthesis?


5. How do the properties of nuclei far from stability impact on the electromagnetic emission 
from neutron star merger ejecta ? 


6. Can neutron stars sustain long-lived large quadrupolar deformations? 


7. Do large scale (magneto)hydrodynamic instabilities influence spinning and merging neutron 
stars? 


8. Can we combine GW and EM signatures to validate multi-physics simulations of NS-NS and 
NS-BH mergers to predict ejecta, nucleosynthesis, and the gamma-ray burst mechanism?


9. Can we model and observe post-merger oscillations to reliably constrain dense matter and 
merger dynamics.   


10. Does dark matter and physics beyond the standard model play a role in neutron stars and 
neutron star mergers? 



Sources that need 3G detectors 
I. Merging BNSs and NS-BHs

• Inspiral: Masses and tidal deformability

• Post-merger dynamics: Oscillations, ejecta, connection to EM.   

II. Spinning Neutron Stars (Continuous GWs)

III. Bursting, Flaring or Glitching Neutron Stars 

• Elastic and magnetic deformations: properties of dense matter. 

• Instabilities (eg. r-modes): Transport and dissipation in dense 

matter.   

• Evolution of internal magnetic fields 

• Superfluid and solid phases and their dynamics   



Inspiral: NS Mass and Radius
GW170817 demonstrated that it is 
possible to constrain the neutron star 
mass-radius relation using GW data.  
This is a watershed moment in neutron 
star science. 


However, these constraints are not 
stringent enough to provide new 
insights. Realistic nuclear EOSs predict 
a smaller range of radii (and tidal 
deformability) compatible with 
GW170817 constraints. 


To have an impact the tidal deformability 
needs to be measured to better than 
10%. And we will need several 
measurements across the accessible 
mass range. Both can be achieved with  
third-generation detectors.   
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Figure 8. Histograms for c2S(n), the mass-radius relation, and the EOS for all the accepted parameter sets
for the local chiral N2LO interactions of Figure 3 and ntr,1 (upper panels) and ntr,2 (lower panels). For the
c2S(n) histogram we terminate each parametrization at its maximal central density. The orange lines are the
corresponding contours for the polytropic expansion of Hebeler et al. (2013). For the mass-radius curve, we
also show the average radius for each mass (solid line) as well as 68% confidence intervals (dashed lines).

We find that the speed of sound increases rapidly in a small density range above ntr. This increase
is more drastic for softer nuclear interactions. For sti↵er interactions, cS increases slowly and peaks at
higher densities. In all cases, for a large fraction of parametrizations, the speed of sound increases to
values around cS ⇡ 0.9. For the smaller transition density, there exist parametrizations that observe
the conformal limit at all densities, while for the higher transition density all parametrizations violate
this bound, consistent with our previous findings.

For the mass-radius relation, we find a rather broad radius distribution at lower transition densities,
that narrows with increasing transition density. This highlights the fact that PNM calculations at
densities ⇠ 2n0 provide valuable information despite sizable uncertainties. We highlight this fact in
Figure 10 where we show the radius of a typical 1.4 M� NS as a function of ntr for the chiral EFT
interactions. At ntr,1, we find a radius range of 9.4� 14.0 km (10.0� 14.1 km) with a 68% confidence
interval of 12.0 ± 1.0 km (12.3 ± 0.9 km) for the TPE-only (TPE+VE, ) interaction. This range
reduces to 9.4 � 11.8 km (10.2 � 12.3 km) with a 68% confidence interval of 10.7 ± 0.5 km (11.5+0.3

�0.4

km) for ntr,2.
For the phenomenological interaction the mass-radius relation is much narrower than for the chiral

interactions because the EOS is much sti↵er and uncertainties associated with the interaction are
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120
, and R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km

for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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directly in an EOS parameter space. We sample uni-
formly in all EOS parameters within the following ranges:
�0 2 [0.2, 2], �1 2 [�1.6, 1.7], �2 2 [�0.6, 0.6], and
�3 2 [�0.02, 0.02] and additionally impose that the adi-
abatic index �(p) 2 [0.6, 4.5]. This choice of prior
ranges for the EOS parameters was chosen such that our
parametrization encompasses a wide range of candidate
EOSs [110]. Then for each sample, the four EOS pa-
rameters and the masses are mapped to a (⇤1,⇤2) pair
through the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions describing the equilibrium configuration of a spher-
ical star [119]. The two tidal deformabilities are then used
to compute the waveform template.

Sampling directly in the EOS parameter space allows for
certain prior constraints to be conveniently incorporated in
the analysis. In our analysis, we impose the following cri-
teria on all EOS and mass samples: (i) causality, the speed
of sound in the NS must be less than the speed of light (plus
10% to allow for imperfect parameterization) up to the cen-
tral pressure of the heaviest star supported by the EOS; (ii)
internal consistency, the EOS must support the proposed
masses of each component; and (iii) observational consis-
tency, the EOS must have a maximum mass at least as high
as previously observed NS masses, specifically 1.97M�.
Another condition the EOS must obey is that of thermody-
namic stability; the EOS must be monotonically increasing
(d✏/dp > 0). This condition is built into the parametriza-
tion [110], so we do not need to explicitly impose it.

RESULTS

We begin by demonstrating the improvement in the mea-
surement of the tidal deformability parameters due to im-
posing a common but unknown EOS for the two NSs. In
Fig. 1 we show the marginalized joint posterior PDF for
the individual tidal deformabilities. We show results from
our analysis using the ⇤a(⇤s, q) relation in green and the
parametrized EOS without a maximum mass constraint in
blue. These are compared to results from [52], where the
two tidal deformability parameters are sampled indepen-
dently, in orange. The shaded region marks the ⇤2 < ⇤1

region that is naturally excluded when a common realis-
tic EOS is assumed, but is not excluded from the analysis
of [52]. In both cases imposing a common EOS leads to
a smaller uncertainty in the tidal deformability measure-
ment. The area of the 90% credible region for the ⇤1–⇤2

posterior shrinks by a factor of ⇠ 3, which is consistent
with the results of [106] for soft EOSs and NSs with simi-
lar masses. The tidal deformability of a 1.4M� NS can be
estimated through a linear expansion of ⇤(m)m5 around
1.4M� as in [5, 48, 120] to be ⇤1.4 = 190+390

�120
at the 90%

level when a common EOS is imposed (here and through-
out this paper we quote symmetric credible intervals). Our
results suggest that “soft” EOSs such as APR4, which pre-
dict smaller values of the tidal deformability parameter, are

favored over “stiff” EOSs such as H4 or MS1, which pre-
dict larger values of the tidal deformability parameter and
lie outside the 90% credible region.
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FIG. 1. Marginalized posterior for the tidal deformabilities of the
two binary components of GW170817. The green shading shows
the posterior obtained using the ⇤a(⇤s, q) EOS-insensitive re-
lation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parameterized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]), re-
spectively. The grey shading corresponds to the unphysical re-
gion ⇤2 < ⇤1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113, 115, 121–125].

We next explore what inferences we can make about the
structure of NSs. We do this using the spectral EOS pa-
rameterization described above in combination with the re-
quirement that the EOS must support NSs up to at least
1.97M�, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for
the NS interior pressure as a function of rest-mass density.
The result is shown in Fig. 2, along with predictions of
the pressure-density relationship from various EOS mod-
els. The pressure posterior is shifted from the 90% credible
prior region (marked by the orange lines) and towards the
soft floor of the parameterized family of EOS. This means
that the posterior is indicating more support for softer EOS
than the prior. The vertical lines denote the nuclear satu-
ration density and two more density values that are known
to approximately correlate with bulk macroscopic proper-
ties of NSs [19]. The pressure at twice (six times) the nu-
clear saturation density is measured to be 3.5+2.7

�1.7 ⇥ 1034

(9.0+7.9
�2.6 ⇥ 1035) dyn/cm2 at the 90% level.

The pressure posterior appears to show minor signs of a
bend above a density of ⇠ 5⇢nuc. Evidence of such behav-



Inspiral: NS Mass and Radius
GW170817 demonstrated that it is 
possible to constrain the neutron star 
mass-radius relation using GW data.  
This is a watershed moment in neutron 
star science. 


However, these constraints are not 
stringent enough to provide new 
insights. Realistic nuclear EOSs predict 
a smaller range of radii (and tidal 
deformability) compatible with 
GW170817 constraints. 


To have an impact the tidal deformability 
needs to be measured to better than 
10%. And we will need several 
measurements across the accessible 
mass range. Both can be achieved with  
third-generation detectors.   
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Figure 8. Histograms for c2S(n), the mass-radius relation, and the EOS for all the accepted parameter sets
for the local chiral N2LO interactions of Figure 3 and ntr,1 (upper panels) and ntr,2 (lower panels). For the
c2S(n) histogram we terminate each parametrization at its maximal central density. The orange lines are the
corresponding contours for the polytropic expansion of Hebeler et al. (2013). For the mass-radius curve, we
also show the average radius for each mass (solid line) as well as 68% confidence intervals (dashed lines).

We find that the speed of sound increases rapidly in a small density range above ntr. This increase
is more drastic for softer nuclear interactions. For sti↵er interactions, cS increases slowly and peaks at
higher densities. In all cases, for a large fraction of parametrizations, the speed of sound increases to
values around cS ⇡ 0.9. For the smaller transition density, there exist parametrizations that observe
the conformal limit at all densities, while for the higher transition density all parametrizations violate
this bound, consistent with our previous findings.

For the mass-radius relation, we find a rather broad radius distribution at lower transition densities,
that narrows with increasing transition density. This highlights the fact that PNM calculations at
densities ⇠ 2n0 provide valuable information despite sizable uncertainties. We highlight this fact in
Figure 10 where we show the radius of a typical 1.4 M� NS as a function of ntr for the chiral EFT
interactions. At ntr,1, we find a radius range of 9.4� 14.0 km (10.0� 14.1 km) with a 68% confidence
interval of 12.0 ± 1.0 km (12.3 ± 0.9 km) for the TPE-only (TPE+VE, ) interaction. This range
reduces to 9.4 � 11.8 km (10.2 � 12.3 km) with a 68% confidence interval of 10.7 ± 0.5 km (11.5+0.3

�0.4

km) for ntr,2.
For the phenomenological interaction the mass-radius relation is much narrower than for the chiral

interactions because the EOS is much sti↵er and uncertainties associated with the interaction are
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120
, and R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km

for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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directly in an EOS parameter space. We sample uni-
formly in all EOS parameters within the following ranges:
�0 2 [0.2, 2], �1 2 [�1.6, 1.7], �2 2 [�0.6, 0.6], and
�3 2 [�0.02, 0.02] and additionally impose that the adi-
abatic index �(p) 2 [0.6, 4.5]. This choice of prior
ranges for the EOS parameters was chosen such that our
parametrization encompasses a wide range of candidate
EOSs [110]. Then for each sample, the four EOS pa-
rameters and the masses are mapped to a (⇤1,⇤2) pair
through the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions describing the equilibrium configuration of a spher-
ical star [119]. The two tidal deformabilities are then used
to compute the waveform template.

Sampling directly in the EOS parameter space allows for
certain prior constraints to be conveniently incorporated in
the analysis. In our analysis, we impose the following cri-
teria on all EOS and mass samples: (i) causality, the speed
of sound in the NS must be less than the speed of light (plus
10% to allow for imperfect parameterization) up to the cen-
tral pressure of the heaviest star supported by the EOS; (ii)
internal consistency, the EOS must support the proposed
masses of each component; and (iii) observational consis-
tency, the EOS must have a maximum mass at least as high
as previously observed NS masses, specifically 1.97M�.
Another condition the EOS must obey is that of thermody-
namic stability; the EOS must be monotonically increasing
(d✏/dp > 0). This condition is built into the parametriza-
tion [110], so we do not need to explicitly impose it.

RESULTS

We begin by demonstrating the improvement in the mea-
surement of the tidal deformability parameters due to im-
posing a common but unknown EOS for the two NSs. In
Fig. 1 we show the marginalized joint posterior PDF for
the individual tidal deformabilities. We show results from
our analysis using the ⇤a(⇤s, q) relation in green and the
parametrized EOS without a maximum mass constraint in
blue. These are compared to results from [52], where the
two tidal deformability parameters are sampled indepen-
dently, in orange. The shaded region marks the ⇤2 < ⇤1

region that is naturally excluded when a common realis-
tic EOS is assumed, but is not excluded from the analysis
of [52]. In both cases imposing a common EOS leads to
a smaller uncertainty in the tidal deformability measure-
ment. The area of the 90% credible region for the ⇤1–⇤2

posterior shrinks by a factor of ⇠ 3, which is consistent
with the results of [106] for soft EOSs and NSs with simi-
lar masses. The tidal deformability of a 1.4M� NS can be
estimated through a linear expansion of ⇤(m)m5 around
1.4M� as in [5, 48, 120] to be ⇤1.4 = 190+390

�120
at the 90%

level when a common EOS is imposed (here and through-
out this paper we quote symmetric credible intervals). Our
results suggest that “soft” EOSs such as APR4, which pre-
dict smaller values of the tidal deformability parameter, are

favored over “stiff” EOSs such as H4 or MS1, which pre-
dict larger values of the tidal deformability parameter and
lie outside the 90% credible region.
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FIG. 1. Marginalized posterior for the tidal deformabilities of the
two binary components of GW170817. The green shading shows
the posterior obtained using the ⇤a(⇤s, q) EOS-insensitive re-
lation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parameterized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]), re-
spectively. The grey shading corresponds to the unphysical re-
gion ⇤2 < ⇤1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113, 115, 121–125].

We next explore what inferences we can make about the
structure of NSs. We do this using the spectral EOS pa-
rameterization described above in combination with the re-
quirement that the EOS must support NSs up to at least
1.97M�, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for
the NS interior pressure as a function of rest-mass density.
The result is shown in Fig. 2, along with predictions of
the pressure-density relationship from various EOS mod-
els. The pressure posterior is shifted from the 90% credible
prior region (marked by the orange lines) and towards the
soft floor of the parameterized family of EOS. This means
that the posterior is indicating more support for softer EOS
than the prior. The vertical lines denote the nuclear satu-
ration density and two more density values that are known
to approximately correlate with bulk macroscopic proper-
ties of NSs [19]. The pressure at twice (six times) the nu-
clear saturation density is measured to be 3.5+2.7

�1.7 ⇥ 1034

(9.0+7.9
�2.6 ⇥ 1035) dyn/cm2 at the 90% level.

The pressure posterior appears to show minor signs of a
bend above a density of ⇠ 5⇢nuc. Evidence of such behav-



Tidal Deformability & High Frequency Sensitivity 

Current detectors are not 
optimized to measure neutron 
star parameters. 

(figure from De et al. (2018))


The chirp mass is determined at 
low frequency  and the tidal 
polarizability is determined at 
high frequency. 


Improved high frequency 
sensitivity is key to extracting 
constraints on the compactness 
of neutrons stars.  
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Parameter estimation methods—To measure the source
parameters for GW170817, we performed parameter es-
timation on the Advanced LIGO-Virgo data available at
the LIGO Open Science Center [7, 8]. Our analysis was
performed with the PyCBC Inference software [9, 10] and
the parallel-tempered emcee sampler [11, 12] for sampling
over the parameter space using Markov Chain Monte Carlo
(MCMC) techniques [13].

The LOSC data files include a post-processing noise
subtraction performed by the LIGO-Virgo Collaboration
[8, 14]. The LOSC documentation states that these data
have been truncated to remove tapering effects due to the
cleaning process [8], however the LOSC data shows evi-
dence of tapering after GPS time 1187008900 in the LIGO
Hanford detector. To avoid any contamination of our re-
sults we do not use any data after GPS time 1187008891.
The power spectral density (PSD) used to construct the
likelihood was calculated using Welch’s method [15] with
16 second Hann-windowed segments (overlapped by 8 s)
taken from GPS time 1187007048 to 1187008680. The
PSD estimate is truncated to 8 s length in the time domain
using the method described in Ref. [16]. The gravitational-
wave data used in the likelihood is taken from the interval
1187008691 to 1187008891.

Ref. [17] found that choice of the low-frequency cut-
off can have an effect on the measurement of the neutron
star tidal deformability and used a different power spec-
tral density estimation technique to that used in our anal-
ysis [18]. We investigated the effect of changing our esti-
mate of the power spectral density with the power spectral
density released as supplemental materials to Ref. [17]. We
find that the change in parameter measurements is smaller
than the statistical errors, and conclude that the choice of
power spectral density estimation technique does not af-
fect our results. To investigate the choice of low-frequency
cutoff, we computed the measurabilities of the chirp mass
M, signal-to-noise ratio ⇢, and binary deformability ⇤̃ in
the frequency range 10-2000 Hz. These are defined as the
integrand as a function of frequency of the noise moment
integrals I10, I0, and I�10 (see Ref. [19]) and shown in
Fig. 3. It can be seen that the signal-to-noise ratio is non-
zero down to a frequency of ⇠ 20 Hz for all the three de-
tectors. While detector sensitivity at this frequency does
not affect the measurability of ⇤̃, it does affect the measur-
ability of the chirp mass M. We repeated our analyses at
25 Hz, 23 Hz, and 20 Hz, and found an improvement in the
M measurement when extending until the low-frequency
cutoff was 20 Hz. Consequently, we evaluated the likeli-
hood from a low-frequency cutoff of 20 Hz to the Nyquist
frequency of 2048 Hz. The improved measurement of M
eliminates regions of higher ⇤̃ values from the posterior
probability densities, and hence better constrains the mea-
surement of this parameter, as shown in Fig 6.

The templates for the waveforms used in our parame-
ter estimation analysis are generated using the restricted

FIG. 3. Measurability [19] of the chirp mass M, SNR ⇢ and bi-
nary deformability ⇤̃ in the frequency range 10 Hz - 2000 Hz.
Each detector’s parameter measurability is scaled to the maxi-
mum frequency to show the relative accumulation of measure-
ment over the detector’s frequency band. Note that between de-
tectors, L1 is more sensitive than H1, which is more sensitive
than V1. Measurability of chirp mass is accumulated primarily
at low frequencies, whereas measurability of tidal deformability
is accumulated at higher frequencies. We extend computation of
the likelihood down to 20 Hz where the measured signal-to-noise
ratio (the logarthim of the likelihood) drops to zero in all three
detectors.

TaylorF2 waveform model, a Fourier domain waveform
model generated using stationary phase approximation. We
use the implementation from the LIGO Algorithm Library
(LAL) [20] accurate to 3.5 post-Newtonian (pN) order in
orbital phase [21], 2.0 pN order in spin-spin, quadrupole-
monopole and self-spin interactions[22, 23], and 3.5 pN
order in spin-orbit interactions [24]. The tidal corrections
enter at the 5 pN and 6 pN orders [25]. The waveforms are
terminated at twice the orbital frequency of a test particle
at the innermost stable circular orbit of a Schwarzschild
black hole of mass M = m1 + m2, where m1,2 are
the masses of the binary’s component stars. The Tay-
lorF2 model assumes that the spins of the neutron stars are
aligned with the orbital angular momentum. Binary neu-
tron stars formed in the field are expected to have small
spins, and precession of the binary’s orbital plane is not
significant [26].

SNR Λ̃

ℳ



Impact of EOS Post-merger

from Hotokezaka+ 2013

•  EOS determines:

• Remnant fate & lifetime

• Ejecta & Composition. 

• Post-Merger oscillations  

τdyn: BH formed on dyn. time scale

τhyd: HMNS lifetime determined by

        hydrodynamic effects

τhyd,s: like τhyd, but < 10 ms

τmag/cool: HMNS lifetime determined 
by MHD-effects/ν-cooling



(Hypermassive) Neutron Star Seismology

Merger excites high frequency quasi-normal 
modes. The spectrum is sensitive to the 
compactness of the hypermassive neutron 
star.    

Many detections and next generation detectors  

Bauswein & Stergioulas (2015)

Frequency of quasi-normal modes, post merger are 
also sensitive to the EOS. Will be accessible with next 
generation GW detectors.      
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FIG. 2: Rest-mass density evolution in the equatorial plane for the 1.35-1.35 M⊙ merger with the DD2 EoS (rotation counter-
clockwise). (The rest-mass density is shown with a variable linear scale relative to ρmax. A low number of contour levels
is chosen for illustrative reasons; the underlying simulation data is smoother than it appears with the chosen color coding.)
Black and white dots trace the positions of selected fluid elements of the antipodal bulges, which within approximately one
millisecond complete one orbit (compare times of the right panels). The orbital motion of this pattern of spiral deformation
produces the fspiral peak in the GW spectrum at 2/(1 ms) (Fig. 1). The cross and the circle mark the double cores, which
rotate significanty faster than the antipodal bulges represented by the dots (compare times of the different panels).

which belongs to the two antipodal bulges that are ro-
tating slower compared to the double cores. This matter
amounts to several tenths of M⊙ and is thus sufficient
to explain the strength of the fspiral GW peak. In ad-
dition, we find that the fspiral GW peak can be roughly
reproduced in a toy model, where the two bulges orbit as
point particles around the central double-core structure

for a duration of a few milliseconds. Note that this toy
model differs significantly from the one in [37], which con-
siders only the two cores to be contributing to the GW
signal and considers only a single instantaneous orbital
frequency of the system.

Furthermore, we take advantage of the quadrupole for-
malism to compute GW spectra considering only certain

3

These are obtained by marginalizing over all the other
parameters in the problem; for instance,

p(�0|dn, I) =
Z

d~✓ d�1 p(~✓,�0,�1|dn, I), (5)

where ~✓ represents masses, sky position, orientation of
the orbital plane, and distance. The joint posterior den-
sity function for all the parameters takes the form

p(~✓,�0,�1|dn, I) =
p(dn|~✓,�0,�1, I) p(~✓,�0,�1|I)

p(dn|I) . (6)

Here p(~✓,�0,�1|I) = p(~✓|I) p(�0|I) p(�1|I). The prior

density p(~✓|I) is taken to be the same as in [20]. We
express �(m) in units of s5. For p(�0|I) we choose a flat
distribution in the range [0, 5]⇥ 10�23 s5, and for p(�1|I)
a flat distribution on [�5, 0]⇥ 10�18 s4 M�; these choices
cover all the EOS considered in [6]. The prior probability
for the data, p(dn|I), is obtained by demanding that the
left hand side of (6) be normalized. Finally, the likelihood
is given by [19]

p(dn|~✓,�0,�1, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n(f) � h̃lin(~✓,�0,�1; f)|2

Sn(f)

#
,(7)

where N is a normalization factor, d̃n is the Fourier
transform of the data stream for the nth detection, and
Sn(f) is the one-sided noise power spectral density; f0
is a lower cut-o↵ frequency, which we take to be 20 Hz.
h̃lin(~✓,�0,�1; f) is our frequency domain waveform, with
the linearized expression for �(m), Eq. (4), substituted
into the tidal contribution to the phase, Eq. (1). To
explore the likelihood function, we used the method of
Nested Sampling as implemented by Veitch and Vecchio
[19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three di↵erent
EOS models from Hinderer et al. [6]: a hard EOS (MS1),
a moderate one (H4), and a soft one (SQM3). In each
case, after a few tens of sources, the value of �0 is
recovered with a statistical uncertainty ⇠ 10%, and it is
easily distinguishable from the ones for the other EOS.
(On the other hand, �1 remains uncertain.) We see that
the posterior medians for �0 are ordered correctly, which
suggests a second method to identify the EOS, namely
hypothesis ranking.

Method 2: Hypothesis ranking. Hinderer et al. computed
the function �(m) for a large number of (families of)
equations of state, some of them mainly involving neu-
trons, protons, electrons, and muons, others allowing for
pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set {Hk} of
models, each corresponding to a di↵erent EOS, or equiv-
alently a di↵erent deformability �(m), the relative odds
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�

23
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FIG. 1. Median and 95% confidence interval evolution for
the �0 parameter as an increasing number of sources is taken
into consideration, for three di↵erent equations of state in the
signals: a hard (MS1), a moderate (H4), and a soft (SQM3)
EOS. In each case, the dashed line indicates the true value.

ratios for any pair of models Hi, Hj can be computed as

Oi
j =

P (Hi|d1, d2, . . . , dN , I)

P (Hj |d1, d2, . . . , dN , I)
. (8)

Again assuming independence of the detector outputs
d1, d2, . . . , dN and using Bayes’ theorem, one can write

Oi
j =

P (Hi|I)
P (Hj |I)

NY

n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (9)

P (Hi|I) is the probability of the model Hi before any
measurement has taken place, and similarly for Hj ; in
the absence of more information, these can be set equal
to each other for all models Hk. The evidences for the
various models are given by

p(dn|Hk, I) =

Z
d~✓ p(dn|Hk, ~✓, I) p(~✓|I), (10)

with ~✓ the parameters of the template waveforms
(masses, sky position, etc.) and p(~✓|I) the prior prob-
abilities for these parameters, which we choose to be the
same as in [20]. The likelihood function p(dn|Hk, ~✓, I)
takes the form

p(dn|Hk, ~✓, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n � h̃k(~✓; f)|2

Sn(f)

#
. (11)

This time h̃k(~✓; f) is the waveform model correspond-
ing to the EOS Hk, meaning the abovementioned fre-
quency domain approximant with tidal contributions to
the phase as in Eq. (1), with a deformability �(m) corre-
sponding to that EOS. Here too, we use Nested Sampling
to probe the likelihood [19].
The set {Hk} could comprise all the models consid-

ered in e.g. [6], and many more. In this Letter we wish

Pozzo et al. (2013)
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be possible.
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FIG. 6: fpeak, fspiral and f2−0 for mergers with ten different
EoSs and Mtot=2.7 M⊙ vs. the compactness M/R for nonro-
tating, single NSs. Solid lines show empirical relations. The
dashed line is taken from [37] (see text for explanations).

types may be useful in the future. Still, one can clearly
identify a diagonal band of Type II mergers for interme-
diate binary masses, and also the binary setups leading
to the limiting cases of Type I or Type III are seen to
form roughly diagonal bands.

For 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ we find that fspiral
typically ranges between fpeak − 0.5 kHz and fpeak −

0.9 kHz, while f2−0 ranges between fpeak − 0.9 kHz and
fpeak − 1.3 kHz. This property will be useful for iden-
tifying either f2−0 or fspiral (or both) in future GW ob-
servations. Furthermore, we find that fpeak− f2−0(= f0)
decreases with increasing Mtot in all models for which
f2−0 is clearly present, in agreement with the fact that
the quasi-radial frequency decreases near the threshold to
collapse. This observation may be useful to estimate the
proximity to prompt gravitational collapse. Very near
the threshold one thus may expect f2−0 → fpeak. In con-
trast, fpeak − fspiral typically increases with increasing
Mtot, and above the threshold to collapse a spiral pat-
tern during the dynamical collapse could still produce a
weak peak in the GW spectrum, as in [56].

IV. EMPIRICAL RELATIONS FOR DOMINANT
AND SECONDARY PEAK FREQUENCIES

For our sample of EoSs Fig. 6 shows fpeak, fspiral
and f2−0 as a function of the compactness M/R of
the nonspinning, individual NSs (at infinite separation)
for Mtot = 2.7 M⊙ (with the compactness in units of
c = G = 1). We find strong correlations that can be
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FIG. 7: fspiral vs. the compactness, but for different binary
masses. Solid lines show empirical relations. The dashed line
is taken from [37] (see text for explanations).
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masses. Solid lines show empirical relations. The dashed line
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described by the following quadratic fits:

fpeak[kHz] = 199(M/R)2 − 28.1(M/R) + 2.33, (1)

fspiral[kHz] = 358(M/R)2 − 82.1(M/R) + 6.16, (2)

f2−0[kHz] = 392(M/R)2 − 88.3(M/R) + 5.95. (3)

The maximum deviations of the data used for these fits
are 140 Hz, 86 Hz and 153 Hz for fpeak, fspiral and f2−0,
respectively. If the compactness is determined from a
measured frequency by inverting Eqs. (1)-(3), these max-
imum deviations imply errors of 3%, 3% and 4% in the
compactess for fpeak, fspiral and f2−0, respectively. (Note

2

peaks are a viable prospect [36, 37, 40, 41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically
non-spinning NSs with a 3D relativistic smoothed par-
ticle hydrodynamics (SPH) code, which imposes the con-
formal flatness condition on the spatial metric [46, 47]
to solve Einstein’s field equations and incorporates en-
ergy and angular momentum losses by a GW backreac-
tion scheme [18, 48] (see [12, 18, 28, 29, 49] for details on
the code, the setup, resolution tests and model uncertain-
ties). Comparisons to other numerical setups and also
models with an approximate consideration of neutrino ef-
fects show an agreement in determining the post-merger
spectrum within a few per cent in the peak frequen-
cies [27–29, 33, 36–38]. Magnetic field effects are neg-
ligible for not too high initial field strengths [24]. We ex-
plore a representative sample of ten microphysical, fully
temperature-dependent equations of state (EoSs) (see
Table I in [39] and Fig. 5 in this work for the mass-radius
relations of non-rotating NSs of these EoSs) and consider
total binary masses Mtot between 2.4 M⊙ and 3.0 M⊙.
In this work we consider only NSs with an initially ir-
rotational velocity profile because known spin periods in
observed NS binaries are slow compared to their orbital
motion (see e.g. [50]), and simulations with initial intrin-
sic NS spin suggest an impact on the post-merger features
of the GW signal only for very fast spins [19, 35, 38].
First, we focus on a reference model for the moderately

stiff DD2 EoS [51, 52] with an intermediate binary mass
of Mtot = 2.7 M⊙. Figure 1 shows the x-polarization of
the effective amplitude heff,x = h̃x(f) · f (with h̃x being
the Fourier transform of the waveform hx) vs. frequency
f (reference model in black). Besides the dominant fpeak
frequency [65], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the post-merger phase,
which can be seen by choosing a time window covering
only the post-merger phase for computing the GW spec-
trum.
The secondary peak shown as f2−0 is a nonlinear com-

bination frequency between the dominant quadrupolar
fpeak oscillation and the quasi-radial oscillation of the
remnant, as described in [25]. We confirm this by per-
forming additional simulations, after adding a quasi-
radial density perturbation to the remnant at late times.
The frequency f0 of the strongly excited quasi-radial os-
cillation is determined by a Fourier analysis of the time-
evolution of the density or central lapse function and co-
incides with the frequency difference fpeak − f2−0. As
in [25], the extracted eigenfunction at f0 confirms the
quasi-radial nature.
The secondary fspiral peak is produced by a strong de-

formation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than
the inner remnant and lasts for a few rotational peri-
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FIG. 1: GW spectra of 1.35-1.35 M⊙ mergers with the
DD2 [51, 52] (black), NL3 [51, 53] (blue) and LS220 [54] (red)
EoS (cross polarization along the polar axis at a reference dis-
tance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

ods, while diminishing in amplitude. Figure 2 shows the
density evolution in the equatorial plane, in which one
can clearly identify the two antipodal bulges of the spi-
ral pattern, which rotate slower than the central parts
of the remnant. In this early phase the inner remnant is
still composed of two dense cores rotating around each
other (this is the nonlinear generalization of an m = 2
quadrupole oscillation producing the dominant fpeak).
Extracting the rotational motion of the antipodal bulges
in our simulations, we indeed find that their frequency
equals fspiral/2 producing gravitational waves at fspiral
(compare the times in the right panels in Fig. 2; recall
the factor two in the frequency of the GW signal com-
pared to the orbital frequency of orbiting point particles).
In Fig. 2 the antipodal bulges are illustrated by selected
fluid elements (tracers), which are shown as black and
white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle.
(We define the centers of mass of the double cores by
computing the centers of mass of the innermost 1000
SPH particles of the respective initial NSs and then fol-
lowing their time evolution.) While in the right panels
the antipodal bulges completed approximately one orbit
within one millisecond (≈ 2

fspiral
), the double cores moved

further ahead, i.e. with a significantly higher orbital fre-
quency. Examining the GW spectrum and considering
different time intervals, we find that the presence of the
fspiral peak agrees with the appearance and duration of
the spiral deformation of the remnant.
In the upper right panel of Fig. 2, the spiral deforma-

tion can be seen to initially reach deep inside the rem-
nant. We approximately determine the amount of matter

• Bauswein & Stergioulas (2015)

•

Phase transitions in the the 
hypermassive neutron star can alter 
the correlation between compactness 
measured from the tidal deformability 
and post-merger oscillations. 
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Fig. 8. EOSs for ntr = nsat which are allowed under the constraint 70  ⇤̃  720 for q = 0.7 but not when q = 1.0 [panel (a)]
and vice versa [panel (b)].

Therefore, a few EOSs without phase transition pass the
LV constraint for q = 0.7 but not for q = 1.0. Neverthe-
less, the changes in ⇤̃ from q = 0.7 to q = 1.0 are rather
small and these models have smaller radii than the upper
limit of 13.6 km.

The more interesting case are models with a phase
transition for neutron stars with masses above 1.4M�.
These models lead to large radii for typical neutron stars
and to tidal polarizabilities larger than the LV constraint.
For q = 1, when ⇤̃ = ⇤1 = ⇤2, these models are rejected.
Due to the phase transition above but close to 1.4M�, on
the other hand, a higher mass asymmetry dramatically re-
duces ⇤1 and therefore ⇤̃, and these models get accepted
in this case.

Another interesting case is the inverted situation, where
EOSs with q = 0.7 are ruled out but allowed for q = 1.0.
We show these EOSs in the right panel of Fig. 8. In this
case, all of the EOS have phase transitions in stars with
masses below 1.4M�. If the phase transition happens in
very low-mass stars, at rather low densities close to satu-
ration density, then the EOS leads to very small radii of
the order of 9 km for typical neutron stars. In this case,
for higher mass asymmetries, ⇤̃ is reduced and the EOS is
ruled out due to the lower constraint the tidal polarizabil-
ity, 70  ⇤̃. However, this is an extremely rare case and
we find only one EOS among tens of thousands of samples
for which this is the case, see Fig. 8(b).

The more likely case is that EOS are again ruled out
due to the upper constraint on ⇤̃. In this case, the phase
transition appears in neutron stars with masses slightly
below 1.4M�. For q = 1, the combined tidal polarizabil-
ity is small enough for these models to be accepted. For
a higher mass asymmetry, ⇤1 remains small but ⇤2 grows
fast, and ⇤̃ increases su�ciently for the EOS to be re-
jected.

In summary, information on possible strong first-order
phase transitions might be obtained if observations were to
be made that access regions allowed by the CSM but for-
bidden by the MM. Also, if these phase transition appear
around densities explored in typical neutron stars, they
might be excluded if mass asymmetries in the individual
merger events can be constrained much more precisely.

Mention that there is no di↵erence for 2nsat.

3.6 Discussion on validity of chiral constraints

In this work and in Ref. [16], we have presented the first
calculation of tidal polarizabilities for GW170817 with
systematic error estimates derived from the order-by-order
chiral EFT input for the EOS up to twice nuclear satura-
tion density. Without reliable error estimates, theoretical
calculations of the dense-matter EOS and its use in the
analysis of GW wave data are of limited value. We be-
lieve that this is critical to understand the impact that
gravitational-wave detections will have on elucidating the
properties of dense matter inside neutron stars. We find, in
contrast to other recent publications [?], that GW170817
does not provide new insight about the EOS that cannot
be obtained from current nuclear physics knowledge. This
message tempers claims made in these recent publications
which claim that the upper limit on the tidal polarizability
derived from GW data rules out sti↵ nuclear EOS. While
this inference is correct, the sti↵ EOSs are already ruled
out based on state-of-the-art nuclear Hamiltonians.

To be specific, models of dense matter excluded by the
upper limit on the deformability are already incompatible
with the improved current microscopic EOS at densities
where error estimates can still be justified. Our study is
the first to use calculations of the neutron matter EOS

**

Many detections and next generation detectors  

Bauswein & Stergioulas (2015)

Frequency of quasi-normal modes, post merger are 
also sensitive to the EOS. Will be accessible with next 
generation GW detectors.      
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FIG. 2: Rest-mass density evolution in the equatorial plane for the 1.35-1.35 M⊙ merger with the DD2 EoS (rotation counter-
clockwise). (The rest-mass density is shown with a variable linear scale relative to ρmax. A low number of contour levels
is chosen for illustrative reasons; the underlying simulation data is smoother than it appears with the chosen color coding.)
Black and white dots trace the positions of selected fluid elements of the antipodal bulges, which within approximately one
millisecond complete one orbit (compare times of the right panels). The orbital motion of this pattern of spiral deformation
produces the fspiral peak in the GW spectrum at 2/(1 ms) (Fig. 1). The cross and the circle mark the double cores, which
rotate significanty faster than the antipodal bulges represented by the dots (compare times of the different panels).

which belongs to the two antipodal bulges that are ro-
tating slower compared to the double cores. This matter
amounts to several tenths of M⊙ and is thus sufficient
to explain the strength of the fspiral GW peak. In ad-
dition, we find that the fspiral GW peak can be roughly
reproduced in a toy model, where the two bulges orbit as
point particles around the central double-core structure

for a duration of a few milliseconds. Note that this toy
model differs significantly from the one in [37], which con-
siders only the two cores to be contributing to the GW
signal and considers only a single instantaneous orbital
frequency of the system.

Furthermore, we take advantage of the quadrupole for-
malism to compute GW spectra considering only certain

3

These are obtained by marginalizing over all the other
parameters in the problem; for instance,

p(�0|dn, I) =
Z

d~✓ d�1 p(~✓,�0,�1|dn, I), (5)

where ~✓ represents masses, sky position, orientation of
the orbital plane, and distance. The joint posterior den-
sity function for all the parameters takes the form

p(~✓,�0,�1|dn, I) =
p(dn|~✓,�0,�1, I) p(~✓,�0,�1|I)

p(dn|I) . (6)

Here p(~✓,�0,�1|I) = p(~✓|I) p(�0|I) p(�1|I). The prior

density p(~✓|I) is taken to be the same as in [20]. We
express �(m) in units of s5. For p(�0|I) we choose a flat
distribution in the range [0, 5]⇥ 10�23 s5, and for p(�1|I)
a flat distribution on [�5, 0]⇥ 10�18 s4 M�; these choices
cover all the EOS considered in [6]. The prior probability
for the data, p(dn|I), is obtained by demanding that the
left hand side of (6) be normalized. Finally, the likelihood
is given by [19]

p(dn|~✓,�0,�1, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n(f) � h̃lin(~✓,�0,�1; f)|2

Sn(f)

#
,(7)

where N is a normalization factor, d̃n is the Fourier
transform of the data stream for the nth detection, and
Sn(f) is the one-sided noise power spectral density; f0
is a lower cut-o↵ frequency, which we take to be 20 Hz.
h̃lin(~✓,�0,�1; f) is our frequency domain waveform, with
the linearized expression for �(m), Eq. (4), substituted
into the tidal contribution to the phase, Eq. (1). To
explore the likelihood function, we used the method of
Nested Sampling as implemented by Veitch and Vecchio
[19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three di↵erent
EOS models from Hinderer et al. [6]: a hard EOS (MS1),
a moderate one (H4), and a soft one (SQM3). In each
case, after a few tens of sources, the value of �0 is
recovered with a statistical uncertainty ⇠ 10%, and it is
easily distinguishable from the ones for the other EOS.
(On the other hand, �1 remains uncertain.) We see that
the posterior medians for �0 are ordered correctly, which
suggests a second method to identify the EOS, namely
hypothesis ranking.

Method 2: Hypothesis ranking. Hinderer et al. computed
the function �(m) for a large number of (families of)
equations of state, some of them mainly involving neu-
trons, protons, electrons, and muons, others allowing for
pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set {Hk} of
models, each corresponding to a di↵erent EOS, or equiv-
alently a di↵erent deformability �(m), the relative odds
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FIG. 1. Median and 95% confidence interval evolution for
the �0 parameter as an increasing number of sources is taken
into consideration, for three di↵erent equations of state in the
signals: a hard (MS1), a moderate (H4), and a soft (SQM3)
EOS. In each case, the dashed line indicates the true value.

ratios for any pair of models Hi, Hj can be computed as

Oi
j =

P (Hi|d1, d2, . . . , dN , I)

P (Hj |d1, d2, . . . , dN , I)
. (8)

Again assuming independence of the detector outputs
d1, d2, . . . , dN and using Bayes’ theorem, one can write

Oi
j =

P (Hi|I)
P (Hj |I)

NY

n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (9)

P (Hi|I) is the probability of the model Hi before any
measurement has taken place, and similarly for Hj ; in
the absence of more information, these can be set equal
to each other for all models Hk. The evidences for the
various models are given by

p(dn|Hk, I) =

Z
d~✓ p(dn|Hk, ~✓, I) p(~✓|I), (10)

with ~✓ the parameters of the template waveforms
(masses, sky position, etc.) and p(~✓|I) the prior prob-
abilities for these parameters, which we choose to be the
same as in [20]. The likelihood function p(dn|Hk, ~✓, I)
takes the form

p(dn|Hk, ~✓, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n � h̃k(~✓; f)|2

Sn(f)

#
. (11)

This time h̃k(~✓; f) is the waveform model correspond-
ing to the EOS Hk, meaning the abovementioned fre-
quency domain approximant with tidal contributions to
the phase as in Eq. (1), with a deformability �(m) corre-
sponding to that EOS. Here too, we use Nested Sampling
to probe the likelihood [19].
The set {Hk} could comprise all the models consid-

ered in e.g. [6], and many more. In this Letter we wish
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FIG. 6: fpeak, fspiral and f2−0 for mergers with ten different
EoSs and Mtot=2.7 M⊙ vs. the compactness M/R for nonro-
tating, single NSs. Solid lines show empirical relations. The
dashed line is taken from [37] (see text for explanations).

types may be useful in the future. Still, one can clearly
identify a diagonal band of Type II mergers for interme-
diate binary masses, and also the binary setups leading
to the limiting cases of Type I or Type III are seen to
form roughly diagonal bands.

For 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ we find that fspiral
typically ranges between fpeak − 0.5 kHz and fpeak −

0.9 kHz, while f2−0 ranges between fpeak − 0.9 kHz and
fpeak − 1.3 kHz. This property will be useful for iden-
tifying either f2−0 or fspiral (or both) in future GW ob-
servations. Furthermore, we find that fpeak− f2−0(= f0)
decreases with increasing Mtot in all models for which
f2−0 is clearly present, in agreement with the fact that
the quasi-radial frequency decreases near the threshold to
collapse. This observation may be useful to estimate the
proximity to prompt gravitational collapse. Very near
the threshold one thus may expect f2−0 → fpeak. In con-
trast, fpeak − fspiral typically increases with increasing
Mtot, and above the threshold to collapse a spiral pat-
tern during the dynamical collapse could still produce a
weak peak in the GW spectrum, as in [56].

IV. EMPIRICAL RELATIONS FOR DOMINANT
AND SECONDARY PEAK FREQUENCIES

For our sample of EoSs Fig. 6 shows fpeak, fspiral
and f2−0 as a function of the compactness M/R of
the nonspinning, individual NSs (at infinite separation)
for Mtot = 2.7 M⊙ (with the compactness in units of
c = G = 1). We find strong correlations that can be
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FIG. 7: fspiral vs. the compactness, but for different binary
masses. Solid lines show empirical relations. The dashed line
is taken from [37] (see text for explanations).
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described by the following quadratic fits:

fpeak[kHz] = 199(M/R)2 − 28.1(M/R) + 2.33, (1)

fspiral[kHz] = 358(M/R)2 − 82.1(M/R) + 6.16, (2)

f2−0[kHz] = 392(M/R)2 − 88.3(M/R) + 5.95. (3)

The maximum deviations of the data used for these fits
are 140 Hz, 86 Hz and 153 Hz for fpeak, fspiral and f2−0,
respectively. If the compactness is determined from a
measured frequency by inverting Eqs. (1)-(3), these max-
imum deviations imply errors of 3%, 3% and 4% in the
compactess for fpeak, fspiral and f2−0, respectively. (Note

2

peaks are a viable prospect [36, 37, 40, 41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically
non-spinning NSs with a 3D relativistic smoothed par-
ticle hydrodynamics (SPH) code, which imposes the con-
formal flatness condition on the spatial metric [46, 47]
to solve Einstein’s field equations and incorporates en-
ergy and angular momentum losses by a GW backreac-
tion scheme [18, 48] (see [12, 18, 28, 29, 49] for details on
the code, the setup, resolution tests and model uncertain-
ties). Comparisons to other numerical setups and also
models with an approximate consideration of neutrino ef-
fects show an agreement in determining the post-merger
spectrum within a few per cent in the peak frequen-
cies [27–29, 33, 36–38]. Magnetic field effects are neg-
ligible for not too high initial field strengths [24]. We ex-
plore a representative sample of ten microphysical, fully
temperature-dependent equations of state (EoSs) (see
Table I in [39] and Fig. 5 in this work for the mass-radius
relations of non-rotating NSs of these EoSs) and consider
total binary masses Mtot between 2.4 M⊙ and 3.0 M⊙.
In this work we consider only NSs with an initially ir-
rotational velocity profile because known spin periods in
observed NS binaries are slow compared to their orbital
motion (see e.g. [50]), and simulations with initial intrin-
sic NS spin suggest an impact on the post-merger features
of the GW signal only for very fast spins [19, 35, 38].
First, we focus on a reference model for the moderately

stiff DD2 EoS [51, 52] with an intermediate binary mass
of Mtot = 2.7 M⊙. Figure 1 shows the x-polarization of
the effective amplitude heff,x = h̃x(f) · f (with h̃x being
the Fourier transform of the waveform hx) vs. frequency
f (reference model in black). Besides the dominant fpeak
frequency [65], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the post-merger phase,
which can be seen by choosing a time window covering
only the post-merger phase for computing the GW spec-
trum.
The secondary peak shown as f2−0 is a nonlinear com-

bination frequency between the dominant quadrupolar
fpeak oscillation and the quasi-radial oscillation of the
remnant, as described in [25]. We confirm this by per-
forming additional simulations, after adding a quasi-
radial density perturbation to the remnant at late times.
The frequency f0 of the strongly excited quasi-radial os-
cillation is determined by a Fourier analysis of the time-
evolution of the density or central lapse function and co-
incides with the frequency difference fpeak − f2−0. As
in [25], the extracted eigenfunction at f0 confirms the
quasi-radial nature.
The secondary fspiral peak is produced by a strong de-

formation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than
the inner remnant and lasts for a few rotational peri-
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FIG. 1: GW spectra of 1.35-1.35 M⊙ mergers with the
DD2 [51, 52] (black), NL3 [51, 53] (blue) and LS220 [54] (red)
EoS (cross polarization along the polar axis at a reference dis-
tance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

ods, while diminishing in amplitude. Figure 2 shows the
density evolution in the equatorial plane, in which one
can clearly identify the two antipodal bulges of the spi-
ral pattern, which rotate slower than the central parts
of the remnant. In this early phase the inner remnant is
still composed of two dense cores rotating around each
other (this is the nonlinear generalization of an m = 2
quadrupole oscillation producing the dominant fpeak).
Extracting the rotational motion of the antipodal bulges
in our simulations, we indeed find that their frequency
equals fspiral/2 producing gravitational waves at fspiral
(compare the times in the right panels in Fig. 2; recall
the factor two in the frequency of the GW signal com-
pared to the orbital frequency of orbiting point particles).
In Fig. 2 the antipodal bulges are illustrated by selected
fluid elements (tracers), which are shown as black and
white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle.
(We define the centers of mass of the double cores by
computing the centers of mass of the innermost 1000
SPH particles of the respective initial NSs and then fol-
lowing their time evolution.) While in the right panels
the antipodal bulges completed approximately one orbit
within one millisecond (≈ 2

fspiral
), the double cores moved

further ahead, i.e. with a significantly higher orbital fre-
quency. Examining the GW spectrum and considering
different time intervals, we find that the presence of the
fspiral peak agrees with the appearance and duration of
the spiral deformation of the remnant.
In the upper right panel of Fig. 2, the spiral deforma-

tion can be seen to initially reach deep inside the rem-
nant. We approximately determine the amount of matter

• Bauswein et al. (2018)
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FIG. 2: Rest-mass density evolution in the equatorial plane for the 1.35-1.35 M⊙ merger with the DD2 EoS (rotation counter-
clockwise). (The rest-mass density is shown with a variable linear scale relative to ρmax. A low number of contour levels
is chosen for illustrative reasons; the underlying simulation data is smoother than it appears with the chosen color coding.)
Black and white dots trace the positions of selected fluid elements of the antipodal bulges, which within approximately one
millisecond complete one orbit (compare times of the right panels). The orbital motion of this pattern of spiral deformation
produces the fspiral peak in the GW spectrum at 2/(1 ms) (Fig. 1). The cross and the circle mark the double cores, which
rotate significanty faster than the antipodal bulges represented by the dots (compare times of the different panels).

which belongs to the two antipodal bulges that are ro-
tating slower compared to the double cores. This matter
amounts to several tenths of M⊙ and is thus sufficient
to explain the strength of the fspiral GW peak. In ad-
dition, we find that the fspiral GW peak can be roughly
reproduced in a toy model, where the two bulges orbit as
point particles around the central double-core structure

for a duration of a few milliseconds. Note that this toy
model differs significantly from the one in [37], which con-
siders only the two cores to be contributing to the GW
signal and considers only a single instantaneous orbital
frequency of the system.

Furthermore, we take advantage of the quadrupole for-
malism to compute GW spectra considering only certain

3

These are obtained by marginalizing over all the other
parameters in the problem; for instance,

p(�0|dn, I) =
Z

d~✓ d�1 p(~✓,�0,�1|dn, I), (5)

where ~✓ represents masses, sky position, orientation of
the orbital plane, and distance. The joint posterior den-
sity function for all the parameters takes the form

p(~✓,�0,�1|dn, I) =
p(dn|~✓,�0,�1, I) p(~✓,�0,�1|I)

p(dn|I) . (6)

Here p(~✓,�0,�1|I) = p(~✓|I) p(�0|I) p(�1|I). The prior

density p(~✓|I) is taken to be the same as in [20]. We
express �(m) in units of s5. For p(�0|I) we choose a flat
distribution in the range [0, 5]⇥ 10�23 s5, and for p(�1|I)
a flat distribution on [�5, 0]⇥ 10�18 s4 M�; these choices
cover all the EOS considered in [6]. The prior probability
for the data, p(dn|I), is obtained by demanding that the
left hand side of (6) be normalized. Finally, the likelihood
is given by [19]

p(dn|~✓,�0,�1, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n(f) � h̃lin(~✓,�0,�1; f)|2

Sn(f)

#
,(7)

where N is a normalization factor, d̃n is the Fourier
transform of the data stream for the nth detection, and
Sn(f) is the one-sided noise power spectral density; f0
is a lower cut-o↵ frequency, which we take to be 20 Hz.
h̃lin(~✓,�0,�1; f) is our frequency domain waveform, with
the linearized expression for �(m), Eq. (4), substituted
into the tidal contribution to the phase, Eq. (1). To
explore the likelihood function, we used the method of
Nested Sampling as implemented by Veitch and Vecchio
[19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three di↵erent
EOS models from Hinderer et al. [6]: a hard EOS (MS1),
a moderate one (H4), and a soft one (SQM3). In each
case, after a few tens of sources, the value of �0 is
recovered with a statistical uncertainty ⇠ 10%, and it is
easily distinguishable from the ones for the other EOS.
(On the other hand, �1 remains uncertain.) We see that
the posterior medians for �0 are ordered correctly, which
suggests a second method to identify the EOS, namely
hypothesis ranking.

Method 2: Hypothesis ranking. Hinderer et al. computed
the function �(m) for a large number of (families of)
equations of state, some of them mainly involving neu-
trons, protons, electrons, and muons, others allowing for
pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set {Hk} of
models, each corresponding to a di↵erent EOS, or equiv-
alently a di↵erent deformability �(m), the relative odds
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FIG. 1. Median and 95% confidence interval evolution for
the �0 parameter as an increasing number of sources is taken
into consideration, for three di↵erent equations of state in the
signals: a hard (MS1), a moderate (H4), and a soft (SQM3)
EOS. In each case, the dashed line indicates the true value.

ratios for any pair of models Hi, Hj can be computed as

Oi
j =

P (Hi|d1, d2, . . . , dN , I)

P (Hj |d1, d2, . . . , dN , I)
. (8)

Again assuming independence of the detector outputs
d1, d2, . . . , dN and using Bayes’ theorem, one can write

Oi
j =

P (Hi|I)
P (Hj |I)

NY

n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (9)

P (Hi|I) is the probability of the model Hi before any
measurement has taken place, and similarly for Hj ; in
the absence of more information, these can be set equal
to each other for all models Hk. The evidences for the
various models are given by

p(dn|Hk, I) =

Z
d~✓ p(dn|Hk, ~✓, I) p(~✓|I), (10)

with ~✓ the parameters of the template waveforms
(masses, sky position, etc.) and p(~✓|I) the prior prob-
abilities for these parameters, which we choose to be the
same as in [20]. The likelihood function p(dn|Hk, ~✓, I)
takes the form

p(dn|Hk, ~✓, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n � h̃k(~✓; f)|2

Sn(f)

#
. (11)

This time h̃k(~✓; f) is the waveform model correspond-
ing to the EOS Hk, meaning the abovementioned fre-
quency domain approximant with tidal contributions to
the phase as in Eq. (1), with a deformability �(m) corre-
sponding to that EOS. Here too, we use Nested Sampling
to probe the likelihood [19].
The set {Hk} could comprise all the models consid-

ered in e.g. [6], and many more. In this Letter we wish
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FIG. 6: fpeak, fspiral and f2−0 for mergers with ten different
EoSs and Mtot=2.7 M⊙ vs. the compactness M/R for nonro-
tating, single NSs. Solid lines show empirical relations. The
dashed line is taken from [37] (see text for explanations).

types may be useful in the future. Still, one can clearly
identify a diagonal band of Type II mergers for interme-
diate binary masses, and also the binary setups leading
to the limiting cases of Type I or Type III are seen to
form roughly diagonal bands.

For 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ we find that fspiral
typically ranges between fpeak − 0.5 kHz and fpeak −

0.9 kHz, while f2−0 ranges between fpeak − 0.9 kHz and
fpeak − 1.3 kHz. This property will be useful for iden-
tifying either f2−0 or fspiral (or both) in future GW ob-
servations. Furthermore, we find that fpeak− f2−0(= f0)
decreases with increasing Mtot in all models for which
f2−0 is clearly present, in agreement with the fact that
the quasi-radial frequency decreases near the threshold to
collapse. This observation may be useful to estimate the
proximity to prompt gravitational collapse. Very near
the threshold one thus may expect f2−0 → fpeak. In con-
trast, fpeak − fspiral typically increases with increasing
Mtot, and above the threshold to collapse a spiral pat-
tern during the dynamical collapse could still produce a
weak peak in the GW spectrum, as in [56].

IV. EMPIRICAL RELATIONS FOR DOMINANT
AND SECONDARY PEAK FREQUENCIES

For our sample of EoSs Fig. 6 shows fpeak, fspiral
and f2−0 as a function of the compactness M/R of
the nonspinning, individual NSs (at infinite separation)
for Mtot = 2.7 M⊙ (with the compactness in units of
c = G = 1). We find strong correlations that can be
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FIG. 7: fspiral vs. the compactness, but for different binary
masses. Solid lines show empirical relations. The dashed line
is taken from [37] (see text for explanations).
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described by the following quadratic fits:

fpeak[kHz] = 199(M/R)2 − 28.1(M/R) + 2.33, (1)

fspiral[kHz] = 358(M/R)2 − 82.1(M/R) + 6.16, (2)

f2−0[kHz] = 392(M/R)2 − 88.3(M/R) + 5.95. (3)

The maximum deviations of the data used for these fits
are 140 Hz, 86 Hz and 153 Hz for fpeak, fspiral and f2−0,
respectively. If the compactness is determined from a
measured frequency by inverting Eqs. (1)-(3), these max-
imum deviations imply errors of 3%, 3% and 4% in the
compactess for fpeak, fspiral and f2−0, respectively. (Note

2

peaks are a viable prospect [36, 37, 40, 41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically
non-spinning NSs with a 3D relativistic smoothed par-
ticle hydrodynamics (SPH) code, which imposes the con-
formal flatness condition on the spatial metric [46, 47]
to solve Einstein’s field equations and incorporates en-
ergy and angular momentum losses by a GW backreac-
tion scheme [18, 48] (see [12, 18, 28, 29, 49] for details on
the code, the setup, resolution tests and model uncertain-
ties). Comparisons to other numerical setups and also
models with an approximate consideration of neutrino ef-
fects show an agreement in determining the post-merger
spectrum within a few per cent in the peak frequen-
cies [27–29, 33, 36–38]. Magnetic field effects are neg-
ligible for not too high initial field strengths [24]. We ex-
plore a representative sample of ten microphysical, fully
temperature-dependent equations of state (EoSs) (see
Table I in [39] and Fig. 5 in this work for the mass-radius
relations of non-rotating NSs of these EoSs) and consider
total binary masses Mtot between 2.4 M⊙ and 3.0 M⊙.
In this work we consider only NSs with an initially ir-
rotational velocity profile because known spin periods in
observed NS binaries are slow compared to their orbital
motion (see e.g. [50]), and simulations with initial intrin-
sic NS spin suggest an impact on the post-merger features
of the GW signal only for very fast spins [19, 35, 38].
First, we focus on a reference model for the moderately

stiff DD2 EoS [51, 52] with an intermediate binary mass
of Mtot = 2.7 M⊙. Figure 1 shows the x-polarization of
the effective amplitude heff,x = h̃x(f) · f (with h̃x being
the Fourier transform of the waveform hx) vs. frequency
f (reference model in black). Besides the dominant fpeak
frequency [65], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the post-merger phase,
which can be seen by choosing a time window covering
only the post-merger phase for computing the GW spec-
trum.
The secondary peak shown as f2−0 is a nonlinear com-

bination frequency between the dominant quadrupolar
fpeak oscillation and the quasi-radial oscillation of the
remnant, as described in [25]. We confirm this by per-
forming additional simulations, after adding a quasi-
radial density perturbation to the remnant at late times.
The frequency f0 of the strongly excited quasi-radial os-
cillation is determined by a Fourier analysis of the time-
evolution of the density or central lapse function and co-
incides with the frequency difference fpeak − f2−0. As
in [25], the extracted eigenfunction at f0 confirms the
quasi-radial nature.
The secondary fspiral peak is produced by a strong de-

formation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than
the inner remnant and lasts for a few rotational peri-
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FIG. 1: GW spectra of 1.35-1.35 M⊙ mergers with the
DD2 [51, 52] (black), NL3 [51, 53] (blue) and LS220 [54] (red)
EoS (cross polarization along the polar axis at a reference dis-
tance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

ods, while diminishing in amplitude. Figure 2 shows the
density evolution in the equatorial plane, in which one
can clearly identify the two antipodal bulges of the spi-
ral pattern, which rotate slower than the central parts
of the remnant. In this early phase the inner remnant is
still composed of two dense cores rotating around each
other (this is the nonlinear generalization of an m = 2
quadrupole oscillation producing the dominant fpeak).
Extracting the rotational motion of the antipodal bulges
in our simulations, we indeed find that their frequency
equals fspiral/2 producing gravitational waves at fspiral
(compare the times in the right panels in Fig. 2; recall
the factor two in the frequency of the GW signal com-
pared to the orbital frequency of orbiting point particles).
In Fig. 2 the antipodal bulges are illustrated by selected
fluid elements (tracers), which are shown as black and
white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle.
(We define the centers of mass of the double cores by
computing the centers of mass of the innermost 1000
SPH particles of the respective initial NSs and then fol-
lowing their time evolution.) While in the right panels
the antipodal bulges completed approximately one orbit
within one millisecond (≈ 2

fspiral
), the double cores moved

further ahead, i.e. with a significantly higher orbital fre-
quency. Examining the GW spectrum and considering
different time intervals, we find that the presence of the
fspiral peak agrees with the appearance and duration of
the spiral deformation of the remnant.
In the upper right panel of Fig. 2, the spiral deforma-

tion can be seen to initially reach deep inside the rem-
nant. We approximately determine the amount of matter
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Phase transitions in the the 
hypermassive neutron star can alter 
the correlation between compactness 
measured from the tidal deformability 
and post-merger oscillations. 
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Fig. 8. EOSs for ntr = nsat which are allowed under the constraint 70  ⇤̃  720 for q = 0.7 but not when q = 1.0 [panel (a)]
and vice versa [panel (b)].

Therefore, a few EOSs without phase transition pass the
LV constraint for q = 0.7 but not for q = 1.0. Neverthe-
less, the changes in ⇤̃ from q = 0.7 to q = 1.0 are rather
small and these models have smaller radii than the upper
limit of 13.6 km.

The more interesting case are models with a phase
transition for neutron stars with masses above 1.4M�.
These models lead to large radii for typical neutron stars
and to tidal polarizabilities larger than the LV constraint.
For q = 1, when ⇤̃ = ⇤1 = ⇤2, these models are rejected.
Due to the phase transition above but close to 1.4M�, on
the other hand, a higher mass asymmetry dramatically re-
duces ⇤1 and therefore ⇤̃, and these models get accepted
in this case.

Another interesting case is the inverted situation, where
EOSs with q = 0.7 are ruled out but allowed for q = 1.0.
We show these EOSs in the right panel of Fig. 8. In this
case, all of the EOS have phase transitions in stars with
masses below 1.4M�. If the phase transition happens in
very low-mass stars, at rather low densities close to satu-
ration density, then the EOS leads to very small radii of
the order of 9 km for typical neutron stars. In this case,
for higher mass asymmetries, ⇤̃ is reduced and the EOS is
ruled out due to the lower constraint the tidal polarizabil-
ity, 70  ⇤̃. However, this is an extremely rare case and
we find only one EOS among tens of thousands of samples
for which this is the case, see Fig. 8(b).

The more likely case is that EOS are again ruled out
due to the upper constraint on ⇤̃. In this case, the phase
transition appears in neutron stars with masses slightly
below 1.4M�. For q = 1, the combined tidal polarizabil-
ity is small enough for these models to be accepted. For
a higher mass asymmetry, ⇤1 remains small but ⇤2 grows
fast, and ⇤̃ increases su�ciently for the EOS to be re-
jected.

In summary, information on possible strong first-order
phase transitions might be obtained if observations were to
be made that access regions allowed by the CSM but for-
bidden by the MM. Also, if these phase transition appear
around densities explored in typical neutron stars, they
might be excluded if mass asymmetries in the individual
merger events can be constrained much more precisely.

Mention that there is no di↵erence for 2nsat.

3.6 Discussion on validity of chiral constraints

In this work and in Ref. [16], we have presented the first
calculation of tidal polarizabilities for GW170817 with
systematic error estimates derived from the order-by-order
chiral EFT input for the EOS up to twice nuclear satura-
tion density. Without reliable error estimates, theoretical
calculations of the dense-matter EOS and its use in the
analysis of GW wave data are of limited value. We be-
lieve that this is critical to understand the impact that
gravitational-wave detections will have on elucidating the
properties of dense matter inside neutron stars. We find, in
contrast to other recent publications [?], that GW170817
does not provide new insight about the EOS that cannot
be obtained from current nuclear physics knowledge. This
message tempers claims made in these recent publications
which claim that the upper limit on the tidal polarizability
derived from GW data rules out sti↵ nuclear EOS. While
this inference is correct, the sti↵ EOSs are already ruled
out based on state-of-the-art nuclear Hamiltonians.

To be specific, models of dense matter excluded by the
upper limit on the deformability are already incompatible
with the improved current microscopic EOS at densities
where error estimates can still be justified. Our study is
the first to use calculations of the neutron matter EOS

**

Many detections and next generation detectors  

Bauswein & Stergioulas (2015)

Frequency of quasi-normal modes, post merger are 
also sensitive to the EOS. Will be accessible with next 
generation GW detectors.      
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FIG. 2: Rest-mass density evolution in the equatorial plane for the 1.35-1.35 M⊙ merger with the DD2 EoS (rotation counter-
clockwise). (The rest-mass density is shown with a variable linear scale relative to ρmax. A low number of contour levels
is chosen for illustrative reasons; the underlying simulation data is smoother than it appears with the chosen color coding.)
Black and white dots trace the positions of selected fluid elements of the antipodal bulges, which within approximately one
millisecond complete one orbit (compare times of the right panels). The orbital motion of this pattern of spiral deformation
produces the fspiral peak in the GW spectrum at 2/(1 ms) (Fig. 1). The cross and the circle mark the double cores, which
rotate significanty faster than the antipodal bulges represented by the dots (compare times of the different panels).

which belongs to the two antipodal bulges that are ro-
tating slower compared to the double cores. This matter
amounts to several tenths of M⊙ and is thus sufficient
to explain the strength of the fspiral GW peak. In ad-
dition, we find that the fspiral GW peak can be roughly
reproduced in a toy model, where the two bulges orbit as
point particles around the central double-core structure

for a duration of a few milliseconds. Note that this toy
model differs significantly from the one in [37], which con-
siders only the two cores to be contributing to the GW
signal and considers only a single instantaneous orbital
frequency of the system.

Furthermore, we take advantage of the quadrupole for-
malism to compute GW spectra considering only certain

3

These are obtained by marginalizing over all the other
parameters in the problem; for instance,

p(�0|dn, I) =
Z

d~✓ d�1 p(~✓,�0,�1|dn, I), (5)

where ~✓ represents masses, sky position, orientation of
the orbital plane, and distance. The joint posterior den-
sity function for all the parameters takes the form

p(~✓,�0,�1|dn, I) =
p(dn|~✓,�0,�1, I) p(~✓,�0,�1|I)

p(dn|I) . (6)

Here p(~✓,�0,�1|I) = p(~✓|I) p(�0|I) p(�1|I). The prior

density p(~✓|I) is taken to be the same as in [20]. We
express �(m) in units of s5. For p(�0|I) we choose a flat
distribution in the range [0, 5]⇥ 10�23 s5, and for p(�1|I)
a flat distribution on [�5, 0]⇥ 10�18 s4 M�; these choices
cover all the EOS considered in [6]. The prior probability
for the data, p(dn|I), is obtained by demanding that the
left hand side of (6) be normalized. Finally, the likelihood
is given by [19]

p(dn|~✓,�0,�1, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n(f) � h̃lin(~✓,�0,�1; f)|2

Sn(f)

#
,(7)

where N is a normalization factor, d̃n is the Fourier
transform of the data stream for the nth detection, and
Sn(f) is the one-sided noise power spectral density; f0
is a lower cut-o↵ frequency, which we take to be 20 Hz.
h̃lin(~✓,�0,�1; f) is our frequency domain waveform, with
the linearized expression for �(m), Eq. (4), substituted
into the tidal contribution to the phase, Eq. (1). To
explore the likelihood function, we used the method of
Nested Sampling as implemented by Veitch and Vecchio
[19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three di↵erent
EOS models from Hinderer et al. [6]: a hard EOS (MS1),
a moderate one (H4), and a soft one (SQM3). In each
case, after a few tens of sources, the value of �0 is
recovered with a statistical uncertainty ⇠ 10%, and it is
easily distinguishable from the ones for the other EOS.
(On the other hand, �1 remains uncertain.) We see that
the posterior medians for �0 are ordered correctly, which
suggests a second method to identify the EOS, namely
hypothesis ranking.

Method 2: Hypothesis ranking. Hinderer et al. computed
the function �(m) for a large number of (families of)
equations of state, some of them mainly involving neu-
trons, protons, electrons, and muons, others allowing for
pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set {Hk} of
models, each corresponding to a di↵erent EOS, or equiv-
alently a di↵erent deformability �(m), the relative odds
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FIG. 1. Median and 95% confidence interval evolution for
the �0 parameter as an increasing number of sources is taken
into consideration, for three di↵erent equations of state in the
signals: a hard (MS1), a moderate (H4), and a soft (SQM3)
EOS. In each case, the dashed line indicates the true value.

ratios for any pair of models Hi, Hj can be computed as

Oi
j =

P (Hi|d1, d2, . . . , dN , I)

P (Hj |d1, d2, . . . , dN , I)
. (8)

Again assuming independence of the detector outputs
d1, d2, . . . , dN and using Bayes’ theorem, one can write

Oi
j =

P (Hi|I)
P (Hj |I)

NY

n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (9)

P (Hi|I) is the probability of the model Hi before any
measurement has taken place, and similarly for Hj ; in
the absence of more information, these can be set equal
to each other for all models Hk. The evidences for the
various models are given by

p(dn|Hk, I) =

Z
d~✓ p(dn|Hk, ~✓, I) p(~✓|I), (10)

with ~✓ the parameters of the template waveforms
(masses, sky position, etc.) and p(~✓|I) the prior prob-
abilities for these parameters, which we choose to be the
same as in [20]. The likelihood function p(dn|Hk, ~✓, I)
takes the form

p(dn|Hk, ~✓, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n � h̃k(~✓; f)|2

Sn(f)

#
. (11)

This time h̃k(~✓; f) is the waveform model correspond-
ing to the EOS Hk, meaning the abovementioned fre-
quency domain approximant with tidal contributions to
the phase as in Eq. (1), with a deformability �(m) corre-
sponding to that EOS. Here too, we use Nested Sampling
to probe the likelihood [19].
The set {Hk} could comprise all the models consid-

ered in e.g. [6], and many more. In this Letter we wish
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FIG. 6: fpeak, fspiral and f2−0 for mergers with ten different
EoSs and Mtot=2.7 M⊙ vs. the compactness M/R for nonro-
tating, single NSs. Solid lines show empirical relations. The
dashed line is taken from [37] (see text for explanations).

types may be useful in the future. Still, one can clearly
identify a diagonal band of Type II mergers for interme-
diate binary masses, and also the binary setups leading
to the limiting cases of Type I or Type III are seen to
form roughly diagonal bands.

For 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ we find that fspiral
typically ranges between fpeak − 0.5 kHz and fpeak −

0.9 kHz, while f2−0 ranges between fpeak − 0.9 kHz and
fpeak − 1.3 kHz. This property will be useful for iden-
tifying either f2−0 or fspiral (or both) in future GW ob-
servations. Furthermore, we find that fpeak− f2−0(= f0)
decreases with increasing Mtot in all models for which
f2−0 is clearly present, in agreement with the fact that
the quasi-radial frequency decreases near the threshold to
collapse. This observation may be useful to estimate the
proximity to prompt gravitational collapse. Very near
the threshold one thus may expect f2−0 → fpeak. In con-
trast, fpeak − fspiral typically increases with increasing
Mtot, and above the threshold to collapse a spiral pat-
tern during the dynamical collapse could still produce a
weak peak in the GW spectrum, as in [56].

IV. EMPIRICAL RELATIONS FOR DOMINANT
AND SECONDARY PEAK FREQUENCIES

For our sample of EoSs Fig. 6 shows fpeak, fspiral
and f2−0 as a function of the compactness M/R of
the nonspinning, individual NSs (at infinite separation)
for Mtot = 2.7 M⊙ (with the compactness in units of
c = G = 1). We find strong correlations that can be
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described by the following quadratic fits:

fpeak[kHz] = 199(M/R)2 − 28.1(M/R) + 2.33, (1)

fspiral[kHz] = 358(M/R)2 − 82.1(M/R) + 6.16, (2)

f2−0[kHz] = 392(M/R)2 − 88.3(M/R) + 5.95. (3)

The maximum deviations of the data used for these fits
are 140 Hz, 86 Hz and 153 Hz for fpeak, fspiral and f2−0,
respectively. If the compactness is determined from a
measured frequency by inverting Eqs. (1)-(3), these max-
imum deviations imply errors of 3%, 3% and 4% in the
compactess for fpeak, fspiral and f2−0, respectively. (Note

2

peaks are a viable prospect [36, 37, 40, 41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically
non-spinning NSs with a 3D relativistic smoothed par-
ticle hydrodynamics (SPH) code, which imposes the con-
formal flatness condition on the spatial metric [46, 47]
to solve Einstein’s field equations and incorporates en-
ergy and angular momentum losses by a GW backreac-
tion scheme [18, 48] (see [12, 18, 28, 29, 49] for details on
the code, the setup, resolution tests and model uncertain-
ties). Comparisons to other numerical setups and also
models with an approximate consideration of neutrino ef-
fects show an agreement in determining the post-merger
spectrum within a few per cent in the peak frequen-
cies [27–29, 33, 36–38]. Magnetic field effects are neg-
ligible for not too high initial field strengths [24]. We ex-
plore a representative sample of ten microphysical, fully
temperature-dependent equations of state (EoSs) (see
Table I in [39] and Fig. 5 in this work for the mass-radius
relations of non-rotating NSs of these EoSs) and consider
total binary masses Mtot between 2.4 M⊙ and 3.0 M⊙.
In this work we consider only NSs with an initially ir-
rotational velocity profile because known spin periods in
observed NS binaries are slow compared to their orbital
motion (see e.g. [50]), and simulations with initial intrin-
sic NS spin suggest an impact on the post-merger features
of the GW signal only for very fast spins [19, 35, 38].
First, we focus on a reference model for the moderately

stiff DD2 EoS [51, 52] with an intermediate binary mass
of Mtot = 2.7 M⊙. Figure 1 shows the x-polarization of
the effective amplitude heff,x = h̃x(f) · f (with h̃x being
the Fourier transform of the waveform hx) vs. frequency
f (reference model in black). Besides the dominant fpeak
frequency [65], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the post-merger phase,
which can be seen by choosing a time window covering
only the post-merger phase for computing the GW spec-
trum.
The secondary peak shown as f2−0 is a nonlinear com-

bination frequency between the dominant quadrupolar
fpeak oscillation and the quasi-radial oscillation of the
remnant, as described in [25]. We confirm this by per-
forming additional simulations, after adding a quasi-
radial density perturbation to the remnant at late times.
The frequency f0 of the strongly excited quasi-radial os-
cillation is determined by a Fourier analysis of the time-
evolution of the density or central lapse function and co-
incides with the frequency difference fpeak − f2−0. As
in [25], the extracted eigenfunction at f0 confirms the
quasi-radial nature.
The secondary fspiral peak is produced by a strong de-

formation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than
the inner remnant and lasts for a few rotational peri-

1 2 3 4

10−22

10−21

10−20

f [kHz]

h ef
f,x

(2
0 

M
pc

)

f2−0
fspiral

fpeak

adLIGO

ET
 

 

Type I
Type II
Type III

FIG. 1: GW spectra of 1.35-1.35 M⊙ mergers with the
DD2 [51, 52] (black), NL3 [51, 53] (blue) and LS220 [54] (red)
EoS (cross polarization along the polar axis at a reference dis-
tance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

ods, while diminishing in amplitude. Figure 2 shows the
density evolution in the equatorial plane, in which one
can clearly identify the two antipodal bulges of the spi-
ral pattern, which rotate slower than the central parts
of the remnant. In this early phase the inner remnant is
still composed of two dense cores rotating around each
other (this is the nonlinear generalization of an m = 2
quadrupole oscillation producing the dominant fpeak).
Extracting the rotational motion of the antipodal bulges
in our simulations, we indeed find that their frequency
equals fspiral/2 producing gravitational waves at fspiral
(compare the times in the right panels in Fig. 2; recall
the factor two in the frequency of the GW signal com-
pared to the orbital frequency of orbiting point particles).
In Fig. 2 the antipodal bulges are illustrated by selected
fluid elements (tracers), which are shown as black and
white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle.
(We define the centers of mass of the double cores by
computing the centers of mass of the innermost 1000
SPH particles of the respective initial NSs and then fol-
lowing their time evolution.) While in the right panels
the antipodal bulges completed approximately one orbit
within one millisecond (≈ 2

fspiral
), the double cores moved

further ahead, i.e. with a significantly higher orbital fre-
quency. Examining the GW spectrum and considering
different time intervals, we find that the presence of the
fspiral peak agrees with the appearance and duration of
the spiral deformation of the remnant.
In the upper right panel of Fig. 2, the spiral deforma-

tion can be seen to initially reach deep inside the rem-
nant. We approximately determine the amount of matter

the hyper-massive neutron stars at distinct frequencies of a few kHz [53–72] on timescales of the order
of a few hundred milliseconds. The early (< 40ms) post-merger emission is dominated by an m = 2
fundamental-mode (denoted as f2 or fpeak), but can also include secondary, quasi-linear combinations
between the f -mode and the quasiradial, m = 0 mode [60] and/or a di↵erent secondary peak due to a
spiral deformation excited during merger [65].

The detection of these GWs in third generation detectors can lead to tight constraints on the neutron
star EOS, primarily through the application of an empirical relation between the f2-mode frequency and
the neutron star radius [61, 62, 65, 73–78]. This can be used to determine neutron star radii with high
accuracy, provided that the total mass is known [79,80], since the empirical relation depends only weakly
on the mass ratio.

Several analyses have quantified the accuracy with which quantities like fpeak can be determined
using realistic data analysis strategies. Broadly speaking, a source with optimal signal-to-noise ratio
(SNR) ⇠ 5 will allow a determination of the neutron star radius with a statistical uncertainty of a
few percent [74, 77, 78, 81]. This is comparable to the uncertainty in the radius inferred from the pre-
merger phase for the same source, highlighting the complementarity of independent pre- and post-merger
observations. A single detection with SNR ⇠ 5 and total mass in the range 2.4M�  Mtot  3.0M�
will su�ce to significantly constrain the EOS in the density regime that corresponds to a neutron star
of 1.6M�. From at least two well-separated low-mass fpeak measurements, one can extrapolate to
higher densities, thereby placing constraints on the mass and radius of the maximum mass non-rotating
configuration [82]. This will allow to distinguish between di↵erent EOSs that yield similar radii for
low, but di↵er for higher masses. In addition, simultaneous measurements of the tidal polarizability
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FIG. 2: GW spectrum of the cross polarization at a distance
of 20 Mpc along the polar axis comparing the DD2F-SF EOS
(green curve) and the DD2F EOS (black curve).

GW spectrum: The di↵erent evolution of the mergers
with and without phase transition to quark matter is re-
flected in the GW signal. Figure 2 shows the GW spectra
of the cross polarization at a distance of 20 Mpc along
the polar axis comparing the DD2F-SF EOS (green) and
the DD2F EOS (black). During the pre-merger phase
the GW signals reach a maximum frequency of about
1.7 kHz, and the GW spectra are similar below this fre-
quency. The high-frequency content of the spectra is
shaped by the postmerger stage and significant di↵er-
ences between the two simulations are apparent. In par-
ticular, the frequency fpeak of the dominant oscillation
of the postmerger phase is clearly di↵erent. This peak
is a robust and generic feature that occurs in all sim-
ulations which do not directly form a black hole after
merging [22, 53–57].

The frequency of the main peak depends sensitively
on the EOS [53–55, 58]. It has been found [21, 22] that
fpeak scales tightly with radii R of nonrotating cold NSs
for di↵erent fixed binary masses (cf. Figs. 9–12 and 22–
24 in [22]). In turn, these relations fpeak(R) o↵er the
possibility to determine NS radii from a measurement of
the dominant postmerger GW frequency [35–39].

Moreover, during the inspiral phase of NS mergers
finite-size e↵ects are measurable and encoded in the tidal
deformability ⇤ = 2

3k2

�
R
M

�5
with the tidal Love number

k2 [11, 13]. Considering the strong dependence of ⇤ on
NS radii, it is clear that fpeak also correlates with the
tidal deformability of NSs (see Fig. 3 and [59, 60] for
plots with the tidal coupling constant including di↵erent
total binary masses). It is conceivable that ⇤ will be
measured with significantly better precision in future ob-
servations compared to GW170817, which resulted in a
measurement uncertainty on ⇤ of a 1.4 M� NS of about
510 at the 90% level [6, 31, 32]. For instance, an event
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FIG. 3: Dominant postmerger GW frequency fpeak as func-
tion of tidal deformability � for 1.35-1.35 M� mergers. The
model DD2F-SF with a phase transition to deconfined quark
matter (green symbol) appears as clear outlier. Solid curve
displays the least square fit Eq. (1) for all purely hadronic
EOSs (including three models with hyperons marked by as-
terisks). The EOSs incompatible with GW170817 are not
shown.

similar to GW170817 would reduce this error by a factor
of about 3 once the detectors reach their design sensitiv-
ity [12, 14–20]. Similarly, it is expected that the dom-
inant postmerger frequency will be measured to within
a few 10 Hz in future nearby events with the projected
improvements for the current generation of detectors [35–
40].

Observational signature of phase transitions: In Fig. 3
we show the dominant postmerger frequency fpeak as
function of the tidal deformability ⇤1.35 = ⇤(1.35 M�)
for the 1.35-1.35 M� mergers for all EOSs of this study.
As anticipated, fpeak scales tightly with the tidal de-
formability for all EOS models (black symbols). There is
only one exception: the DD2F-SF EOS leads to a signif-
icantly higher peak frequency of 3.539 kHz (green sym-
bol). The purely hadronic counterpart of this EOS model
without phase transition yields a peak frequency of only
3.098 kHz, while the tidal deformability parameters are
identical for both EOSs.

Excluding DD2F-SF we obtain a least square fit

fpeak = (6.486 ⇥ 10�7 ⇤2 � 2.231 ⇥ 10�3 ⇤ + 4.1) kHz ,
(1)

for all purely hadronic EOSs (solid curve in Fig. 3). The
maximum deviation between data (black symbols) and
the fit Eq. (1) is 113 Hz (grey band in Fig. 3), with an
average scatter of 44 Hz [81]. In comparison, for the
DD2F-SF model the peak frequency is 448 Hz above the
value which is expected from the fpeak(⇤) fit for the given
tidal deformability of this EOS.

A deviation of nearly 0.5 kHz is significant also if we

Hybrid Star

Neutron Stars

Figure 3: fpeak and ⇤ are correlated for normal neutron stars and this correlation is altered when a
phase transition is encountered in the hypermassive neutron star [83].

⇤ of the merging neutron stars and fpeak could help identify strong first-order phase transitions in
neutron stars [83]. The hypermassive neutron star formed post-merger is more compact due to the
phase transition and fpeak is discernibly larger (see Fig. 3 ).

The SNR of the post-merger signal depends strongly on the mass of the binary and on the equation of
state: high (low) masses and softer (sti↵) equations of state yield more (less) compact, dense remnants
and correspondingly high (low)-frequency post-merger emission. There is broad qualitative agreement
between di↵erent simulations that the signal at frequencies & 1 kHz will yield advanced LIGO SNRs
in the range ⇠ 1–3 for an optimally oriented source at a distance of 100 Mpc. About half of it arises
from the post-merger phase [64, 72, 74, 84, 85]. Had the aLIGO/adVirgo network been operating at
design sensitivity, the network SNR of the post-merger signal from GW170817 may have been as high
as ⇠ 4 [86].

While aLIGO will not o↵er su�cient high-frequency sensitivity to make high-SNR postmerger obser-
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• Bauswein et al. (2018)
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EOS & merger dynamics 
•  Softer EOS leads to:


•  merger at shorter separation


•  larger velocities


•  higher temperatures


•  higher neutrino luminosities


•  easier to shock-heat matter (v > cs)


•  more positron captures:          


•  higher electron fraction Ye in ejecta


•  bluer macronova

e+ + n ! p+ ⌫̄
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Sekiguchi+ 2016

ejecta

neutrino emission
SFHo: Mmax= 2.06 M⊙ DD2: Mmax= 2.42 M⊙
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Nucleosynthesis and  Ye of Ejecta

• Threshold value: Yecrit ≈ 0.25

• Ye < Yecrit: 

• “strong/heavy” r-process A ≳ 130

• insensitive to details of trajectory


• Ye > Yecrit: 

• A ≲ 130

• sensitive to details of trajectory(v
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Rosswog+ 2018

Electron fraction (Ye ) of the ejecta determines the nucleosynthetic 
outcomes. 



Neutrinos and EM Signal
• neutrino heating: ejecta from 1.35 + 1.35 M⊙;  SFHO-EOS (Perego+ 2017)

WITH ν-absorption WITHOUT ν-absorption

Ye
crit

⇒ determines color of macronova!
• accurate treatment of neutrino transport needed to predict EM-transient

⇒ “blue transient”

⇒ “red transient”

Foucart+ 2016



Continuous Gravitational Waves

Bumpy 
Neutron Star

frot

z

  

€ 

ε =
Ixx − Iyy

Izz

Non axisymmetric shape: 
Crustal deformations, Internal deformations

• geological history, magnetic field, re-

adjustments, if in binary: accretion-powered 
hot-spot 


Non axisymmetric motion: 
• Free-precession

• R-modes

• Ekman flows

h0 =
4π2G
c4D

Izzϵf 2
GW = 3 × 10−25 ( kpc

D ) ( ϵ
10−6 ) ( fGW

kHz )

Predictions on GW amplitude span orders of magnitude. 

Joint EM and GW observation of a CW signal could shed light on: emission 
mechanism, NS interiors, NS evolution and NS populations.


Predictions of 
max values 
range between 
10-3 and 10-7 



Ellpiticity upper limits from all-sky GW survey

Abbott et al (LIGO/Virgo), PRD 97,102003 (2018) 

With 3 detectors at Ad. LIGO sensitivity 
bound improves by factor of 4 in one 
year. To access 100 times smaller 
bounds will require new detectors with 
improved low frequency  sensitivity. 

Bounds on the ellipticity of NSs

All sky survey can exclude 
objects with ellipticities ≥ 10-7 
within a distance of 100 pc of 
Earth at frequencies ≥ 1000 
Hz. 



Physics Beyond the Standard Model &  Neutron Stars 
Speculative ideas about neutron stars 
containing an admixture of dark matter 
have explored recently. 


These include: 


Dark halos around neutron stars 
generated by trace amounts of strongly 
interacting dark matter and its ability to 
enhance the neutron stars tidal 
deformability.


   


Constraints on very long range forces 
between neutron stars (containing dark 
matter) in a binary. 
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FIG. 1. Projected sensitivity of the Einstein Telescope ET-B
[74, 75] to the relative Yukawa interaction strength ↵ (black,
solid), and the dipole emission parameter � for a neutron star
binary (black, dashed) and a mixed black hole-neutron star
binary (red,dashed). Dipole emission occurs only for � above
a mass-dependent lower bound.

and the force is repulsive. At a given fixed orbital sep-
aration r, this results in a decrease in both the orbital
frequency and the total energy of the system, leading in
turn to a decrease in the power emitted in gravitational
waves (again at a given fixed r). In addition to this e↵ect,
and irrespective of the particular dark matter model con-
sidered, when the orbital angular frequency of the binary
exceeds 1/�, an associated dipole emission is activated,
which forces the binary to inspiral faster. This dipole
emission will be dominant over the quadrupole emission
of General Relativity, dominating the balance law and
the chirping rate at large separation.

In this work we explicitly compute analytic expressions
for the Fourier space gravitational wave amplitude and
phase in the stationary phase approximation, given the
above form of the correction to the potential. We find
that the induced dipole emission manifests itself as a -1
post-Newtonian (PN) correction to the waveform, while
the Yukawa-type corrections in general do not decompose
into a PN expansion. In the limit of a light dark photon
� & O(103) km, the Yukawa corrections can be formu-
lated as a (convergent) series of negative PN corrections,
while in the opposite limit, � . 5km, the corrections are
exponentially suppressed and become completely degen-
erate with the General Relativity waveform.

We perform a Fisher information matrix analysis
and compute the projected sensitivity to the above
dark sector modifications of second and third gener-
ation ground-based gravitational wave interferometers:
advanced LIGO [71], A+/A++[72], Voyager [72], VRT
[72, 73], Cosmic Explorer [72] and the Einstein Telescope
[74, 75]. This approach to statistical inference has be-
come a standard tool in gravitational wave physics (see
e.g. [7]), provided the signal is loud enough and the noise

is stationary and Gaussian, as expected in third genera-
tion detectors. Such a tool is highly computational e�-
cient, allowing for an expedient search for areas of new
physics ‘where the light shines brightest’ with gravita-
tional waves. In this work we find that the light shines
very brightly on dark sectors, and in Figure 1 we provide
a preview of our main results. This figure shows that a
single observation with the Einstein Telescope would suf-
fice to rule out a large sector of parameter space: values
of the Yukawa interaction strength ↵ above the solid line,
and values of the dipole emission parameter � above the
dashed lines. For a particular model, one can use black-
hole superradiance [76], in tandem with binary insprial
gravitational wave systems, to probe particular length
scales �.
Our work extends previous analyses (e.g. [43–49]1) to

include projected constraints with a wider range of � and
with second and third generation detectors, a careful ac-
counting of projected constraints on dipole emission, and
explicit expressions for the inspiral waveform that care-
fully include the e↵ect of Yukawa and dipole modifica-
tions, which could be used in the future against real data.
We find that the constraints on the Yukawa interaction
strength ↵ can be as good as O(10�5), with the best con-
straints coming from the Einstein Telescope, while con-
straints on the dipole emission parameter � (defined in
Eq. (11)) can be as good as O(10�7), with the best con-
straints again coming from the Einstein Telescope. From
this we conclude that gravitational waves are indeed a
powerful probe of dark sectors.
The structure of this paper is as follows. Section II out-

lines an example of a dark model which realizes the dis-
cussed modifications to the gravitational potential. Sec-
tion III discusses general features of the modified inspiral,
and Sec. IV explicitly computes the gravitational wave-
form. Section V performs a Fisher analysis on the wave-
form, with our main results presented in Figures 4 and 5.
We conclude in Section VI with a summary of our results
and a discussion of directions for future work.

II. DARK MATTER MODEL

As we discussed in the Introduction, our work is largely
independent of the dark-matter model. However, for the
sake of concreteness, we here provide a specific example
which realizes this scenario. We emphasize, nonetheless,
that the results presented in this paper are generic and
not dependent of the specific features a particular dark
matter model.
Consider then a model of asymmetric dark matter (for

a review see e.g. [50]) coupled to an Abelian gauge field
V µ (the ‘dark photon’), as has been considered previously

1
Note also [80], which takes a di↵erent approach from this work.

α

Mχ = 10−15 M⊙
Alexander et al. (2018), Croon et al. (2018). 

Nelson, Reddy, Zhou  (2018). 

4

FIG. 2. Dependence on nuclear EoS. Solid lines are ⇤ and
dashed lines represent radii. All configurations are approxi-
mately 1.4M� within 0.1%. ⇤1.4M� for selected realistic nu-
clear EoSs vary from 150 to 500. Hybrid stars based on these
nuclear EoSs all exhibit R5 growth for large R. Bosonic DM
with m� = 100 MeV and g�/m� = 0.1 MeV�1 is assumed.

strong coupling or light mediator masses can result in
large ⇤ even when only trace amounts of DM with total
mass M� ⌧ MNS is present. Inspiral dynamics can be

FIG. 3. ⇤ increases rapidly with increasing total DM mass
M�. For self-interacting DM with g�/m� > 1 MeV�1, M� >
10�4M� will increase ⇤ above the upper bound (' 800) set
by GW170817.

modeled by the simple approach described by Eq. 2 in
which all finite size e↵ects are incorporated through ⇤
only when the radius of halo is smaller than the orbital
separation

rorb ' 140

✓
M

M�

◆1/3 ✓ fGW

100 Hz

◆�2/3

km , (10)

at frequencies relevant to Ad. LIGO. For this reason
we restrict our study to dark halos whose radii R . 150
km. With this restriction we find that obtaining ⇤ > 800
requires M� & 5⇥ 10�6M�.

Fermion dark halos are larger and have larger ⇤ due
to the additional contribution from the Fermi degener-
acy pressure. For m� = 100 MeV, the di↵erence be-
tween fermions and bosons is modest but the di↵erence
increases rapidly with decreasing m�. We find that for
fermions with m� . 30 MeV, the dark halo and its
tidal polarizability is large even in the absence of self-
interactions. For example, we find that ⇤ = 800 is
reached for m� = 30 MeV at total dark matter mass
M� = 10�4M�, for m� = 10 MeV at M� = 3⇥10�6M�,
and for m� = 5 MeV at M� = 4⇥ 10�7M�. However in
these cases the radius of the dark halo is large: R ' 210
km for m� = 10 MeV, R ' 140 km for m� = 20 MeV,
and R ' 100 km for m� = 30 MeV. A more sophisti-
cated hydrodynamic treatment is needed to study these
situations when the dark halos overlap strongly and this
is beyond the scope of this work.

III. ACCUMULATING DARK MATTER

A key question that remains is how & 10�5 M� of DM
can be trapped by the neutron star. We noted earlier that
the mass of asymmetric DM that can accrete onto neu-
tron stars is much smaller when the ambient DM density
is of the order of GeV/cm3. In a strongly self-interacting
dark matter scenario DM-DM scattering could increase
the capture rate. In addition, the DM distribution may
not be uniform. If dense DM clumps exist, then nearby
neutron stars might accrete large amounts of DM. An-
other possibility is that DM dynamics resulted in small
structures which could seed star formation, thus massive
stars may already contain trace amounts of DM in their
cores, and the neutron stars born subsequent to the su-
pernova explosion would inherit it. Note that microlens-
ing constraints on small objects only rule out extremely
dense objects, and there is plenty of room for clumps of
DM that are much denser than the ambient density but
not dense enough to microlense. These scenarios for how
to get dark matter into neutron stars are complicated and
speculative, and imply that di↵erent neutron stars would
have vastly di↵erent amounts of DM. In contrast, be-
low we shall estimate that light DM with mass less than
a few hundred MeV can be produced copiously during
the first few seconds subsequent to core-collapse super-
nova events, and, if their coupling to baryons is not too
weak, asymmetric capture of dark particles (�’s) versus
anti-dark particles (�̄’s) would result in an ADM-neutron
star hybrid. In this case all neutron stars would contain
a similar amount of DM.
Inside the hot newly born neutron star with a tem-

perature TNS ' 30 � 50 MeV bremsstrahlung reactions
nn ! nn� and np ! np� produce � particles when
m� is not much larger than about 3TNS. In fact, the
most stringent constraint on gB , their coupling strength
to baryons, is obtained by requiring that the total energy
radiated away as � particles does not exceed ⇡ 1053 ergs
[32–34]. Since � can couple strongly to dark fermions, the



Conclusions 
• To constrain the equation of state of dense matter the tidal deformability of 

a tens of neutron stars needs to be measured with few percent accuracy.  
Next generation GW detectors could be the ONLY way to do it.  


• Correlations between the inspiral tidal deformability and post-merger 
neutron star dynamics (seismology and the lifetime) can reveal phase 
transitions in massive neutron stars - need to observe the high frequency 
(1-5 kHz) GW signal.


• Validating multi-physics simulations needed to connect merger dynamics 
to EM and nucleosynthetic signatures will rely on our ability to detect and 
interpret the post-merger GW signal. 


• Next generation detectors with improved wide-band sensitivity will 
enhance  searches for continuous GWs. Bounds on the neutron star 
ellipticity can be improved by a factor of 100. 


• Detection of GWs from bursting, flaring and/or glitching neutron stars 
would be fascinating and provide valuable clues about internal dynamics. 


•


