Science with 3G detectors: "Extreme gravity and fundamental physics/waveform modeling'

> On behalf of the working group https://github.com/gwic-3g/3g-sciencecase/blob/master/work-space/xg/XG-WMreport-v1.pdf

Organization/process

- 4 subgroups with contact persons:
 - Fundamental questions in gravity & particle physics (Chatziioannou & Sotiriou)
 - Extreme matter (Vitale & Yunes)
 - Exotic objects and phenomena (Archisman & Pani)
 - Waveform modeling and data analysis challenges (Ajith & Purrer)
- Preliminary draft by late june
- Co-chairs Buonnano, Lehner & Van den Broeck worked on preliminary draft, reported end of september
- Contributions from further several people, including: Arun, Barausse, Baryakhtar, Brito, Dietrich, East, Gerosa, Harry, Hinderer, Maselli, Pfeiffer, Pratten, Shao, Tamanini, van de Meent, Varma, Vines, Zumalacarregui, Yang, ...

Overarching qns driving the report

 The nature of gravity: "Is Einstein (still) right?" [beyond the standards in gravity theory]

- The nature of dark matter: aiding in the quest to understand DM through grav waves
- The nature of compact objects: [beyond the standards in compact objects]

'anchor plot'

- From a 'curvature/potential' point of view 2G/3G detectors arguably probe the strongest limits
- Barring surprises from nature these are the 'shortest scales/highest energies' we can access precision measurement --as opposed to 'next scale' probes-- is what is required to go after new physics

New physics: gravity road

- Beyond null tests/phenom deviation searches, guidance from theory can significantly enhance prospects & interpretation
- Lovelock theorem: departures from GR requires extra degrees of freedom or giving up basic principles.
 - Extra fields
 - additional polarizations
 violation of strong equiv.
 principle through possible
 non-minimal couplings of
 matter & gravity

- Graviton mass: LIGO/VIRGO bounds can be improved by 2 orders of magnitude thanks to distance reach.
- Lorentz violations: 'superluminal propagation' possible and further polarizations.
- Parity violations: scalar dipole -> modifies source's quadrupole; birefringence (helicity dependence: one circularly polarized mode is slightly enhanced/other reduced). Expected bounds in 3G slightly stronger than from binary pulsar bounds)

- Time dependent G, local position invariance: possible dependence with redshift. 3G ability to go to large redshifts crucial. Estimates of 8th orders of improvements wrt 2G!
- Extra particles: particles/fields with suitable Compton wavelengths (e.g. axions) can extract rotational energy from BHs. Up to ~ 10% of 'mass' can be in a cloud around BHs.
 - The cloud can 'decay' emitting rather monochromatic CWS. [few to hundreds events/yr for bosons with 10⁻¹³-10⁻¹² ev
 - BHs spins driven to smallish values
 - Inspiraling BHs could go through decay thus strongly modifying tidal effects

Some challenges identified

- 'simple' extensions: Scalar-Tensor theories explored to some degrees and steps to turn info into templates ongoing
- Other theories largely unexplored
 - In some, BH solutions identified but only a smaller subset QNMs know [e.g. are BHs stable?, QNM spectra?]
 - Most theories are 'sick' from a mathematical point of view, incipient efforts to identify strategies to move forward towards understanding nonlinear regimes
 - ... a long way from templates/inform phenomenological modifications of known templates. Which theories and why?

Nature of dark matter

Current knowledge of dark matter from igravitational effects. GW observations complement laboratory efforts

• DM is PBHs?

 Even if just a small fraction of DM, distribution would provide clues to behavior of primordial density fluctuations, QCD phase transitions. 3G's ability to see BHs to large redshifts is crucial

Detecting DM with GWs?

 DM described by particles/fields in the right mass range can yield GWs/affect inspiral dynamics.

- binaries evolving in a DM-rich environment will suffer a 'gravitational drag' as they accrete DM. The effect is small, but its detection would be possible, at least, in binaries observed both in LISA and 3G
- DM can be captured in the core of stars and lead to their collapse. In turn, a mechanism to create light BHs in regions of high DM densities

Questions

• What else / anything missing?

• Overlaps?