

Extreme Gravity: Challenges in data analysis

Chris Van Den Broeck (Nikhef & U. Groningen) on behalf of Extreme Gravity, Fundamental Physics & Waveforms

3G Science Case Consortium Meeting, El Golm, 1-2 October 2018

Extreme Gravity and Fundamental Physics & Waveform Modeling

- I. Science
- II. Challenges in waveform modeling
- **III. Challenges in data analysis**
 - A. Novel methods to search for GW signals
 - **B.** More efficient methods for parameter estimation
 - C. Methods to search for the unknown

Compact binary coalescences

- Long and/or overlapping signals
 - Time during which signal in band: $\tau \simeq 4.5 \times 10^5 \sec \left(\frac{1.22 M_{\odot}}{\mathcal{M}_c}\right)^{5/3} \left(\frac{1 \text{ Hz}}{f_{\text{low}}}\right)^{8/3}$
 - Abundance of signals: rate extrapolation from current detections

LIGO+Virgo, PRL 120, 091101 (2018)

Compact binary coalescences

- Long and/or overlapping signals
 - Antenna responses change during the time signal in band
 - Standard technique of maximizing SNR over sky position no longer applies
 - Include sky position in the list of parameters over which template bank is constructed
 - Orders of magnitude increase in size of bank
 - Identification/localization of source *before* merger
 - Early warning to EM facilities

Compact binary coalescences

- Including all relevant physics in the templates
 - Currently at most aligned-spin templates
 - Significant loss of detection efficiency for high mass ratios and large precessing spins
 - Residual eccentricity
 - Intermediate mass ratio inspirals
- This will again lead to significantly larger template banks
- "Semi-coherent" search methods?
 - Analyze data in different frequency bands independently?
 - Hierarchical search strategies?

Stochastic backgrounds

- Astrophysical backgrounds
 - Most BBH, large fraction of BNS will be *individually* detectable
 - Background of e.g. spinning neutron stars in the galaxy
 - Challenge: detecting small anisotropies from inhomogeneities in matter distribution
- Primordial backgrounds
 - How will the search for these be affected by astrophysical backgrounds?
- Much more sensitive detectors also means more affected by correlated noise between interferometers
 - E.g. Schuman resonances

B. More efficient methods for parameter estimation

- Exploration of the likelihood over parameter space
 - Markov Chain Monte Carlo
 - Nested sampling
- Computational cost:
 - Generation of (long) waveforms
 - Analysis time increases with SNR
- Solutions:
 - Multi-banding of frequency domain waveforms to reduce cost of waveform generation
 - Reduced-order quadratures
 - Currently analysis speed-ups by factors 10 300
 - Significant pre-processing cost: construction of reduced basis. Not a problem for 2G, but will this remain feasible in 3G era?
 - Possible middle ground, e.g. separate reduced bases for inspiral, merger, ringdown?

- Tests of the dynamics of coalescence
- Searching for anomalies in the compact objects themselves
- Searching for anomalies in GW propagation
- Searching for non-GR polarizations

Tests of the dynamics of coalescence

- Currently:
 - Inspiral-merger-ringdown consistency test
 - Introducing parameterized deformations in IMR waveforms
- Advantages:
 - Can combine information from all detections
 - Ability to find GR violations *even if* they are of a different nature from the chosen parameterized deformations
- However, should GR violation be found, how do we establish its precise nature?
 - If complete waveforms from alternative theories were available, perform hypothesis ranking for a (large) list of theories?

Searching for anomalies related to the compact objects themselves

- Effect on inspiral due to tidal effects, gravitational drag, ...
 - Similar problem as before: how to distinguish scenarios
- Additional information from anomalous ringdown, echoes, ...
 - How to optimally utilize this in addressing the above problem?
- No hair tests: how to make optimal use of ability to distinguish individual quasi-normal modes
- Echoes
 - Alongside template-based searches, also morphology-independent searches; there may be exotic objects that are yet to be envisaged
 - Are there features that are robust across echoing objects, and how should they be implemented?
- Testing area increase law
 - Currently done by computing area from masses and spins of initial and final black holes
 - Is there a way to more directly measure area?

Searching for anomalies in GW propagation

- 3G detectors will see signals over cosmological distances; ideal for propagation effects that accumulate over distance
 - "Leakage" of GW into large extra dimensions
 - Dispersion due to non-zero $m_{\rm g}$ or local Lorentz violations
- Currently dynamics of the source neglected
 - Probably justified when characteristic length scale expected to be much larger than size of the binary while in band
 - Where not justified, need IMR waveforms from alternative theories

Searching for non-GR polarizations

- Methods:
 - Bayesian hypothesis ranking
 - If sky position (approximately) known: null streams
- In both cases, science is limited by number of detectors
 - E.g. with 3 interferometers and known sky position, can establish the presence of additional polarizations but not their type
 - Example of how design choices of 3G observatories (e.g. how many interferometers in ET) will affect the science that can be done