Core collapse supernova with 3G detectors

Subgroup organization :

Registered #: ~ 40

<u>Contributors</u> : Adam Burrows, Marie Anne Bizouard, Imre Bartos, Jasmine Gill, Siong Heng, Thomas Janka, Kei Kotake, Bronson Messer, Tony Mezzacappa, Bernhard Muller, Ewald Muller, & Giulia Pagliaroli

<u>Coordinators</u> : Adam Burrows & Marie-Anne Bizouard Reviewers : Toni Font & Erik Katsavounidis

<u>Document status</u> : draft currently under review

Panel: Duncan Brown & Masuri Shibata

GWIC 3G science case meeting – Potsdam October 2018

Motivations

- CCSN physics has a very long history and the role of neutrinos in the explosion mechanism has been understood early.
 - GW and neutrinos are providing unique information about the explosion mechanism, the EOS of the PNS, the mass of the progenitor, etc.
- Recent breakthrough in (2D-3D) numerical simulations : almost all codes observe the same « signatures », but still not yet a complete code that includes all ingredients.
- What is required now is a galactic source or better sensitivity detectors \rightarrow 3G detectors.
- What will be possible to extract from a source with 3G GW and neutrino detectors is part of this science case document.

Key questions we tried to answer

- How far can we detect a CCSN with the next generation of GW detectors ?
- Can one determine the mechanism of explosion (neutrino/MHD) ?
- What constraints can be put on the nuclear EOS ?
- Can one identify the time of bounce/explosion ?
- Can one identify PNS core oscillation modes ?
- Can one constrain the progenitor mass and/or initial internal profiles ?
- What constrains can be put on the rotation/spin rate ?
- Can one measure the acretion rate ?
- Is there a signature of the explosion energy in the GW signal ?
- Is the pre-bounce collapse phase measurable in GW ?

CCSN explosion mechanisms

- Neutrino driven: bounce, quiescence, neutrino convection, inner PNS convection, PNS core f, g and p modes oscillation, SASI
- MHD: Characteristic bounce / peak shape that mainly depends on T/W (rotational to gravitation energy ratio). Non axisymetric instabilities → GW emissions

• 1. Trapped neutrinos diffuse out $(\tau_{v-diff} >> 1)$ of the opaque PNS

2. Neutrinos heat matter in semi-transparant
(τ_{v-diff} ~ 1) post-shock region and drive
convective flow in hot bubble region
between gain radius and shock
3. Neutrinos stream freely (τ_{v-diff} << 1)
through transparent stellar envelope.

Additional key ingredients for explosion :

- Nuclear burning.
- Standing accretion shock instability (SASI) is an instability of the shock wave itself. SASI aids the explosion and determines the asphericity.

^{01/10/18} Figure credit : A. Mezzacappa

Identified/discussed signal features

- Rotational bounce spike (rapid rotation?); differential rotation
- Initial Progenitor perturbation spike
- Outer PNS convection (early, non-rotating)
- Quiescent phase (altered by progenitor perturbations?)
- Ramp up and saturation of turbulent convection and SASI
- Infall plume excitation of PNS oscillations
- Inner PNS convection
- Transition to explosion, leading to decreased accretion, occasioning signal turnover (near time of frequency peak?)
- Neutrino component
- Christodoulou Memory (low frequency): asymmetric explosion, neutrinos
- Progenitor, rotation, orientation, explosion energy dependences?
- Duration of phases; frequency spectra; signal phase?

Neutrino-driven explosion GW waveforms

Yakunin et al. (2015)

Rotation

*The bounce signal is stronger, because the collapse is not symmetric

* The dominant frequency is nearly the same Characteristic bounce / peak shape that mainly depends on T/W (rotational to gravitation energy ratio)

19

Weaker convection leads to weaker signal

Dependence of the dominant GW frequency on the EOS

EOS dependence

Richers et al. 2017

Neutrino/GW/optical synergies

- Timing :
 - Neutrino burst timing measurement provides a O(10ms) precision of the time of the bounce
 - Optical trigger : hours days precision
- Sky localization accuracy :
 - Optical trigger : ~arcminutes.
 - Super-K : ~ 5deg.
 3G neutrino detectors: gain of a factor 10
 - GW detectors : ~100 deg²
- Correlation between GW & neutrino signal :
 - Burst & GW signal modulated by the same accretion plumes associated with the instabilities in the post-shock flow.
 - SASI is expected to generate modulation in the neutrino signal close to fundamental SASI frequencies (100-200Hz)

Neutrino detectors panorama

Current supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 8 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	0.4/PMT	N/A	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BOONE	Scintillator	USA	0.7	200	Running

Next generation neutrino detectors :

extragalatic sensitivity with JUNO (2019), DUNE, Hyper-K (>100 000 v), ...

via inverse beta decay

Primary sensitivity is to electron antineutrinos

 $\overline{v}_e + p \longrightarrow \frac{e^+}{n}$

GW signal detection and source parameter estimation

- Detection : All-sky/ all-time searches (silent supernova) & targetted searches :
 - False alarm rate significantly reduced.
 - A short on source window allows to use signal extraction methods that are computing time limited (Bayesian methods using CCSN waveforms or simplified models).
- Source parameter estimation :
 - Agnostic waveform reconstruction using the coherence of the GW polarizations in 2 or more GW detectors data.
 - Identify some of the (loudest) features expected in the different phases : rotation at bounce, quiessence phase, SASI, PNS oscillation modes, ...
 - Determine the explosion mechanism : neutrinos or MHD.
 - Constrain EOS, progenitor mass, ...

Still lots of developments that require theoritical inputs

01/10/18

Figure in the document

01/10/18

Key questions we tried to answer : have we answered them ?

- How far can we detect a CCSN with the next generation of GW detectors ?
- Can on determine the mechanism of explosion (neutrino/MHD) ?
- What constraints can be put on the nuclear EOS ?
- Can one identify the time of bounce/explosion ?
- Can one identify PNS core oscillation modes ?
- Can one constrain the progenitor mass and/or initial internal profiles ?
- What constrains can be put on the rotation/spin rate ?
- Can one measure the acretion rate ?
- Is there a signature of the explosion energy in the GW signal ?
- Is the pre-bounce collapse phase measurable in GW ?