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Motivations

e (CCSN physics has a very long history and the role of neutrinos in the explosion
mechanism has been understood early.

—  GW and neutrinos are providing unique information about the explosion
mechanism, the EOS of the PNS, the mass of the progenitor, etc.

e Recent breakthrough in (2D-3D) numerical simulations : almost all codes observe
the same « signatures », but still not yet a complete code that includes all
ingredients.

 What is required now is a galactic source or better sensitivity detectors — 3G
detectors.

* What will be possible to extract from a source with 3G GW and neutrino detectors is
part of this science case document.
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Key questions we tried to answer

 How far can we detect a CCSN with the next generation of GW detectors ?
e (Can one determine the mechanism of explosion (neutrino/MHD) ?
 What constraints can be put on the nuclear EOS ?

e (Can one identify the time of bounce/explosion ?

e (Can one identify PNS core oscillation modes ?

e (Can one constrain the progenitor mass and/or initial internal profiles ?

e What constrains can be put on the rotation/spin rate ?

e (Can one measure the acretion rate ?

e Is there a signature of the explosion energy in the GW signal ?

e Is the pre-bounce collapse phase measurable in GW ?
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CCSN explosion mechanisms

e Neutrino driven: bounce, quiescence, neutrino convection, inner PNS convection,
PNS core f, g and p modes oscillation, SASI

« MHD: Characteristic bounce / peak shape that mainly depends on T/W (rotational to
gravitation energy ratio). Non axisymetric instabilities — GW emissions

1. Trapped neutrinos diffuse out
(T, >> 1) of the opaque PNS

E» v-Luminosity
—#  Matter Flow

2. Neutrinos heat matter in semi-transparant
(T, ~ 1) post-shock region and drive

convective flow in hot bubble region
between gain radius and shock
3. Neutrinos stream freely (t

PPy tne pre =
o Vot pe ntet SN

. <<1)
v-diff
through transparent stellar envelope.

> N : Additional key ingredients for explosion :
i T e Nuclear burning.
e Standing accretion shock instability
R il (SASI) is an instability of the shock
wave itself. SASI aids the explosion and
determines the asphericity.
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Identified/discussed signal features

* Rotational bounce spike (rapid rotation?); differential rotation
 Initial Progenitor perturbation spike

e Quter PNS convection (early, non-rotating)

* Quiescent phase (altered by progenitor perturbations?)

e Ramp up and saturation of turbulent convection and SASI

« Infall plume excitation of PNS oscillations

* Inner PNS convection

» Transition to explosion, leading to decreased accretion, occasioning signal turnover (near
time of frequency peak?)

* Neutrino component

e Christodoulou Memory (low frequency): asymmetric explosion, neutrinos

* Progenitor, rotation, orientation, explosion energy dependences?

e Duration of phases; frequency spectra; signal phase?
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Neutrino-driven explosion GW waveforms

Murphy et al. (2009)
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*The bounce signal is stronger, because the collapse is not symmetric

*The dominant frequency is nearly the same

Characteristic bounce / peak shape that mainly depends on T/W
(rotational to gravitation energy ratio)
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Weaker convection leads to weaker signal
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Dependence of the dominant GW frequency on the EOS
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EOS dependence
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Neutrino/GW/optical synergies

 Timing :

Neutrino burst timing measurement provides a O(10ms) precision of the time of the
bounce

Optical trigger : hours — days precision

e Sky localization accuracy :

Optical trigger : ~arcminutes.

Super-K : ~ 5deg. 3G neutrino detectors: gain of a factor 10
GW detectors : ~100 deg?

e Correlation between GW & neutrino signal :
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Burst & GW signal modulated by the same accretion plumes associated with the
instabilities in the post-shock flow.

SASI is expected to generate modulation in the neutrino signal close to fundamental
SASI frequencies (100-200Hz)
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Neutrino detectors panorama

Current supernova neutrino detectors

@ K. Scholberg

et Detector Type Location Mass Events Status
> (kton) @ 8 kpe

N — :

- Super-K Water Japan 32 8000 Running (SK
(7)) V)

c LVD Scintillator | Italy 1 300 Running
8 KamLAND | Scintillator | Japan 1 300 Running
O Borexino Scintillator | Italy 0.3 100 Running

.-l: IceCube Long string | South Pole |0.4/PMT | N/A Running
(&) Baksan Scintillator | Russia 0.33 50 Running
t_ﬂ Mini- Scintillator | USA 0.7 200 Running
© BOONE

. |
= =l

Primary sensitivity is to electron antineutrinos
via inverse beta decay v, tp_— € +®

Next generation neutrino detectors :
extragalatic sensitivity with JUNO (2019), DUNE, Hyper-K (>100 000 v), ...
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GW signal detection and source parameter estimation

e Detection : All-sky/ all-time searches (silent supernova) & targetted searches :

— False alarm rate significantly reduced.

— A short on source window allows to use signal extraction methods that are computing
time limited (Bayesian methods using CCSN waveforms or simplified models).

* Source parameter estimation :

— Agnostic waveform reconstruction using the coherence of the GW polarizations in 2 or

more GW detectors data.

— Identify some of the (loudest) features expected in the different phases : rotation at
bounce, quiessence phase, SASI, PNS oscillation modes, ...

— Determine the explosion mechanism : neutrinos or MHD.

— Constrain EOS, progenitor mass, ...

Still lots of developments that require theoritical inputs
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Key questions we tried to answer : have we answered them ?

 How far can we detect a CCSN with the next generation of GW detectors ?
e (Can on determine the mechanism of explosion (neutrino/MHD) ?

 What constraints can be put on the nuclear EOS ?

e (Can one identify the time of bounce/explosion ?

e (Can one identify PNS core oscillation modes ?

e (Can one constrain the progenitor mass and/or initial internal profiles ?

e What constrains can be put on the rotation/spin rate ?

e (Can one measure the acretion rate ?

e Is there a signature of the explosion energy in the GW signal ?

e Is the pre-bounce collapse phase measurable in GW ?

01/10/18 15



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

