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Effective theories of gravity



Motivation

Observational developments: e.g. gravitational-wave astronomy – precision
tests of GR in a strong field, highly dynamical regime

▶ Detection: searching for signals that match with theoretical templates

▶ Numerical relativity simulations of mergers of compact objects –
theoretical templates of gravitational wave signatures

▶ Problems:

(1) What theories should we focus on?

(2) Doing simulations is not so straightforward, there are mathematical
obstructions, e.g. theory must possess a well-posed initial value formulation



Effective field theories

EFT provides a framework to parameterize strong field deviations from GR:
enumerate all higher derivative terms with the desired field content and
symmetry. These higher derivative terms generically arise from UV complete
theories by "integrating out" certain degrees of freedom.

Vacuum gravity in d dimensions: diffeomorphism-invariant action, only
dynamical field is gµν .

S =
1

16πG

∫
ddx

√
−g

(
R︸︷︷︸

2∂ theory

+ ℓ2
(
β1R

2 + β2RµνR
µν + β3RµναβR

µναβ
)

︸ ︷︷ ︸
4∂ theory

+ . . .︸︷︷︸
higher ∂

terms

)

where ℓ is a UV length scale. To study processes at energies ≪ ℓ−1, one can
truncate the series at some finite order. Expansion makes sense if

|Rµναβ | ≪ ℓ−2,

i.e. in the weakly coupled regime. One can still study strong field phenomena
using the weakly coupled EFT, e.g. nonlinear dynamics of black holes of size
L ≫ ℓ.



Effective field theories

EFT provides a framework to parameterize strong field deviations from GR:
enumerate all higher derivative terms with the desired field content and
symmetry.

Vacuum gravity in d dimensions: diffeomorphism-invariant action, only
dynamical field is gµν . After field redefinitions one could write

S =
1

16πG

∫
ddx

√
−g

(
R︸︷︷︸

2∂ theory
Einstein-Hilbert term

+ ℓ2β LGB︸ ︷︷ ︸
4∂ theory

Gauss-Bonnet term
(only in d > 4)

+ . . .︸︷︷︸
higher ∂ terms

)

with

LGB =
1

4
δµ1µ2µ3µ4

ν1ν2ν3ν4 Rµ1µ2

ν1ν2Rµ3µ4

ν3ν4

That is, EFT of vacuum gravity in d > 4 dimensions up to 4 derivatives is
Einstein-Gauss-Bonnet theory, it has 2nd order equations of motion.

In d = 4 the leading order corrections start at 6 derivatives, e.o.m. is higher
than 2nd order, discussed later



Scalar-tensor effective field theory

Scalar-tensor theories in 4 dimensions (with parity symmetry)
[Weinberg (2008)]:

S =
1

16πG

∫
ddx

√
−g

(
R−X + V (ϕ)︸ ︷︷ ︸

2∂ theory
Einstein-scalar-field

theory

+ ℓ2
(
α(ϕ)X2 + β(ϕ)LGB

)︸ ︷︷ ︸
4∂ terms

+ . . .︸︷︷︸
higher ∂ terms

)

with X ≡ − 1
2
(∂ϕ)2 and

LGB =
1

4
δµ1µ2µ3µ4

ν1ν2ν3ν4 Rµ1µ2

ν1ν2Rµ3µ4

ν3ν4

Theory with α(ϕ) = 0, β(ϕ) ̸= 0: Einstein-scalar-Gauss-Bonnet (EsGB)
theory.

Equations of motion are second order in 4 dimensions (the theory is in the
Horndeski class)

Phenomenologically interesting: e.g. black holes have scalar hair in most
EsGB theories



The Cauchy problem



The Cauchy-problem

Given suitable initial data on a (non-characteristic) Cauchy surface Σ0 that
satisfies the constraints, the initial value problem is well-posed if

i) there exists a unique solution of the equations of motion,

ii) the solution depends continuously on the initial data (in a suitable norm),
e.g.

||Φ||Hs(t) ≤ C(t)||Φ||Hs(0)

(Σ0, hab,Kab, ϕ,Lnϕ)

na

Local well-posedness: above conditions hold for a finite time T > 0.

Solutions to nonlinear PDEs tend to blow up after a finite time, for generic
initial data the best one can hope for (usually) is to establish local
well-posedness.



Local well-posedness and hyperbolicity

A sufficient condition for the nonlinear equations to admit a locally well-posed
IVP is that the gauge-fixed equations of motion are strongly hyperbolic.

System is strongly hyperbolic if a certain matrix M(ξ) (constructed out of the
principal terms in the linearised PDE around a generic background field
configuration) admits a positive definite hermitian matrix K(ξ) called the
symmetrizer that satisfies

K(ξ)M(ξ) = M†(ξ)K(ξ),

depends smoothly on its arguments and is bounded.

A necessary condition for strong hyperbolicity is that M(ξ) be diagonalisable
with real eigenvalues. Eigenvalues ξ0(ξi) of M(ξ) are called characteristic
speeds (e.g. for wave equation in flat space these would be
ξ0 = ±|ξ| = ±

√
ξiξi), eigenvectors are characteristic polarisations.



Well-posed formulation of theories with second order
equations motion



Setting up the modified harmonic gauge: auxiliary metrics

Solution: tricky choice of gauge and gauge-fixing [Kovács & Reall (2020)]

Consider a 4d spacetime (M, g) and introduce two auxiliary (inverse)
Lorentzian metrics: g̃µν and ĝµν .

gµν g̃µν ĝµν

(a) Cotangent space

gµν(g̃−1)µν(ĝ−1)µν

(b) Tangent space



The modified harmonic gauge

Define
Hµ ≡ g̃νρ∇ν∇ρx

µ = −g̃νρΓµ
νρ[g]

The modified harmonic gauge condition is Hµ = 0.

Recall

Eµν = −16πG√
−g

δS

δgµν
Eϕ = −16πG√

−g

δS

δϕ

We now define
Eµν

mhg = Eµν + P̂α
βµν∂βH

α

where P̂α
βµν = δ

(µ
α ĝν)β − 1

2
δβαĝ

µν .
The modified harmonic gauge equations of motion are then

Eµν
mhg = 0 Eϕ = 0

Setting g̃µν = ĝµν = gµν recovers the usual harmonic gauge equations of
motion.



Statement of the main result
Theorem
The modified harmonic gauge equations of motion

Eµν
mhg ≡ Eµν + P̂α

βµν∂βH
α = 0 Eϕ = 0

admit a locally well-posed initial value problem in the following two theories
(i) Einstein-scalar-field theory (2∂ST) and

(ii) the weakly coupled 4-derivative EFT (4∂ST)
provided that the causal cones of g, g̃ and ĝ are related as below.

gµνg̃µν ĝµν
gµν(g̃−1)µν(ĝ−1)µν

Similar results apply to any Lovelock and Horndeski theory.



Main idea
Separation of causal cones of different types of mode solutions

(i) "pure gauge" modes propagate along the null cone of g̃µν

(ii) "gauge condition violating" modes propagate along the null cone of ĝµν

(iii) "physical" polarizations
▶ propagate along the null cone of gµν is Einstein-scalar-field theory
▶ propagate along characteristic hypersurfaces that are "almost null" in weakly

coupled 4∂ST and are gauge-invariant [Reall (2021)]

If characteristic polynomial for physical d.o.f is hyperbolic then the theory
admits a well-posed formulation (e.g. in a suitable choice of the modified
harmonic gauge condition and gauge fixing), otherwise the theory breaks
down independently of gauge choice. (See also [Hegade, Ripley, Yunes (2023)])

gµν g̃µν ĝµν

2∂ST

C g̃µν ĝµν

4∂ST



Application to numerical relativity

There is plenty of freedom in how we choose the auxiliary metrics!

Simplest choice: Let nµ be the unit normal (w.r.t. g) to x0 = const. surfaces.
Then we choose

g̃µν = gµν − a(x)nµnν ĝµν = gµν − b(x)nµnν .

The modified harmonic formulation has been used to perform numerical
relativity simulations of black hole binaries in EsGB theories [East & Ripley
(2021)], [Corman, East & Ripley (2021)].

More recent result: combining idea of the modified harmonic gauge with the
CCZ4 formulation used in numerical relativity also yields a well-posed
formulation of EsGB theory. Simulations of black hole binaries in EsGB
theories [Aresté Saló, Clough & Figueras (2022)]



Theories with higher than second order equations of motion



Higher derivative EFTs with Lorentz symmetry
Theories with a variational principle and higher than 2nd order e.o.m. have
pathologies.

▶ solutions associated with extra d.o.f. may be "pathological" (see however
[Deffayet, Held, Mukohyama, Vikman (2023)])

▶ it may still be possible to write the e.o.m. in a strongly hyperbolic form,
guaranteeing local well-posedness (global well-posedness may still be
an issue), see e.g. [Noakes (1982)], [Held, Lim (2023)]

S =
1

16πG

∫
ddx

√
−g

{
R+ ℓ2

(
αR2 + βRµνR

µν)}
▶ but raises the issue of how to extract "physical" solutions

Proposals:
▶ perturbation theory in couplings, e.g. [Witek, et al.], [Okounkova, et al.];

more recently [Ghersi & Stein (2021)] dynamical renormalization group
approach

▶ allow only a restricted class of initial data
▶ modify the equations of motion in some way

▶ reduction of order method, e.g. [Flanagan, Wald (1996)]
▶ "fixing-the-equations" procedure [Cayuso, Ortiz, Lehner (2017)], [Israel,

Stewart (1976)]



Muller-Israel-Stewart proposal: "fixing" the equations
Toy example: fixing the heat equation [Geroch (1994)]

∂tT = ∂xq

q = σ∂xT

Turn the parobolic system to a hyperbolic one (with characteristic velocity v)

∂tT = ∂xq

∂tq = v2
(
∂xT − q

σ

)
Justification for the replacement: for any t > 0, we have

||q − σ∂xT ||L2(t) ≤
( σ

v2t

)2

f(t, q(0), T (0), ∂xq(0), ∂xT (0), . . .)

If v is a typical sound speed of the material then σ/v2 is of the order of a
mean free time. Assuming that the spatial gradients of the initial data are not
too large, RHS is microscopically small, q − σ∂xT is unmeasurably small.

[Geroch (1994)] shows that for a certain class of fluid theories, a large class of
fixing procedures yields the same physics as the original fluid equations –
mathematical underpinning of MIS approach widely used in simulations of
heavy ion collisions



Fixing the equations of gravitational theories
Validity of the approach depends on whether there is significant energy
cascade to UV. There is some evidence that in many situations of interest
MIS-type approach might work [Cayuso, Ortiz, Lehner (2017)]

▶ detected waveforms from BH binaries
▶ stability of Minkowski space, BH solutions etc.

However, in other situations, cascade could be physical (e.g. singularity
theorems)

Gravitational equivalent to Geroch’s result is lacking, it is not understood what
is the class of fixing procedures that solves the issue of well-posedness for a
general theory, while faithfully reproducing the physics of the original theory
in the relevant regime.

Some promising results in this direction:
▶ in quartic (8-derivative) vacuum gravity [Cayuso, Figueras, Franca, Lehner

(2022)]

▶ in Einstein-scalar-Gauss-Bonnet theory [Franchini, Bezares, Barausse,
Lehner (2022)]

▶ in k-essence [Lara, Bezares, Barausse (2022)]

▶ in cubic Galileon theory [Gerhardinger, Giblin, Tolley, Trodden (2022)]



Lorentz-symmetry-breaking theories



A result in Blas-Pujolas-Sibiryakov-Hořava theory

S =
1

16πG

∫
dtd3xN

√
γ
(
KijK

ij − λK2 − V(R[γ], Di lnN)
)

▶ Lorentz-violating theory in 3 + 1 dimensions, there is a preferred foliation
▶ invariant under foliation-preserving diffeomorphisms

t → t̃(t), xi → x̃i(t, x)

▶ action invariant under the Lifshitz scaling (b = const.)

t → bdt, xi → bxi

▶ enumerate operators in the potential V of dimensions up to 6

▶ theory is ghost free and power-counting renormalizable, candidate for a
simple UV complete theory [Hořava (2009)], [Blas, Pujolas, Sibiryakov (2009)]

Theorem (ÁDK, forthcoming)

There exists an open set of coupling constants (consistent with constraints
due to unitarity and "stability" of the theory in a flat background) such that
BPSH theory admits a locally well-posed initial value formulation.



Conclusion



Conclusions

Theories with second order equations:
▶ EFTs with 2nd order equations possess a locally well-posed initial value

formulation, at least for weak couplings

▶ if characteristic polynomial for physical d.o.f is hyperbolic then the theory
admits a well-posed formulation (e.g. in a suitable choice of the modified
harmonic gauge condition and gauge fixing), otherwise the theory
breaks down independently of gauge choice

Theories with higher derivatives:
▶ The problem of well-posedness is more subtle but there are some

promising directions

Lorentz-symmetry-breaking theories:
▶ Local well-posedness result for Blas-Pujolas-Sibiryakov-Hořava-Lifshitz

gravity
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