Alexandre Toubiana

Max-Planck-Institut für Gravitationsphysik ALBERT-EINSTEIN-INSTITUT

Fundamental physics meets waveforms with LISA 02/10/2024

Quasi-normal mode measurements with LISA and the impact of systematics

Toubiana, Pompili, Buonanno, Gair, Katz PRD 2024 Toubiana, Gair arXiv:2401.06845

² **Challenges to test GR with GWs**

- GW computations are lengthy and difficult
- Number of proposed extensions to GR is very large, but little observational guidance
- Few full computations and simulations in modified gravity theories
- Resort to phenomenological approach

Parametrised tests

Ringdown tests

- Quasi-normal modes (QNMs) depend only on remnant properties \longrightarrow no hair tests (see morning session)
- But:
	- Amplitudes and phases depend on the binary properties (mass ratio, spins…)
	- Analysis is sensitive to the chosen starting time of the ringdown
	- Loose SNR from inspiral-merger

IMR approach to ringdown tests

Model the whole signal and introduce additional parameters to capture deviations to the QNMs with pSEOBNRv5HM

IMR approach to ringdown tests

Model the whole signal and introduce additional parameters to capture deviations to the QNMs with pSEOBNRv5HM

Caveat: accuracy of the inspiral-merger model impacts the analysis

LISA sources

Credits: LISA Definition Study Report

Massive black hole binaries (MBHBs) best candidates for ringdown tests with LISA

Goals

- Quantify the accuracy of ringdown tests using the IMR approach with LISA
- Assess the impact of systematics

Considered systems

$$
M_t = 2 \times 10^7 M_{\odot}
$$

$$
z = 2.2
$$

Consider also systems with $M_t=2\times 10^8 M_{\odot}$ and/or $z=3.7$

- "Heavy seed" systems
- Use "long-wavelength" approximation

Signal-to-noise ratios (SNRs)

9

• At $z = 2.2$:

• At $z = 3.7$, rescale by 0.54

Analyses

- Simulate injections of MBHBs and do Bayesian analysis:
	- GR injection, GR templates
	- GR injection, non-GR templates
	- Non-GR injection, non-GR templates

¹¹ **non-GR injection, non-GR templates** $\delta f_{lm,0} = \delta \tau_{lm,0} = 0.01$

• Measurement error depends little on the injected modification

¹² **non-GR injection, non-GR templates** $\delta f_{lm,0} = \delta \tau_{lm,0} = 0.01$

• Measurement error depends little on the injected modification

- So far used EOB waveforms to generate mock signal and analyse it
- Could mismodelling lead to erroneous detection of GR deviation?

- So far used EOB waveforms to generate mock signal and analyse it
- Could mismodelling lead to erroneous detection of GR deviation?

Use numerical relativity (NR) for the mock signal $q=2$, $\chi_1=\chi_2=0.3$ SXS:BBH:2125: $M_t = 2 \times 10^7$ or $2 \times 10^8 M_{\odot}$ $z = 2.2$ or 3.7

$$
M_{t,0} = 2 \times 10^8 M_{\odot}
$$

$$
z = 2.2
$$

16 **Exploring systematic effects**

- Systematics will be important for astrophysical sources
- How/why do they appear and from which SNR?

18

19 **Including higher harmonics**

20 **Including higher harmonics**

Interpretation

- GR deviation coefficients can accommodate more than deviations from GR
- Inspiral-merger-ringdown tests are very sensitive to details of modelling
- One of the main sources of error is the alignment between harmonics

Interpretation

- GR deviation coefficients can accommodate more than deviations from GR
- Inspiral-merger-ringdown tests are very sensitive to details of modelling
- One of the main sources of error is the alignment between harmonics
- "Simple" criterion for bias?

23 **Revisited criterion for bias**

$$
1 - \mathcal{O}(s_0, h(\theta_0)) \leq \frac{n_p \left(1 - \frac{2}{9n_p} + 1.3\sqrt{\frac{2}{9n_p}}\right)^3}{2 \text{SNR}_T^2} + 1 - \mathcal{O}_{\text{max}}(s_0, h)
$$

• For single detector:
$$
\mathcal{O}(d_1, d_2) = \frac{(d_1|d_2)}{\sqrt{(d_1|d_1)(d_2|d_2)}}
$$

- Accounts for non-perfectness of templates
- Statement about the full posterior

Proposed criterion

• Akaike information criterion:

$$
\text{AIC} = 2 n_p - 2 \ln \hat{\mathcal{L}}
$$

Bayes' factor:

$$
\ln \mathcal{B} = -\frac{1}{2} (\text{AIC}_1 - \text{AIC}_2)
$$

• Compare Bayes' factor when fixing a set of parameters θ^1 to "true" value vs when varying them:

$$
\ln\mathcal{B}=\ln\mathcal{\hat{L}}(\theta^1=\theta_0^1)-\ln\mathcal{\hat{L}}+n^1_p
$$

Practical implementation

- Likelihood scaling with SNR: $\ln \mathcal{L} = \ln \mathcal{L}_{\rm SNR_0} \left(\frac{\rm SNR}{\rm SNR_0}\right)^2.$
- Under Gaussian approximation:

$$
\ln \hat{\mathcal{L}} = \langle \ln \mathcal{L} \rangle + \frac{n_p}{2}
$$

Accuracy limit

- SNR limits to favour GR deviations ($\ln \mathcal{B} > 3$):
	- $\overline{M_t} = 2 \times 10^8 M_{\odot}$: 977 with (2,2) only, 68 all harmonics
	- $-M_t = 2 \times 10^7 M_{\odot}$: 598 with (2,2) only, 93 all harmonics
	- $-M_t = 2 \times 10^6 M_{\odot}$: 330 with (2,2) only, 214 all harmonics
- Indicative for LVK as well (with appropriate mass rescaling)

Conclusions

- LISA will observe MBHBs with SNRs up to 1000s both in inspiral and mergerringdown:
	- Can measure the source parameters with great accuracy
	- Perform exquisite tests of GR, probing fractional deviations to the QNMs down to 0.001
- But... current waveform models are not accurate enough for these high SNRs

Thank you for your attention!

Credits: NASA's Goddard Space Flight Center

Dependence on parameters

GR injection, GR templates • Width of 90% confidence intervals:

Multimodality

EOB vs Phenom

GR injection, non-GR 33 **templates** $\delta f_{lm,0} = \delta \tau_{lm,0} = 0$

GR injection, non-GR 34 **templates** $\delta f_{lm,0}=\delta\tau_{lm,0}=0$

35 **QNMs measurement**

 $M_{t,0} = 2 \times 10^7 M_{\odot}$, $\chi_{1,0} = \chi_{2,0} = 0.9$, $q_0 = 4 z_0 = 3$, SNR = 3659

 $M_{t,0} = 2 \times 10^7 M_{\odot}$, $\chi_{1,0} = 0.2$, $\chi_{2,0} = 0.1$, $q_0 = 2$, $z_0 = 5$, SNR = 1030

 $M_{t,0} = 2 \times 10^8 M_{\odot}$, $\chi_{1,0} = \chi_{2,0} = 0.9$, $q_0 = 4 z_0 = 3$, SNR = 475

 $M_{t,0} = 2 \times 10^8 M_{\odot}$, $\chi_{1,0} = 0.2$, $\chi_{2,0} = 0.1$, $q_0 = 2$, $z_0 = 5$, SNR = 93

³⁷ **Parameter estimation in a nutshell**

Treat the parameters of the source, θ , as random variables

Bayes' theorem:

$$
p(\theta|d, \mathcal{H}) = \frac{p(d|\theta, \mathcal{H})p(\theta|\mathcal{H})}{p(d|\mathcal{H})}
$$

Likelihood:

$$
\prod_{o} \exp \left[-\frac{1}{2} (d_o - h_o(\theta)) d_o - h_o(\theta)) \right]
$$

Large dimensions function (7-17), need efficient way to compute the posterior, e.g. Markov Chain Monte Carlo (MCMC)

pSEOBNRv5HM

● Waveform:

$$
h_+(\boldsymbol{\Theta},\iota,\varphi_0;t) - i h_\times(\boldsymbol{\Theta},\iota,\varphi_0;t) = \frac{1}{D_L}\sum_{\ell,m} {}_{-2}Y_{\ell m}(\iota,\varphi_0)\,h_{\ell m}(\boldsymbol{\Theta};t)
$$

$$
h_{\ell m}(\mathbf{\Theta}, t) = h_{\ell m}(\mathbf{\Theta}, t)^{\text{insp-plunge}} \theta(t_{\text{match}}^{\ell m} - t)
$$

$$
+ h_{\ell m}(\mathbf{\Theta}, t)^{\text{merger-RD}} \theta(t - t_{\text{match}}^{\ell m}),
$$

$$
h_{\ell m}^{\text{merger-RD}}(t) = \nu \tilde{\mathcal{A}}_{\ell m}(t) e^{i \tilde{\phi}_{\ell m}(t)} e^{-i \sigma_{\ell m 0} (t - t_{\text{match}}^{\ell m})}
$$

$$
\sigma_{lm0} = 2\pi f_{lm0} + \frac{i}{\tau_{lm0}} \qquad (\ell, m) = (2, 2), (3, 3), (4, 4), (5, 5), (2, 1), (3, 2), (4, 3)
$$

• GR deviation:

$$
f_{\ell m0} \to f_{\ell m0} (1 + \delta f_{\ell m})
$$

$$
\tau_{\ell m0} \to \tau_{\ell m0} (1 + \delta \tau_{\ell m})
$$

Applied to GWTC-3 • With pSEOBNRv4HM:

● Still compatible with GR.