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Black hole ringdown
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Black hole ringdown

Superposition of damped sinusoids
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Complex frequencies, determined by mass and spin



Black hole ringdown

Superposition of damped sinusoids
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Complex frequencies, determined by mass and spin

How do we compute QNMs?



BH perturbation in spherical symmetry
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Let’s assume vacuum:

(0) _ (0) ~ Sch . . .
Rab = () — gab — gab is the Schwarzschild metric



BH perturbation in spherical symmetry
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Regge-Wheeler potential for axial tensor perturbation
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Regge, Wheeler 1957, Zerilli 1970



BH perturbation for Kerr

Kerr metric perturbations do not separe — Teukolsky formalism

® Based on Newman-Penrose decomposition

® Angular equation —— Spin-weighted spheroidal harmonics
e Radial equation —, Complex, long ranged potential

® m degeneracy breaking

® Frequencies depend on mass M and spin a

Teukolsky 1972



Extracting the spectrum
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Kokkotas, Schmidt 1999; Nollert 1999; Berti, Cardoso, Starinets 2009



Black hole ringdown beyond GR?



Status of QNMis in alternative theories

Possible deviations due to:

e different background metric h

> Modifications in the equations of the
perturbations

e different dynamics D
e couplings with additional fields

e modified boundary conditions

Extended discussion in NF, Volkel 2023



Status of QNMis in alternative theories

Some common difficulties:

e Analysis mostly limited to non-rotating or slowly-rotating case only
Blazquez-Salcedo et al. (2016), Langlois, Noui, Roussille (2022), Volkel, NF, Barausse (2022)

® Non-separability of the equations
Dias, Godazgar, Santos (2022);

e No RW/Zerilli-like equations

Blazquez-Salcedo et al. (2016), Langlois, Noui, Roussille (2022)

e Difficult to compute overtones
e.g. Molina, Pani, Cardoso, Gualtieri (2011)

e Boundary conditions less clear
Langlois, Noui, Roussille (2021)
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Black hole ringdown beyond GR

Overall assumption #1: small coupling expansion C: < 1

GR + fields 4+ ¢ interaction

Many examples in literature can fit this definition: scalar-tensor theories, higher derivative gravity,
Einstein-Gauss-Bonnet, dynamical Chern-Simons, Einstein-Maxwell and more...



Black hole ringdown beyond GR

Overall assumption #2: slow-rotation for background corrections
N M (i)
__Kerr 1,9 (1]
Gab =g+ ¥ Y d'{g;

i=0 j=1 %

In most cases, these corrections are analytic
functions of rand 64



N M N
Black hole ringdown beyond GR  ga =g+ > aicig,)

i=0 j=1
Simultaneous small-spin and small-coupling expansions
® Low order spin expansion (up to N=2), high order coupling
expansion (taking M as large as possible)
® lLow order coupling expansion, (up to M=1), high order spin

expansion (taking N as large as possible)

* See also a different approach solving numerically the full system of perturbed EoMs
K.W. Chung, Yunes (2023,2024)



BH perturbation in slow rotation (in GR)
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BH perturbation in slow rotation (in GR)
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In the end, there is just a spin modification to tortoise coordinate and potential

Pani 2013, NF 2023



BH perturbation in slow rotation (beyond GR)
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BH perturbation in (beyond GR)

42w
Status in the literature: . Qi | (w2 + Vjt) Uy = Aj
I

e Higher derivative gravity

o 1st order in spin, 1st order in coupling
Cano, Fransen, Hertog, Maenaut (2020,2021);

e dynamical Chern-Simons

o 1st order in spin, 1st order in coupling
Wagle, Yunes, Silva (2021); Srivastava, Chen, Shankaranarayanan (2021)

® scalar-Gauss-Bonnet

o 2nd order in spin, 6th order in coupling
Pierini, Gualtieri (2021, 2022);



BH perturbation in small coupling

Viodified Teukolsky equation

GR ST nonGRY

* In general the additional terms contain metric perturbations rather than Weyl scalars, but they can be
brought to this form with the so-called metric-reconstruction



BH perturbation in small coupling

Viodified Teukolsky equation

DGRw — CDN(}/)CRL

Depends on:

S Spin of the perturbation

Other quantities!



Li, Wagle, Chen, Yunes 2022

BH perturbation in small coupling  Hussain zimmerman 2022

Cano, Fransen, Hertog, Maenaut 2023

Viodified Teukolsky equation

With ansatz ) = 6_wt€imng(’F)S(9)

the equation does not decouple into radial and angular part



. . Li, Wagle, Chen, Yunes 2022
b Hussain, Zimmerman 2022
B H pe rtu r atIO n I n Cano, Fransen, Hertog, Maenaut 2023
Gosh, NF, Volkel, Barausse 2023

Teukolsky equation

S __
Dary =
With ansatz ) = e_iwteimng(T)S(Q)

the equation decouple into radial and angular part

e Expand angular function in a spheroidal harmonics basis

e Use completeness relation of spheroidal harmonics (Sy|Sy) = dyp



BH perturbation in small coupling

Radial Teukolsky equation

1 d
AsR(r) dr

AR (r)] + V(r)=0
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BH perturbation in small coupling

Viodifications to the radial equation

= }1% B jr AR (r)] + V(r) : 0
where 4/_7

Vir) = 213% e B el % (K2 - iSK%) corrections depending on the
theory
A=r?—r+a?, K = (r* + a®*)w — am,

Ao = B, + 02w® —2amuw .



BH perturbation in small coupling

1 d
ASR(r) dr

AR (r)] + V(r) + 6V (r) =0

We take agnostic modification

SO

Cano, Capuano, NF, Maenaut, Volkel 2024-A



BH perturbation in small coupling

1 d
ASR(r) dr

ATIR(r)] +V(r) + 6V (r) =0

We take agnostic modification

All these coefficients assumed proportional to C < 1

Cano, Capuano, NF, Maenaut, Volkel 2024-A



BH perturbation in small coupling

We take agnostic modification leading to shifts of frequencies and
separation constants

Wntm = wggm 7y Za(k)
k

universal coefficients

Cano, Capuano, NF, Maenaut, Volkel 2024-A



BH perturbation in small coupling

Frequency coefficients
for n=0, I=2

Available with tutorial
on github

Cano, Capuano, NF, Maenaut, Volkel 2024-A
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https://github.com/sebastianvoelkel/parametrized_qnm_framework

BH perturbation in small coupling: application

QNMs of rotating BHs in Higher Derivative Gravity

SHDG = —

167

Cano, Capuano, NF, Maenaut, Volkel 2024-B (TBA)

d*z+\/g

R+)\eVRa§dRC IR

l Manipulation of the equations to get

(k)d(k)

Up to 18th order in the spin +
Pade spin resummation



m=-2 e m=1

BH perturbation in small coupling: application
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Conclusions

e Analysis limited to non-rotating or slowly-rotating case only: beyond
Teukolsky formalism to compute QNMs of

e Non-separability of the equations: solved assuming and

° to obtain RW/Zerilli-like equations

e Difficult to compute overtones: not mentioned in the talk, we managed
to find an extension of continued fraction method, stable for n>0




