Introduction to the post-adiabatic expansion for EMRIs

Adam Pound

Fundamental Physics Meets Waveforms With LISA

AEI Potsdam-Golm, 3 September 2024

These are all basically the same thing:

- post-adiabatic approximation
- two-timescale expansion
- multiscale expansion
- multi-timescale analysis
- method of averaging
- near-identity averaging transformations

These are all basically the same thing:

- post-adiabatic approximation
- two-timescale expansion
- multiscale expansion
- multi-timescale analysis
- method of averaging
- near-identity averaging transformations

These are all basically the same thing:

- post-adiabatic approximation
- two-timescale expansion
- multiscale expansion
- multi-timescale analysis
- method of averaging
- near-identity averaging transformations

Methods of separating secular from oscillatory effects

What is the post-adiabatic expansion?

Practical: convenient way of solving Einstein equations

Practical: convenient way of solving Einstein equations **Accurate**: uniform accuracy on long and short time scales

Practical: convenient way of solving Einstein equations **Accurate**: uniform accuracy on long and short time scales **Fast**: 10 - 100ms per full waveform

Practical: convenient way of solving Einstein equations **Accurate**: uniform accuracy on long and short time scales **Fast**: 10 - 100ms per full waveform **Modular**: readily accommodate non-GR effects

What is the post-adiabatic expansion?

A way of organizing the self-force expansion for extreme mass ratios

Gravitational self-force theory

- $\epsilon = 1/q = m/M \ll 1$
- small body perturbs spacetime:

$$g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + \dots$$

perturbation affects m's motion:

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon f^{\mu}_{(1)} + \epsilon^2 f^{\mu}_{(2)} + \dots$$

Zeroth order: test mass on a geodesic in Kerr

[image credit: Steve Drasco]

• constants $J_A = (M, a, E, L_z, Q)$:

1 energy E

- **2** angular momentum L_z
- **3** Carter constant *Q*, related to orbital inclination
- phases $\varphi_A = (\varphi_r, \varphi_\theta, \varphi_\phi)$ with frequencies $\Omega_A(J_B)$

$$\frac{d\varphi_A}{dt} = \Omega_A(J_B)$$
$$\frac{dJ_A}{dt} = 0$$

• simple ODEs:

Post-adiabatic expansion

[Flanagan, Hinderer, Lynch, Miller, Moxon, AP, van de Meent, Warburton, ...]

• full, evolving system:

$$\frac{d\tilde{\varphi}_A}{dt} = \Omega_A(\tilde{J}_B)$$
$$\frac{d\tilde{J}_A}{dt} = \epsilon \left[F_A^{(0)}(\tilde{J}_B) + \epsilon F_A^{(1)}(\tilde{J}_B) + \mathcal{O}(\epsilon^2) \right]$$

waveform

$$h_{\ell m} = \sum_{k^i} \left[\epsilon h_{\ell m k^i}^{(1)}(\tilde{J}_A) + \epsilon^2 h_{\ell m k^i}^{(2)}(\tilde{J}_A) + \mathcal{O}(\epsilon^3) \right] e^{-i(m\tilde{\varphi}^{\phi} + k^i\tilde{\varphi}_i)}$$

Offline step

• solve field equations for amplitudes $h_{\ell m k^i}^{(n)}$ and forcing functions $F_A^{(n-1)}$ on grid of \tilde{J}_A values

Online step

- solve ODEs for $\tilde{\varphi}_A$ and \tilde{J}_A , add up mode amplitudes $h_{\ell m k^i}^{(n)}$
- FastEMRIWaveforms (FEW) software package: waveform in $\sim 10-100 \rm ms$ [Chapman-Bird, Chua, Hughes, Katz, Speri, Warburton, ...]

phases have an expansion

$$\tilde{\varphi}_A = \epsilon^{-1} \varphi_A^{(0)}(\epsilon t) + \epsilon^0 \varphi_A^{(1)}(\epsilon t) + O(\epsilon)$$

- a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction [Burke et al. 2023]
- also need to account for transient orbital resonances (0.5PA)

Adiabatic order (0PA)
determined by
$$F_A^{(0)}$$

• dissipative piece of $f_{(1)}^{\mu}$
• phases have an expansion
 $\tilde{\varphi}_A = \epsilon^{-1} \varphi_A^{(0)}(\epsilon t) + \epsilon^0 \varphi_A^{(1)}(\epsilon t) + O(\epsilon)$

- a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction [Burke et al. 2023]
- also need to account for transient orbital resonances (0.5PA)

Accuracy and post-adiabatic counting [Hinderer & Flanagan]

- a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction [Burke et al. 2023]
- also need to account for transient orbital resonances (0.5PA)

Accuracy and post-adiabatic counting [Hinderer & Flanagan]

- a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction [Burke et al. 2023]
- also need to account for transient orbital resonances (0.5PA)

Goal: 1PA waveforms over full parameter space

Background Spacetime	Orbital Configuration	Adiabatic	Post-1-adiabatic				
		1SF (Dissipative)	1SF (Conservative)	2SF (Dissipative)	Spin Effects (Conservative)	Spin Effects (Dissipative)	
Schwarzschild	Circular	111	111	111	444	111	
	Eccentric	111	111	×	√√ , √√√ *	√, √√*	
Kerr	Circular	111	11	X	√,√√*	√√√ *	
	Eccentric Equatorial	111	1 1	×	√,√√*	√√*	
	Generic	111	√	X	√	√*	
	Resonances	111	V	×	X	x	
✓ ✓ ✓ Evolving Waveform ✓ ✓ Driven Inspiral			✓ Snapshot Calculation		*(Anti-)Align	*(Anti-)Aligned Spin Only	

[table courtesy of Josh Mathews]

State of the art in parameter space coverage: 0PA waveforms in Kerr [Hughes et al., Kyoto co., & FEW]

In FEW:

- generic orbits in Kerr: 5.5PN-e¹⁰ approximation [Isoyama, Kyoto co., Chua, AP]
- equatorial orbits in Kerr: fully relativistic waveforms

[animation credit: P. Lynch]

Adam Pound Post-adiabatic expansion 11 / 17

- waveforms including 1PA conservative spin effects "available" for generic configurations in Kerr
- currently missing efficient method of computing non-flux dissipative effects (but see [Grant; Skoupý and Witzany; Mathews et al.])

[Image credit: C. Chapman-Bird]

Resonances in FEW [Chapman-Bird & Warburton]

[Image credit: C. Chapman-Bird]

Adam Pound

State of the art in accuracy: Complete 1PA waveforms [Mathews, AP, Warburton, Wardell & MSF group]

Comparison with NR waveform from SXS collaboration

- complete quasicircular 1PA model with generic secondary spin and linear primary spin
- in FEW: version with zero primary spin, aligned secondary spin

Complete inspiral-merger ringdown models [Kuchler, Compere, Durkan, AP & MSF group]

- 1PA inspiral, next-to-leading transition, leading-order plunge
- see L. Kuchler's talk

Conclusion

Post-adiabatic self-force waveforms

- high accuracy for IMRIs and EMRIs
- native fast waveform generation
 —fast enough for data analysis (?)

Status

- 0PA: equatorial inspirals into Kerr primary
- resonances, secondary spin, precession in the pipeline
- complete 1PA: quasicircular inspiral into slowly spinning primary

Challenge

- coverage of parameter space
- non-GR effects