LISA Response Function Overview and challenges in modeling the measurement chain

Jean-Baptiste Bayle – LISA Fundamental Physics Meets Waveforms – September 2024

Measurement chain

Response function

Data processing

Challenges & takeaways

Measurement principles 1 u.a. ----

- Monitor tidal forces (relative acceleration) between free-falling test masses using precision laser interferometry
- 3 pairs of test masses in equilateral triangular formation, cartwheeling in quasi-Keplerian heliocentric orbits (never far from Earth for communication)

Measurement principles

- Monitor tidal forces (relative acceleration) between free-falling test masses using precision laser interferometry
- 3 pairs of test masses in equilateral triangular formation, cartwheeling in quasi-Keplerian heliocentric orbits (never far from Earth for communication)
- Drag-free spacecraft (along sensitive axes) shield test masses from spurious, external forces

Interferometric measurements

 Interferometers compare the phases of Orbital dynamics dictates that arm a propagated laser beam (from distant lengths cannot remain constant, ie. laser) and a local laser beam: transmitted beam is Doppler-shifted

lock on a dark fringe: $\nu L_{12} = \pi/2$

Interferometric measurements

- Orbital dynamics dictates that arm lengths cannot remain constant, ie. transmitted beam is Doppler-shifted
- LISA uses heterodyne frequency, where $\phi_{\rm BN} \propto (\nu_{2\rightarrow 1} - \nu_1)t + H_{2\rightarrow 1} = \nu_{\rm BN}t + H_{2\rightarrow 1}$ Tens of MHz (1005 nHz)
- 18 beatnotes (split interferometry) are the raw LISA measurements

Time-domain link response function

• Use geodesic equation to compute express ν_t from ν_{ρ}

$$\nu_{\text{BN}} = \nu_t - \nu_r = (\nu_e - \nu_r) +$$

where $y_{re} = (\nu_t - \nu_e)/\nu_e$ is the "overall Doppler shift"

- Assume metric $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}^{SS} + h_{\mu\nu}$
- Assume plane wave GW, $h_{\mu\nu}(t, \mathbf{x}) = h_{\mu\nu}(t \hat{\mathbf{k}} \cdot \mathbf{x})$
- Then

$$y_{re} = y_{re}^{SS} + y_{re}^{GW} + \mathcal{O}(h_{\mu\nu}^{SS}h)$$

Doppler shift from ss =
Effect of GW

Credit: A. Hees, LISA Rosetta Stone (in prep.)

Time-domain link response function

• From [Blanchet + 2001], GW-induced Doppler shift only depends on derivative of the coordinate light travel time

$$y_{re}^{\text{GW}} = 1 - \frac{\nu_t}{\nu_e} \approx 1 - \frac{\text{d}t_e}{\text{d}t_e}$$

 Using the Time Transfer Function formalism [Teyssandier + 2008], we find the implicit equation

• Solve, neglecting terms in $h_{\mu\nu}v/c$ (10-4 smaller)

$$-\mu(x_r - x_e)]\,\mathrm{d}\mu$$

Time-domain link response function

• We find

$$t_r - t_e = \frac{1}{2} \frac{1}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re}} \int_{\xi_e(t_r)}^{\xi_r(t_r)} [\hat{\mathbf{r}}_{re} \otimes \hat{\mathbf{r}}_{re}]$$
"phase" at emission

• De

erivative wrt.
$$t_r$$
 gives the usual expression for y^{GW}
 $y_{re}(t_r) = \frac{1}{2} \frac{H_{re} \left(t_r - L_{re} - \hat{\mathbf{k}} \cdot \mathbf{x}_{\mathbf{e}}(t_r - L_{re}) \right) - H_{re} \left(t_r - \hat{\mathbf{k}} \cdot \mathbf{x}_{\mathbf{r}}(t_r) \right)}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re}}$
(value to orbital effective of the second second

- SI
- Usual "algebraic" approximations include
 - Static (equal-arm) constellation: fix $\mathbf{x}_{e}, \mathbf{x}_{r}, \hat{\mathbf{r}}_{re}$, and $L_{re} = L$
 - Low-frequency limit

at reception

: $\mathbf{h}(\xi) d\xi$ antenna patterns

LISA GW Response

https://pypi.org/project/lisagwresponse https://doi.org/10.5281/zenodo.8321733

Fast LISA Response (GPU)

https://pypi.org/project/fastlisaresponse

LDC Software

(some additional approx.)

https://pypi.org/project/lisa-data-challenge https://doi.org/10.5281/zenodo.7332221

LISA Data Generation and Analysis Workshop

Oct 7–10, 2024, Online https://indico.in2p3.fr/event/33255

Frequency-domain link response function

• "Locally stationary" response can be put in the form (e.g. [Cornish+ 2003])

$$\tilde{y}_{re}(f,t_r) = \frac{1}{2} \operatorname{sinc} \left[\pi f L_{re}(1 + \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re}) \right] e^{i2\pi f L_{re}(1 + \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re})} [\hat{\mathbf{r}}_{re} \otimes \hat{\mathbf{r}}_{re}] : \tilde{\mathbf{h}}(f)$$

- LISA will need a global fit for tens of thousands of sources, probably using block-Gibbs MCMC sampling
- Likelihood computation needs be computationally efficient (~100 ms), includes waveform and response
- Various tricks around

- ...

- Parallelization / hardware acceleration
- Heterodyning [Cornish 2021]

Frequency-domain link response function

• "Locally stationary" response can be put in the form (e.g. [Cornish+ 2003])

$$\tilde{y}_{re}(f,t_r) = \frac{1}{2} \operatorname{sinc} \left[\pi f L_{re}(1 + \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re}) \right] e^{i2\pi f L_{re}(1 + \hat{\mathbf{k}} \cdot \hat{\mathbf{r}}_{re})} [\hat{\mathbf{r}}_{re} \otimes \hat{\mathbf{r}}_{re}] : \tilde{\mathbf{h}}(f)$$

https://pypi.org/project/lisa-data-challenge https://doi.org/10.5281/zenodo.7332221

LISA Beta

https://pypi.org/project/lisabeta

LISA Analysis Tools

https://github.com/mikekatz04/LISAanalysistools https://zenodo.org/records/10930980

Data processing

- Need to recombine beatnotes to construct TM-to-TM measurements
- Need to reduce non-suppressed, overwhelming laser noise (unequalarm interferometer)

$$\nu_{\rm BN} = p(t - 2L_1) - p(t - 2L_2) \neq 0$$

- Beatnotes in each spacecraft sampled on slightly different grid, need to synchronize the data (phase alignement)
- ... and other calibration and noisesuppression steps

Time-delay interferometry

- Laser noise 8 orders of magnitude above expected signals, but measured coherently by different beatnotes
 - Find subspace free of laser noise, project beatnotes on this minimum variance space
- Solved algebraically for a static constellation (generation 1) with 4 or 6 "generating combinations" (Sagnac $\alpha, \beta, \gamma, \zeta$)
 - Insufficient for the LISA case
- Flexing constellation (generation 2+) not solved (non-commutative algebra is hard), but
 - Approximated by "promoting 1st-generation" combinations" and hoping we cover all space
 - Time or frequency-domain linear algebra approaches (PCI or TDI- ∞)

Time-delay interferometry

Unequal-Arm Michelson (X)

$$A = \frac{1}{\sqrt{2}} \left(Z - X \right) ,$$
$$E = \frac{1}{\sqrt{6}} \left(X - 2Y + Z \right) ,$$
$$T = \frac{1}{\sqrt{3}} \left(X + Y + Z \right) .$$

- "Almost everywhere" in the LISA band, 3 combinations are enough to span the laserfree space; pick your favorite set!
- TDI combinations are linear combinations of time-shifted beatnote measurements, therefore non-stationary over long timescales
 - Often approximated using constant, equal arms
- 1st-generation Sagnac generators have the least "zeros"

$$\alpha_1 = \eta_{13} + \mathbf{D}$$

- Michelson combinations XYZ are "rotationally symmetrical" and only involve 2 arms (resilient in case of link failure)
- Dominant secondary noises are test-mass and optical metrology noises. Assuming constant, equal arms and equal noise levels everywhere, one can find noise-diagonal AET combinations
 - Because of symmetries, AET is independent of noise levels and arm lengths
 - AET also diagonalize the low-frequency sky-averaged response (ie., T is a "null channel")

 $\mathbf{D}_{13}\eta_{32} + \mathbf{D}_{132}\eta_{21} - (\eta_{12} + \mathbf{D}_{12}\eta_{23} + \mathbf{D}_{123}\eta_{31})$

Note on "orthogonal channels"

- No good reason to stick to AET in a realistic setup

Response PSD relative errors 1012 10⁹ Relative error [1/Hz^2] 10⁶ 10^{3} 100 10^{-3} 10^{-6} 100 10-3 10⁰ 10^{-4} 10^{-2} 10^{-1} Frequency [Hz]

• In realistic setup, the "diagonal" AET response (and noise covariance) assumption is only good up to a few percent level, probably not enough for most FP analyses

Modeling challenges

- Errors in the response function
 - Be aware of approximations used, use better models when necessary
 - Marginalize over instrumental uncertainties if needed
 - Errors in calibration (eg. time sync.)
- [Savalle+ 2022] investigated calibration errors (amplitude & phase) using FIMs
 - Calibration errors $\sim < 0.1\%$ to keep parameter uncertainties within x2 error
 - Using known binaries and EMRIs might constrain calibration errors at 0.01%

- Uncertainty in the noise
 - No true signal-free channel, noise must be estimated alongside sources in global fit
- Non-stationarity of noise and response
 - Orbital effects on response
 - Non-stationary "noises" (anisotropic population backgrounds, non-stationary transfer functions, time-dependent noises)
 - Non-stationary noise transfer functions
 - Long-term coherence of the models
 - Operations (repointing, etc.) might change response function or noise coherence

Practical challenges

- Waveform, instrument modeling, and data analysis (and fundamental physics, and others...) communities will have to interact and share tools
- Improve interfaces through agreed-upon conventions (and maybe standardization?)
 - DDPC Convention task force just formed
- An important aspect is the interface between project activities (DDPC, NSGS, etc.) and the community at large (new symposium)

LISA Data Generation and Analysis Workshop

Oct 7–10, 2024, Online https://indico.in2p3.fr/event/33255

LISA Analysis Tools Workshop

April 15-18 2024, Online https://indico.physics.auth.gr/e/LATW