Holographic & geometric aspects of electromagnetic duality in supergravity

Adolfo Guarino

University of Oviedo & ICTEA

Based on 1907.04177 , 1907.11681 and 1910.06866

Geometry and Duality

AEI - Potsdam, 5 December 2019

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Outlook

Electric-magnetic duality in N=8 supergravity

M-theory

Massive Type IIA : Flowing to N = 3 CS-matter theory

Type IIB : S-folds and interface SYM

N=8 supergravity in 4D

• SUGRA : metric + 8 gravitini + 28 vectors + 56 dilatini + 70 scalars (s = 2) (s = 3/2) (s = 1) (s = 1/2) (s = 0)

Ungauged (abelian) supergravity: Reduction of M-theory on a *torus* T^7 down to 4D produces N = 8 supergravity with $G = U(1)^{28}$ [$E_{7(7)}$ symmetry] [Cremmer, Julia '79]

Gauged (non-abelian) supergravity:

Reduction of M-theory on a *sphere S*⁷ down to 4D produces N = 8 supergravity vith G = SO(8) [de Wit, Nicolai '82]

Reduction of M-theory on S^1 (Type IIA) and subsequently on S^6 down to 4D produces N = 8 supergravity with $G = ISO(7) = SO(7) \ltimes \mathbb{R}^7$ [Hull'84]

Reduction of Type IIB on S^5 and subsequently on S^1 down to 4D produces N = 8supergravity with $G = [SO(1,1) \times SO(6)] \ltimes \mathbb{R}^{12}$ [Inverso, Samtleben, Trigiante '16]

These gauged supergravities believed to be g(hique) for 30 years...

Electric-magnetic deformations

• Uniqueness historically inherited from the connection with NH geometries of branes and SCFT's

Type IIB : $AdS_5 \times S^5$ (D3-brane ~ N = 4 SYM in 4d) [Maldacena '97]

M-theory: $AdS_4 \times S^7$ (M2-brane ~ ABJM theory in 3d)

[Aharony, Bergman, Jafferis, Maldacena '08]

• N=8 supergravity in 4D admits a deformation parameter *c* yielding inequivalent theories. It is an electric/magnetic deformation

$$D = \partial - g \left(A^{\text{elec}} - \boldsymbol{c} \, \tilde{A}_{\text{mag}} \right)$$

g = 4D gauge coupling c = deformation param.

[Dall'Agata, Inverso, Trigiante '12]

• There are two generic situations :

1) Family of SO(8)_c theories : $c = [0, \sqrt{2} - 1]$ is a continuous parameter [similar for SO(p,q)_c]

2) Family of $CSO(p,q,r)_c$ theories : c = 0 or 1 is an (on/off) parameter

The questions arise:

• Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a string/M-theory origin, or is it just a 4D feature ?

• For deformed 4D supergravities with supersymmetric AdS₄ vacua, are these AdS₄/CFT₃-dual to any identifiable 3d CFT ?

SO(8)_c theories : physical meaning in 4D

$$\left(D = \partial - g \left(A^{\text{elec}} - c \tilde{A}_{\text{mag}} \right) \right)$$

$SO(8)_c$ theories : physical meaning in 11D ...

Obstruction for $SO(8)_c$, *cf.* [de Wit, Nicolai '13]

[Lee, Strickland-Constable, Waldram '15]

SO(8)_c theories : holographic AdS_4/CFT_3 meaning ...

Why ISO(7)_c works ?

$$D = \partial - g A_{\mathrm{SO}(7)}^{\mathrm{elec}} - g \left(A_{\mathbb{R}^7}^{\mathrm{elec}} - \mathbf{c} \tilde{A}_{\mathbb{R}^7 \mathrm{mag}} \right)$$

4D : Supersymmetric AdS₄ solutions

SUSY	bos. sym.	M^2L^2	
$\mathcal{N}=3$	SO(4)	$3(1 \pm \sqrt{3})^{(1)} , (1 \pm \sqrt{3})^{(6)} , -\frac{9}{4}^{(4)} , -2^{(18)} , -\frac{5}{4}^{(12)} , 0^{(22)} (3 \pm \sqrt{3})^{(3)} , \frac{15}{4}^{(4)} , \frac{3}{4}^{(12)} , 0^{(6)}$	[Gallerati, Samtleben, Trigiante '14
$\mathcal{N}=2$	U(3)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[AG, Jafferis, Varela '15]
$\mathcal{N} = 1$	G_2	$\begin{array}{c} (4 \pm \sqrt{6})^{(1)} \ , \ -\frac{1}{6}(11 \pm \sqrt{6})^{(27)} \ , \ 0^{(14)} \\ \\ \frac{1}{2}(3 \pm \sqrt{6})^{(7)} \ , \ 0^{(14)} \end{array}$	[Borghese, AG, Roest '12]
$\mathcal{N} = 1$	SU(3)	$ \begin{array}{c} (4 \pm \sqrt{6})^{(2)} \ , \ -\frac{20}{9}^{(12)} \ , \ -2^{(8)} \ , \ -\frac{8}{9}^{(12)} \ , \ \frac{7}{9}^{(6)} \ , \ 0^{(28)} \\ \\ 6^{(1)} \ , \ \frac{28}{9}^{(6)} \ , \ \frac{25}{9}^{(6)} \ , \ 2^{(1)} \ , \ \frac{4}{9}^{(6)} \ , \ 0^{(8)} \end{array} $	[AG, Varela '15]

• $\mathcal{N} = 2 \& \mathcal{N} = 3$ solutions will play a central role in holography !! [Continuous R-symmetry]

$$\begin{split} d\hat{s}_{10}^{2} &= \Delta^{-1} ds_{4}^{2} + g_{mn} \, Dy^{m} \, Dy^{n} , \\ \hat{A}_{(3)} &= \mu_{I} \mu_{J} \left(\mathcal{C}^{IJ} + \mathcal{A}^{I} \wedge \mathcal{B}^{J} + \frac{1}{6} \mathcal{A}^{IK} \wedge \mathcal{A}^{JL} \wedge \tilde{\mathcal{A}}_{KL} + \frac{1}{6} \mathcal{A}^{I} \wedge \mathcal{A}^{JK} \wedge \tilde{\mathcal{A}}_{K} \right) \\ &+ g^{-1} \left(\mathcal{B}_{J}^{I} + \frac{1}{2} \mathcal{A}^{IK} \wedge \tilde{\mathcal{A}}_{KJ} + \frac{1}{2} \mathcal{A}^{I} \wedge \tilde{\mathcal{A}}_{J} \right) \wedge \mu_{I} D \mu^{J} + \frac{1}{2} g^{-2} \tilde{\mathcal{A}}_{IJ} \wedge D \mu^{I} \wedge D \mu^{J} \\ &- \frac{1}{2} \mu_{I} B_{mn} \, \mathcal{A}^{I} \wedge D y^{m} \wedge D y^{n} + \frac{1}{6} A_{mnp} D y^{m} \wedge D y^{n} \wedge D y^{p} , \\ \hat{B}_{(2)} &= -\mu_{I} \left(\mathcal{B}^{I} + \frac{1}{2} \mathcal{A}^{IJ} \wedge \tilde{\mathcal{A}}_{J} \right) - g^{-1} \tilde{\mathcal{A}}_{I} \wedge D \mu^{I} + \frac{1}{2} B_{mn} \, D y^{m} \wedge D y^{n} , \\ \hat{A}_{(1)} &= -\mu_{I} \, \mathcal{A}^{I} + A_{m} \, D y^{m} . \end{split}$$

where we have defined : $Dy^m \equiv dy^m + \frac{1}{2} g K^m_{IJ} \mathcal{A}^{IJ}$, $D\mu^I \equiv d\mu^I - g \mathcal{A}^{IJ} \mu_J$

The scalars are embedded as

$$g^{mn} = \frac{1}{4} g^2 \Delta \mathcal{M}^{IJ \, KL} \, K^m_{IJ} \, K^n_{KL} \quad , \quad B_{mn} = -\frac{1}{2} \Delta g_{mp} \, K^p_{IJ} \, \partial_n \mu^K \, \mathcal{M}^{IJ}_{K8} \, ,$$
$$A_m = \frac{1}{2} g \Delta g_{mn} \, K^n_{IJ} \, \mu_K \, \mathcal{M}^{IJ \, K8} \quad , \quad A_{mnp} = \frac{1}{8} g \Delta g_{mq} \, K^q_{IJ} \, K^{KL}_{np} \, \mathcal{M}^{IJ}_{KL} + A_m B_{np}$$

$\mathcal{N} = 2$ solution of massive type IIA

• $\mathcal{N} = 2$ & SU(3)_F × U(1)_{\u03c0} AdS₄ point of the ISO(7)_c theory

$$\begin{split} d\hat{s}_{10}^{2} &= L^{2} \frac{\left(3 + \cos 2\alpha\right)^{\frac{1}{2}}}{\left(5 + \cos 2\alpha\right)^{-\frac{1}{8}}} \left[ds^{2} (\mathrm{AdS}_{4}) + \frac{3}{2} d\alpha^{2} + \frac{6\sin^{2}\alpha}{3 + \cos 2\alpha} ds^{2} (\mathbb{CP}^{2}) + \frac{9\sin^{2}\alpha}{5 + \cos 2\alpha} \eta^{2} \right], \\ e^{\hat{\phi}} &= e^{\phi_{0}} \frac{\left(5 + \cos 2\alpha\right)^{3/4}}{3 + \cos 2\alpha} , \qquad \hat{H}_{(3)} = 24\sqrt{2} L^{2} e^{\frac{1}{2}\phi_{0}} \frac{\sin^{3}\alpha}{\left(3 + \cos 2\alpha\right)^{2}} J \wedge d\alpha , \\ L^{-1} e^{\frac{3}{4}\phi_{0}} \hat{F}_{(2)} &= -4\sqrt{6} \frac{\sin^{2}\alpha \cos \alpha}{\left(3 + \cos 2\alpha\right)\left(5 + \cos 2\alpha\right)} J - 3\sqrt{6} \frac{\left(3 - \cos 2\alpha\right)}{\left(5 + \cos 2\alpha\right)^{2}} \sin \alpha d\alpha \wedge \eta , \\ L^{-3} e^{\frac{1}{4}\phi_{0}} \hat{F}_{(4)} &= 6 \operatorname{vol}_{4} \\ &+ 12\sqrt{3} \frac{7 + 3\cos 2\alpha}{\left(3 + \cos 2\alpha\right)^{2}} \sin^{4}\alpha \operatorname{vol}_{\mathbb{CP}^{2}} + 18\sqrt{3} \frac{\left(9 + \cos 2\alpha\right)\sin^{3}\alpha \cos \alpha}{\left(3 + \cos 2\alpha\right)\left(5 + \cos 2\alpha\right)} J \wedge d\alpha \wedge \eta , \end{split}$$

where we have introduced the quantities $L^2 \equiv 2^{-\frac{5}{8}} 3^{-1} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_0} \equiv 2^{\frac{1}{4}} c^{-\frac{5}{6}}$

♦ The angle $0 \le \alpha \le \pi$ locally foliates S⁶ with S⁵ regarded as Hopf fibrations over \mathbb{CP}^2

 $\mathcal{N} = 3$ solution of massive type IIA

[Pang, Rong '15] [also De Luca et al '18]

• $\mathcal{N} = 3 \& \mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{SO}(3)_d$ AdS₄ point of the ISO(7)_c theory

$$\begin{split} d\hat{s}_{10}^{2} &= L^{2} \left(3 + \cos 2\alpha\right)^{1/8} \left(3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2\right)^{1/4} \left[ds^{2} (\mathrm{AdS}_{4}) + \frac{2(3 + \cos 2\alpha) \cos^{2} \alpha}{3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2} \delta_{ij} D\tilde{\mu}^{i} D\tilde{\mu}^{j} + 2 d\alpha^{2} + \frac{8 \sin^{2} \alpha}{3 + \cos 2\alpha} d\tilde{s}^{2} (S^{3}) \right] \\ e^{\hat{\phi}} &= e^{\phi_{0}} \frac{\left(3 + \cos 2\alpha\right)^{3/4}}{\left(3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2\right)^{1/2}} \\ L^{-2} e^{-\frac{1}{2}\phi_{0}} \hat{B}_{(2)} &= -\frac{2}{\sqrt{3}} \sin \alpha \, d\alpha \wedge \tilde{\mu}_{i} \rho^{i} + \frac{(5 + 3 \cos 2\alpha) \cos^{3} \alpha}{\sqrt{3} \left(3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2\right)} \epsilon_{ijk} \tilde{\mu}^{i} D\tilde{\mu}^{j} \wedge D\tilde{\mu}^{k} \\ &+ \frac{4 \sin^{2} \alpha \cos \alpha}{\sqrt{3} \left(3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2\right)} E^{-\frac{1}{2}\phi_{0}} \hat{B}_{(2)} &= -\frac{2}{\sqrt{3}} \sin \alpha \, d\alpha \wedge \tilde{\mu}_{i} \rho^{i} + \frac{(5 + 3 \cos 2\alpha) \cos^{3} \alpha}{\sqrt{3} \left(3 \cos^{4} \alpha + 3 \cos^{2} \alpha + 2\right)} \epsilon_{ijk} \tilde{\mu}^{i} D\tilde{\mu}^{j} \wedge D\tilde{\mu}^{k} \\ &+ \frac{4 \sin^{2} \alpha \cos \alpha}{\sqrt{3} \left(3 + \cos 2\alpha\right)} D\tilde{\mu}_{i} \wedge \rho^{i} + \frac{(7 + \cos 2\alpha) \sin^{2} \alpha \cos \alpha}{\sqrt{3} \left(3 + \cos 2\alpha\right)^{2}} \epsilon_{ijk} \tilde{\mu}^{i} \rho^{j} \wedge \rho^{k} \\ &- \frac{2\sqrt{2} \sin^{2} \alpha \cos^{2} \alpha}{\sqrt{3} \left(3 + \cos 2\alpha\right)} \tilde{\mu}_{i} D\tilde{\mu}_{j} \wedge \rho^{j} \\ &+ \frac{4\sqrt{2} \sin^{2} \alpha \cos^{2} \alpha}{\sqrt{3} \left(3 + \cos 2\alpha\right)} \tilde{\mu}_{i} D\tilde{\mu}_{j} \wedge \rho^{j} \wedge \rho^{j} \\ &- \frac{2\sqrt{2} \left(2 + \cos 2\alpha\right) \sin^{4} \alpha}{3\sqrt{3} \left(3 + \cos 2\alpha\right)^{2}} \epsilon_{ijk} \rho^{i} \wedge \rho^{j} \wedge \rho^{k} , \end{split}$$

where we have introduced the quantities $L^2 \equiv 2^{-\frac{31}{12}} 3^{\frac{3}{8}} g^{-2} c^{\frac{1}{12}}$ and $e^{\phi_0} \equiv 2^{-\frac{1}{6}} 3^{\frac{1}{4}} c^{-\frac{5}{6}}$

♦ The angle $0 \le α \le π/2$ so that S⁶ is topologically described as the join of S² and S³ with S³ regarded as a Hopf fibration over CP¹

$3D: CFT_3 duals$

[Schwarz '04] [Gaiotto, Tomasiello '09] [AG, Jafferis, Varela '15]

• 3d SYM with simple group SU(N) + CS term (level k) \implies super CS-matter theory !!

• **Perfect matching**: 3d field theory *vs* gravitations free energy

3d free energy F = -Log(Z)computed via localisation ($N \gg k$)

[Pestun '07] [Kapustin, Willett, Yaakov '09]
[Jafferis '10] [Jafferis, Klebanov, Pufu, Safdi '11]
[Closset, Dumitrescu, Festuccia, Komargodski '12 '13]

gravitational free energy computed from the warp factor in the massive IIA solutions

[Emparan, Johnson, Myers '99]

N=2: [AG, Jafferis, Varela '15]
N=3: [Pang, Rong '15]

$3D: CFT_3 duals$

3d SYM with simple group SU(N) + CS term (level k)

Perfect matching : 3d field theory *vs* gravitations free energy

3d free energy F = -Log(Z)computed via localisation $(N \gg k)$

[Pestun '07] [Kapustin, Willett, Yaakov '09] [Jafferis '10] [Jafferis, Klebanov, Pufu, Safdi '11] Closset, Dumitrescu, Festuccia, Komargodski '12 '13]

gravitational free energy computed from the warp factor in the massive IIA solutions

[Emparan, Johnson, Myers '99]

N=2: [AG, Jafferis, Varela '15] **N=3**: [Pang, Rong '15]

Holographic description of RG flows

- RG flows are described holographically as non-AdS₄ solutions in gravity
- RG flows on M2-brane : SO(8)-gauged sugra from M-theory on S⁷

• RG flows on D3-brane : SO(6)-gauged sugra from type IIB on S⁵ and N=4 SYM in 4D

[Freedman, Gubser, Pilch, Warner '99] [Pilch, Warner '00] [Benini, Bobev '12,'13]

Holographic RG flows on the D2-brane

• D2-brane :

$$\begin{aligned}
d\hat{s}_{10}^2 &= e^{\frac{3}{4}\phi} \left(-e^{2U} dt^2 + e^{-2U} dr^2 + e^{2(\psi-U)} ds_{\Sigma_2}^2 \right) + g^{-2} e^{-\frac{1}{4}\phi} ds_{S^6}^2 \\
e^{\hat{\Phi}} &= e^{\frac{5}{2}\phi} \\
\hat{F}_{(4)} &= 5 g e^{\phi} e^{2(\psi-U)} dt \wedge dr \wedge d\Sigma_2
\end{aligned}$$
with $e^{2U} \sim r^{\frac{7}{4}}$, $e^{2(\psi-U)} \sim r^{\frac{7}{4}}$ and $e^{\phi} \sim r^{-\frac{1}{4}}$ \longrightarrow DW_4
domain-wall
(SYM)

• RG flows on D2-brane : $ISO(7)_c$ -gauged sugra from mIIA on S⁶

Supersymmetric domain-walls

 BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity dual to RG flows from SYM-CS (dashed lines) and between CFT's (solid lines)

Supersymmetric domain-walls

 BPS domain-wall solutions of the dyonic ISO(7)-gauged supergravity dual to RG flows from SYM-CS (dashed lines) and between CFT's (solid lines)

GY flow : field theory side

• Free energy as a function of Δ_a for the chiral fields Φ^a

$$F = \frac{3\sqrt{3}\pi}{20 \cdot 2^{1/3}} \left[1 + \sum_{a=1}^{N_f} \left(1 - \Delta_a \right) \left[1 - 2\left(1 - \Delta_a \right)^2 \right] \right]^{2/3} k^{1/3} N^{5/3}$$
 [Jafferis, Klebanov, Pufu, Safdi '11] [Fluder, Sparks '15]

• Marginality of W + *F*-extremisation

 $N_f = 3$ chiral fields : $\Delta_1 + \Delta_2 + \Delta_3 = 2$

 $\mathcal{N} = 2 \& \operatorname{SU}(3)_{\mathrm{F}}$ $\mathcal{W}_{\mathcal{N}=2} = \operatorname{tr}\left(\left[\Phi^1, \Phi^2 \right] \Phi^3 \right)$

F-extremisation: $\Delta_1 = \Delta_2 = \Delta_3 = \frac{2}{3}$

• Mass deforming $\mathcal{N} = 2 \& SU(3)_F$

$$\mathcal{W}_{\mathcal{N}=2,\,\mathrm{def}} = \mathrm{tr}\left(\left[\Phi^1, \Phi^2 \right] \Phi^3 + \frac{1}{2} \,\mu \,(\Phi^3)^2 \right)$$

 $2 \,\Delta_3 = \frac{4}{3} < 2$

UV to IR $\mu \ll 1$

$$\mathcal{W} = \frac{1}{2\mu} \operatorname{tr} \left([\Phi^1, \Phi^2] \right)^2$$

$$N_f = 2$$
 chiral fields : $\Delta_1 + \Delta_2 = 1$

$$\mathcal{N} = 3 \& \mathrm{SU}(2)_{\mathrm{F}}$$
$$\mathcal{W}_{\mathcal{N}=3} = \frac{2\pi}{k} \operatorname{tr} \left(\left[\Phi^1, \Phi^2 \right] \right)^2$$
F-extremisation: $\Delta_1 = \Delta_2 = \frac{1}{2}$

GY flow : gravity side (I)

• Domain-wall solution

• Subsector of the ISO(7) theory capturing relevant/irrelevant deformations

Flavour	R-symmetry		Flavour	R-symmetry
${ m SU}(3)_{ m F}$	\times U(1) $_{\psi}$		$SU(2)_{F}$	\times SO(3) _d
$\mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(2)_{\mathrm{F}}$	$(1)_{\tau} \times \mathrm{U}(1)_{\psi}$			()4
${ m SU}(2)_{ m F}$	\times U(1) _d	$\xrightarrow{\mathrm{SU}(2)_{\mathrm{F}} \times \mathrm{U}(1)_{\mathrm{d}}} \rightarrow$	$\mathrm{SU}(2)_{\mathrm{F}}$	\times U(1) _d
	UV	RG flow		IR

• Minimal model with 4 chirals [+id

[+identifications]

 $SU(2)_F \times U(1)_d \subset ISO(7)$

24

$$K = -2\sum_{i=1}^{3} \log[-i(z_i - \bar{z}_i)] - \log[-i(z_4 - \bar{z}_4)]$$
$$W = g\left[c + 4z_1z_2z_3 + (z_1^2 + z_2^2 + z_3^2)z_4\right]$$

GY flow : gravity side (II)

• Domain-wall Ansatz : $ds^2 = e^{2A(\rho)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + d\rho^2$

• BPS equations :
$$\partial_{\rho}A = 2\mathcal{W}$$
, $\partial_{\rho}z^{I} = -4K^{I\bar{J}}\partial_{\bar{z}_{\bar{J}}}\mathcal{W}$ with $\mathcal{W} = \frac{1}{2}e^{K/2}\left(W\overline{W}\right)^{1/2}$

Dyonically-gauged [SO(1,1) × SO(6)] \ltimes R¹² supergravity

* Higher-dimensional origin as Type IIB on $S^1 \times S^5$

[Inverso, Samtleben, Trigiante '16]

[Gallerati, Samtleben, Trigiante '14]

- New AdS₄ vacuum with N=4 & SO(4) symmetry
- * Holographic expectation: N=4 interface SYM theory with SO(4) symmetry & Janus solutions

[Bak, Gutperle, Hirano '03 (**N** = **0**)] [Clark, Freedman, Karch, Schnabl '04] [D'Hoker, Ester, Gutperle '07, '07 (**N** = **4**)] [Gaiotto, Witten '08] [Assel, Tomasiello '18 (**N** = **3**, **4**)]

* Classification of (original) interface SYM theories

 $N=4 \& SO(4) \qquad N=2 \& SU(2) \times U(1) \qquad N=1 \& SU(3) \qquad N=0 \& SO(6)$

[D'Hoker, Ester, Gutperle '06 (**N** = **1**, **2**, **4**)]

Question : *Simple analytic* holographic duals for the N = 0, 1, 2 interface SYM theories with SO(6), SU(3) and SU(2) × U(1) internal symmetry using a bottom-up approach ?

A truncation : SU(3) invariant subsector

• Truncation : Retaining the fields and couplings which are invariant (singlets) under the action of a subgroup $G_0 \subset [SO(1,1) \times SO(6)] \ltimes \mathbb{R}^{12}$

- SU(8) R-symmetry branching : gravitini
$$8 \rightarrow 1 + 1 + 3 + \overline{3} \implies N = 2$$
 SUSY
- Scalars fields : $70 \rightarrow 1 (\times 6) + \text{non-singlets} \implies 6$ real scalars $(\varphi, \chi, \phi, \sigma, \zeta, \tilde{\zeta})$
- Vector fields : $56 \rightarrow 1 (\times 4) + \text{non-singlets} \implies \text{vectors} (A^0, A^1; \tilde{A}_0, \tilde{A}_1)$

• N = 2 gauged supergravity with $G = SO(1, 1)_m \times U(1)_e$ with 1 vector & 1 hypermultiplet

$$\mathcal{M}_{scalar} = \frac{SU(1,1)}{U(1)} \times \frac{SU(2,1)}{U(2)}$$

AdS₄ vacua
$$(c
eq 0)$$
 [AG, Sterckx '19]

* N=0 & SO(6) vacuum [1 free parameter]

$$\chi = \text{free} \quad , \quad e^{-\varphi} = \frac{c}{\sqrt{2}} \; , \qquad e^{2\phi} = \frac{1}{\sqrt{1 - \sigma^2}} \quad , \quad \sigma \in (-1, 1) \quad , \quad |\vec{\zeta}|^2 = 0$$

... it turns out to be perturbatively **unstable** !!

* N=1 & SU(3) vacuum [2 free parameters]

$$\chi = 0 \quad , \quad e^{-\varphi} = \frac{\sqrt{5c}}{3} \; , \qquad e^{2\phi} = \frac{6}{5} \frac{1}{\sqrt{1 - \sigma^2}} \quad , \quad \sigma \in (-1, 1) \quad , \quad |\vec{\zeta}|^2 = \frac{2}{3} \sqrt{1 - \sigma^2}$$

... the compact U(1)_e symmetry broken by $|\vec{\zeta}|^2 \neq 0$ (charged)

Next step: Uplift to Type IIB on R × S⁵ using E₇₍₇₎-EFT [Hohm, Samtleben '13]

S-folds and (non-) supersymmetric Janus

[AG, Sterckx '19]

$$ds_{10}^{2} = \frac{1}{2}\sqrt{Y} e^{\varphi} ds_{AdS_{4}}^{2} + \sqrt{Y} e^{-2\varphi} d\eta^{2} + \frac{1}{\sqrt{Y}} \left[ds_{\mathbb{CP}^{2}}^{2} + Y \eta^{2} \right]$$
$$\widetilde{F}_{5} = dC + \frac{1}{2} \epsilon_{\alpha\beta} \mathbb{B}^{\alpha} \wedge \mathbb{H}^{\beta} = \left(4 + \frac{6(1-Y)}{Y} \right) Y^{\frac{3}{4}} (1+\star) \operatorname{vol}_{5}$$
$$\mathbb{B}^{\alpha} = A^{\alpha}{}_{\beta} \mathfrak{b}^{\beta} = -\frac{1}{2} Y^{-1} A^{\alpha}{}_{\beta} \epsilon^{\beta\gamma} H_{\gamma\delta} \Omega^{\delta}$$
$$m_{\alpha\beta} = (A^{-t})_{\alpha}{}^{\gamma} \mathfrak{m}_{\gamma\delta} (A^{-1})^{\delta}{}_{\beta}$$

with
$$Y = 1 + \frac{1}{4} e^{2\phi} |\vec{\zeta}|^2$$
 and $A^{\alpha}{}_{\beta} \equiv \begin{pmatrix} \sqrt{1 + \tilde{y}^2} & \tilde{y} \\ \tilde{y} & \sqrt{1 + \tilde{y}^2} \end{pmatrix} = \begin{pmatrix} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{pmatrix}$

[(hyperbolic) SO(1,1)-twist over S¹ \leftrightarrow -*ST*^k monodromy (k > 2)]

N=0 & SO(6)
$$\mathfrak{m}_{\gamma\delta} = \frac{1}{\sqrt{1-\sigma^2}} \begin{pmatrix} 1 & -\sigma \\ -\sigma & 1 \end{pmatrix}$$
$$\mathfrak{b}^{\beta} = 0 \qquad Y = 1$$

unstable !!

[Bak, Gutperle, Hirano '03]

No untwisted limit !! (genuinely dyonic)

N=1 & SU(3)
$$\mathfrak{m}_{\gamma\delta} = \frac{1}{\sqrt{1-\sigma^2}} \begin{pmatrix} 1 & -\sigma \\ -\sigma & 1 \end{pmatrix}$$
$$\mathfrak{b}^{\beta} \neq 0 \qquad Y = \frac{6}{5}$$

Summary

- * Dyonic N = 8 supergravity with ISO(7) and $[SO(1,1)\times SO(6)] \ltimes R^{12}$ gaugings connected to massive IIA reductions on S⁶ and type IIB reductions on R x S⁵
- * massive IIA : 3d CS-matter theories with simple gauge group SU(N) and adjoint matter

Type IIB (S-folds): 3d interface SYM theories with various (super) symmetries
 [-ST^k monodromy (k > 2)]

$$\mathcal{N} = 1 \& \mathrm{SU}(3)$$

[see also Bobev, Gautason, Pilch, Suh, van Muiden '19]

RG flows?

Danke schön!

Thank you !