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Outlook

Massive Type IIA :     Flowing to N = 3 CS-matter theory
 

Electric-magnetic duality in N=8 supergravity

Type IIB :  S-folds and interface SYM

!2

M-theory
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Electric-magnetic duality in N=8 supergravity
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Ungauged  (abelian)  supergravity:   Reduction  of  M-theory  on  a  torus  T7 
down to 4D produces  N = 8  supergravity with  G = U(1)28

Gauged (non-abelian) supergravity: 

❖ Reduction of M-theory on a sphere S7 down to 4D produces  N = 8  supergravity 
with  G = SO(8)

❖ Reduction of M-theory on  S1  (Type IIA) and subsequently on S6  down to 4D 
produces  N = 8  supergravity with

❖ Reduction of Type IIB on S5  and subsequently on S1 down to 4D produces  N = 8  
supergravity with

N=8  supergravity in 4D

 • SUGRA  :      metric  +  8 gravitini  +  28 vectors  +  56 dilatini  +  70 scalars
(s = 2)             (s = 3/2)                (s = 1)               (s = 1/2)                (s = 0)       

✱  These gauged supergravities believed to be unique for 30 years…

[ Cremmer, Julia ’79 ] 

[ de Wit, Nicolai ’82 ] 
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[ Hull ’84 ] 

SO(8)c     vs    ISO(7)c 

6

SO(8)c  theories  :  physical meaning in 4D

LSLJ[YPJ��
CLJ[VY@

THNUL[PJ�
CLJ[VY@

G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)
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Why ISO(7)c works ?
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SO(7)

R7

G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec

SO(7)
� g (Aelec

R7 � c ÃR7 mag)
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Higher-dimensional origin?
Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 

G = [ SO(1, 1)⇥ SO(6) ]n R12
<latexit sha1_base64="H1L1l9KRRTRYPi0fRceWEY5dlRY="></latexit>

[ Inverso, Samtleben, Trigiante ’16 ] 

[ E7(7) symmetry ] 



 1)  Family of  SO(8)c  theories  :  c = [0,           ] is a continuous parameter

Electric-magnetic deformations

Type IIB   :    AdS5  x  S5    ( D3-brane ~ N = 4  SYM  in  4d )    

M-theory :    AdS4  x  S7    ( M2-brane ~ ABJM  theory  in  3d )  

 • N=8 supergravity in 4D admits a deformation parameter   c   yielding  inequivalent 
theories.  It is an electric/magnetic deformation

 • Uniqueness historically inherited from the connection with NH geometries of branes 
and SCFT’s

D = @ � g (Aelec � c Ãmag)

 • There are  two generic situations : 

 2)  Family of  CSO(p,q,r)c  theories :  c = 0 or 1  is an  (on/off)  parameter                     

g = 4D gauge coupling
c = deformation param.

[ Dall’Agata, Inverso, Marrani ’14 ]

p
2� 1
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[ similar for  SO(p,q)c  ]

[ Dall’Agata, Inverso, Trigiante ’12 ] 

[ Maldacena ’97 ] 

[ Aharony, Bergman, Jafferis, Maldacena ’08 ] 



 The questions arise:   

 • Does such an electric/magnetic deformation of 4D maximal supergravity enjoy a  
    string/M-theory origin, or is it just a 4D feature ? 

 • For deformed 4D supergravities with supersymmetric AdS4  vacua, are these 
    AdS4/CFT3-dual to any identifiable 3d CFT ? 
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M-theory



SO(8)c  theories  :  physical meaning in 4D
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[JHYTW>

RFLSJYNH�
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G = SO(8)

D = @ � g (Aelec � c Ãmag)

! = Arg(1 + ic)
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SO(8)c  theories  :  physical meaning in 11D …

?
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Obstruction for SO(8)c ,  cf.  [ de Wit, Nicolai ’13 ]

[ Lee, Strickland-Constable, Waldram ’15 ] 



SO(8)c  theories  :  holographic AdS4/CFT3 meaning …

?
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Massive Type IIA

electric/magnetic
deformation

higher-dimensional
origin

Holographic 
AdS4/CFT3 dual ?

X X X

g c = F̂(0) = k/(2⇡`s) [ AG, Jafferis, Varela ’15 ] 
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Why ISO(7)c works ?

RFLSJYNH�
[JHYTW>
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G = ISO(7) = SO(7)n R7

! = Arg(1 + ic)

D = @ � g Aelec

SO(7)
� g (Aelec

R7 � c ÃR7 mag)
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4D : Supersymmetric AdS4 solutions

✦�������������������������>T7@YNTS>�BN77�U7FC�F�HJSYWF7�WT7J�NS�MT7TLWFUMC�		
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SUSY bos. sym. M2L2 stability ref.

N = 3 SO(4) 3(1±
p
3)(1) , (1±

p
3)(6) , � 9

4

(4)
, �2(18) , � 5

4

(12)
, 0(22) yes [30]

(3±
p
3)(3) , 15

4

(4)
, 3

4

(12)
, 0(6)

N = 2 U(3) (3±
p
17)(1) , � 20

9

(12)
, �2(16) , � 14

9

(18)
, 2(3) , 0(19) yes [15] , [here]

4(1) , 28
9

(6)
, 4

9

(12)
, 0(9)

N = 1 G2 (4±
p
6)(1) , � 1

6 (11±
p
6)(27) , 0(14) yes [4]

1
2 (3±

p
6)(7) , 0(14)

N = 1 SU(3) (4±
p
6)(2) , � 20

9

(12)
, �2(8) , � 8

9

(12)
, 7

9

(6)
, 0(28) yes [here]

6(1) , 28
9

(6)
, 25

9

(6)
, 2(1) , 4

9

(6)
, 0(8)

N = 0 SO(7)+ 6(1) , � 12
5

(27)
, � 6

5

(35)
, 0(7) no [3]

12
5

(7)
, 0(21)

N = 0 SO(6)+ 6(2) , �3(20) , � 3
4

(20)
, 0(28) no [3]

6(1) , 9
4

(12)
, 0(15)

N = 0 G2 6(2) , �1(54) , 0(14) yes [4]

3(14) , 0(14)

N = 0 SU(3) see (3.44) yes [here]

see (3.45)

N = 0 SU(3) see (3.46) yes [here]

see (3.47)

N = 0 SO(4) see (5.12) yes [here]

see (5.13)

Table 1: All critical points of D = 4 N = 8 dyonically-gauged-ISO(7) supergravity, that

preserve at least SU(3) and at least a certain SO(4) (see section 5) within SO(7) ⇢ ISO(7).

All points are AdS. For each point it is indicated the residual supersymmetry and bosonic

symmetry, the scalar (upper row) and vector (lower row) mass spectra with the corre-

sponding multiplicities, its stability and the reference where it was first found. See tables

3 and 4 for their location in scalar space and for their cosmological constants.

for discussions of the SU(3), G2 and an SO(4)-invariant sectors, respectively. Canonical

supersymmetric formulations are given and the critical points of the scalar potential in

these sectors are computed. Four appendices close the paper. The first two o↵er fur-

ther discussion. Appendix A contains the truncation of the N = 8 theory to yet another

subsector, with N = 1 supersymmetry and Z2 ⇥ SO(3) bosonic symmetry, relevant to

non-geometric type IIA orientifold reductions. Appendix B comments on the relation of

the SU(3)-invariant sector of the ISO(7)c theory to the N = 2 supergravity that arises

from consistent truncation of M-theory on an arbitrary Sasaki-Einstein manifold. The

last two are technical: appendix C gives some details of the construction of the N = 8

ISO(7)c theory, while appendix D gives explicit parameterisations for the supergravity

scalar kinetic matrix in the invariant sectors discussed in the main text.
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[ AG, Jafferis, Varela ’15 ] 

[ Borghese, AG, Roest ’12 ] 

[ AG, Varela ’15 ] 

[ Gallerati, Samtleben, Trigiante ’14 ] 

[ Continuous R-symmetry ] 

N = 2 & N = 3
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(2.2) and fermions (2.5). We will focus on the bosonic fields. Equations (2.13)–(2.15) can

be easily inverted to solve for the fields that enter (2.2) in terms of the tensor-hierarchy-

compatible fields. Expressing the latter through the KK ansatze (3.4)–(3.6), we obtain the

following expressions for the vectors,

Bµ
m = 1

2
g K

m
IJ Aµ

IJ
,

Aµ = �µI Aµ
I
,

Aµmn = 1

4
K

IJ
mn Ãµ IJ � µI BmnAµ

I
,

Bµm = �g
�1 (@mµ

I) Ãµ I , (3.9)

two-forms,

Aµ⌫m = g
�1 (µI@mµ

J)
⇣
Bµ⌫ J

I +A[µ
IK

Ã⌫]KJ +A[µ
I
Ã⌫]J

⌘
,

Bµ⌫ = �µI
�
Bµ⌫

I +A[µ
IJ
Ã⌫]J

�
, (3.10)

and three-form,

Aµ⌫⇢ = µIµJ

⇣
Cµ⌫⇢

IJ + 3A[µ
I
B⌫⇢]

J +A[µ
IK

A⌫
JL

Ã⇢]KL +A[µ
I
A⌫

JK
Ã⇢]K

⌘
. (3.11)

In these expressions we have again dropped the labels (x, y) on the left-hand-sides and (x)

and (y) on the right-hand-sides. In order to simplify them, we have used some tensorial

identities on S
6, including (E.3), (E.5). Now, bringing (3.3) and (3.9)–(3.11) to (2.2)

and performing some further simplifications of the same type, we finally obtain the full

non-linear embedding of ISO(7) supergravity into type IIA:

dŝ
2

10 = ��1
ds

2

4 + gmnDy
m
Dy

n
,

Â(3) = µIµJ
�
C
IJ +A

I
^ B

J + 1

6
A

IK
^A

JL
^ ÃKL + 1

6
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I
^A

JK
^ ÃK

�

+ g
�1

�
BJ

I + 1

2
A

IK
^ ÃKJ + 1

2
A

I
^ ÃJ

�
^ µIDµ

J + 1

2
g
�2
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I
^Dµ

J

�
1

2
µI BmnA

I
^Dy

m
^Dy

n + 1

6
AmnpDy

m
^Dy

n
^Dy

p
,

B̂(2) = �µI
�
B
I + 1

2
A

IJ
^ ÃJ

�
� g

�1
ÃI ^Dµ

I + 1

2
BmnDy

m
^Dy

n
,

Â(1) = �µI A
I +AmDy

m
. (3.12)

Here, we have defined the covariant derivatives

Dy
m

⌘ dy
m + 1

2
g K
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IJ A

IJ
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I
⌘ dµ

I
� gA

IJ
µJ , (3.13)

which feature only the vectors AIJ that gauge SO(7) electrically. The expressions for dŝ2
10
,

B̂(2) and Â1 have already appeared in [19]. The expression for the Ramond-Ramond three-

form Â(3) appears here for the first time. Here we have also provided a detailed derivation

of these formulae, and will show their consistency in sections 3.3 and 3.4. Although the

KK ansatze (3.4)–(3.6) relate linearly the tensor-hierarchy-compatible IIA fields (2.24) to
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and (y) on the right-hand-sides. In order to simplify them, we have used some tensorial

identities on S
6, including (E.3), (E.5). Now, bringing (3.3) and (3.9)–(3.11) to (2.2)

and performing some further simplifications of the same type, we finally obtain the full

non-linear embedding of ISO(7) supergravity into type IIA:

dŝ
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B̂(2) and Â1 have already appeared in [19]. The expression for the Ramond-Ramond three-

form Â(3) appears here for the first time. Here we have also provided a detailed derivation

of these formulae, and will show their consistency in sections 3.3 and 3.4. Although the

KK ansatze (3.4)–(3.6) relate linearly the tensor-hierarchy-compatible IIA fields (2.24) to
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10D :  ISO(7)c  into type IIA supergravity [ AG, Varela ’15 ] 
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 solution of massive type IIA

dŝ210 = L2

�
3 + cos 2↵

� 1
2

�
5 + cos 2↵

�� 1
8

h
ds2(AdS4) +

3

2
d↵2 +

6 sin2 ↵

3 + cos 2↵
ds2(CP2) +

9 sin2 ↵

5 + cos 2↵
⌘2

i
,

e�̂ = e�0

�
5 + cos 2↵

�3/4

3 + cos 2↵
, Ĥ(3) = 24

p
2 L2 e

1
2�0

sin3 ↵
�
3 + cos 2↵

�2 J ^ d↵ ,

L�1 e
3
4�0 F̂(2) = �4

p
6

sin2 ↵ cos↵�
3 + cos 2↵

��
5 + cos 2↵

� J � 3
p
6

�
3� cos 2↵

�
�
5 + cos 2↵

�2 sin↵ d↵ ^ ⌘ ,

L�3 e
1
4�0 F̂(4) = 6vol4

+12
p
3

7 + 3 cos 2↵
�
3 + cos 2↵

�2 sin4 ↵ volCP2 + 18
p
3

(9 + cos 2↵) sin3 ↵ cos↵�
3 + cos 2↵

��
5 + cos 2↵

� J ^ d↵ ^ ⌘ ,

Maximal gauged supergravity in four dimensions often admits continuous or discrete

symplectic deformations that respect N = 8 supersymmetry and the gauge group [1, 2].

The simplest type of deformation introduces a dependence on a dimensionless parameter c

in the gauging-dependent couplings of the theory. The covariant derivatives, for example,

acquire a new coupling to the magnetic vectors proportional to c ,

D = d� g (A⇤ � c Ã⇤) , (1.1)

thus leading to a dyonic gauging. The role of this parameter, in a passive picture, is to tune

the electric/magnetic symplectic frame prior to introducing the gauging. In the ungauged

limit, c can be set to zero without loss of generality by a symplectic transformation.

At finite gauge coupling g, however, electric/magnetic duality is broken and the theory

typically becomes sensitive to the symplectic frame specified by c. Various aspects of this

deformation for di↵erent gauge groups have now been studied, including its e↵ect on the

vacuum structure [1, 3, 4, 5, 6], on domain-wall [7, 8, 9] and black hole solutions [10, 11, 12],

or on inflationary models [13, 14].

An immediate question is whether these N = 8 dyonic gaugings descend from higher

dimensions. This was recently answered positively when the gauge group is chosen to be

ISO(7)c ⌘ CSO(7, 0, 1)c ⌘ SO(7) n R7
c [15]. Here and often in the following, we have

followed the notation of [1] and have sticked in a subscript c to denote that ISO(7) (more

precisely, only its seven translations) is gauged dyonically. In [15, 16] we showed that

D = 4 N = 8 ISO(7)-dyonically-gauged supergravity arises as a consistent truncation of

massive type IIA supergravity [17] on the six-sphere, with the magnetic coupling constant

m ⌘ gc identified upon reduction with the Romans mass, F̂(0) = m. All solutions of the

D = 4 theory uplift to solutions of massive type IIA by the consistency of the truncation.

In particular, its vacua (all known ones are AdS) give rise to AdS4 backgrounds of massive

type IIA string theory. Quantitative evidence was also given in [15] that these AdS4 vacua

are dual to the simplest type of Chern-Simons theories with a single gauge group and

adjoint matter [18]. The answer to the question of the higher-dimensional origin of these

dyonic gaugings is of course gauge group dependent. Arguments have been recently given

[19] against an M-theory origin of the dyonic deformation [1] of the SO(8) gauging [20].

2

L2 ⌘ 2�
5
8 3�1 g�2 c

1
12 e�0 ⌘ 2

1
4 c�

5
6

•                                                .I?4�UTNSY�TK�YMJ�6?"�)�c�YMJTWC�
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[ AG, Jafferis, Varela ’15 ] 

N = 2 & SU(3)F ⇥U(1) 
<latexit sha1_base64="dkoC3ZPCjr7jeJhSa/buaT2pGgA="></latexit>

N = 2
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               solution of massive type IIA
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+g−2∆1∆
−1
3 cos2 α ds̃2(S2) + g−2e−ϕdα2 + g−2∆−1

1 sin2 α ds̃2(S3)
]

,

eφ̂= e
11
4 ϕ∆3/4

1 ∆−1/2
3 ,

F̂(4) =
[

g
(

4 eϕ + e2ϕ−φ
)

cos2 α+
(

3eϕ + 2eφ
)

sin2 α
]

vol4 + g−1 sinα cosα dα ∧ ∗
(

dφ− dϕ
)

Ĥ(3) = F̂(2) = 0 , (4.2)

with ∆1, ∆3 given by (3.4) with χ = ρ = 0. In this sector, the fibration of S2 over I × S3

also trivialises, Ai = 0. Accordingly, the symmetry preserved by the configuration (4.2) is

the SO(3)′×SO(4)′ subgroup of SO(7) defined in (2.1), with SO(3)′ and SO(4)′ respectively

acting on the S2 and the S3. By using the D = 4 duality hierarchy (2.10), the consistent

embedding (4.2) becomes expressed in terms of independent four-dimensional degrees of

freedom only: the dilatons and their derivatives, and the metric, explicitly and through

the Hodge dual.

5 N = 3 SO(4)–invariant AdS4 solution of massive type IIA

By the consistency of the embedding, the ten-dimensional metric and dilaton in (3.5), along

with the field strengths that follow from the potentials given in that equation, satisfy the
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All the comments made in section 3 for the generic solution away from the G2-locus

apply to the specific N = 3 solution (5.1). The internal metric and supergravity forms

extend smoothly on S6. Locally, the solution can be regarded as a (trivial) S2 bundle

over S3 foliated by α or, alternatively, as the warped generalisation of the twistor fibration

discussed in section 3.2. The angle α has range (3.13), µ̃i parametrise S2 via (3.1) and

ρi are the right-invariant Maurer-Cartan one-forms on S3, subject to (3.2). The solution

displays a cohomogeneity-one isometry group SO(4) ≡ SO(3)d×SO(3)R, where SO(3)d and

SO(3)R respectively act on the S2 fibers and the S3 base. The solution can be generalised

by replacing S3 with the cyclic Lens space S3/Zp, a generalisation that introduces orbifold

singularities. The N = 3 supersymmetry of the solution is shown in the next section.

6 Supersymmetry of the N = 3 solution

The gravitini of the D = 4 N = 8 ISO(7) supergravity lie in the spinor representation of

SO(7). Under (2.1), this branches as4

8
SO(3)′×SO(3)L×SO(3)R−→ (2,2,1) + (2,1,2)

SO(3)d×SO(3)R−→ (1,1) + (3,1) + (2,2) . (6.1)

At the N = 1 G2–invariant AdS critical point, only the (1,1) gravitino remains massless,

while all others pick up masses [24]. The full symmetry of this solution within the D = 4

and the right-invariant forms ρi are also useful for this comparison. Note, however, that our expressions

for the N = 3 solution follow directly from the uplifting formulae (3.5) for the dynamical SO(4)–invariant

sector of N = 8 ISO(7) supergravity, which were not given in [8].
4More precisely, here and below we refer to the Spin groups, SU(2)′, SU(2)L, SU(3)R and SU(2)d.
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4φ0 Â(1) =

√
2
sin2 α cosα

3 + cos 2α
µ̃i ρ

i . (5.3)

All the comments made in section 3 for the generic solution away from the G2-locus

apply to the specific N = 3 solution (5.1). The internal metric and supergravity forms

extend smoothly on S6. Locally, the solution can be regarded as a (trivial) S2 bundle

over S3 foliated by α or, alternatively, as the warped generalisation of the twistor fibration

discussed in section 3.2. The angle α has range (3.13), µ̃i parametrise S2 via (3.1) and

ρi are the right-invariant Maurer-Cartan one-forms on S3, subject to (3.2). The solution

displays a cohomogeneity-one isometry group SO(4) ≡ SO(3)d×SO(3)R, where SO(3)d and

SO(3)R respectively act on the S2 fibers and the S3 base. The solution can be generalised

by replacing S3 with the cyclic Lens space S3/Zp, a generalisation that introduces orbifold

singularities. The N = 3 supersymmetry of the solution is shown in the next section.

6 Supersymmetry of the N = 3 solution

The gravitini of the D = 4 N = 8 ISO(7) supergravity lie in the spinor representation of

SO(7). Under (2.1), this branches as4

8
SO(3)′×SO(3)L×SO(3)R−→ (2,2,1) + (2,1,2)

SO(3)d×SO(3)R−→ (1,1) + (3,1) + (2,2) . (6.1)

At the N = 1 G2–invariant AdS critical point, only the (1,1) gravitino remains massless,

while all others pick up masses [24]. The full symmetry of this solution within the D = 4

and the right-invariant forms ρi are also useful for this comparison. Note, however, that our expressions

for the N = 3 solution follow directly from the uplifting formulae (3.5) for the dynamical SO(4)–invariant

sector of N = 8 ISO(7) supergravity, which were not given in [8].
4More precisely, here and below we refer to the Spin groups, SU(2)′, SU(2)L, SU(3)R and SU(2)d.

16

0  ↵  ⇡/2
<latexit sha1_base64="41bEC+GvcmbcqESA0Hrp19KFwxA=">AAACAXicbZDLSsNAFIYnXmu9Rd0IbgaL4Kom9bosuHFZwV6gCeVkOmmHTpJxZiKUUDe+ihsXirj1Ldz5Nk7bLLT1h4GP/5zDmfMHgjOlHefbWlhcWl5ZLawV1zc2t7btnd2GSlJJaJ0kPJGtABTlLKZ1zTSnLSEpRAGnzWBwPa43H6hULInv9FBQP4JezEJGQBurY+872OP0HnvARR9yFuyk0rFLTtmZCM+Dm0MJ5ap17C+vm5A0orEmHJRqu47QfgZSM8LpqOiligogA+jRtsEYIqr8bHLBCB8Zp4vDRJoXazxxf09kECk1jALTGYHuq9na2Pyv1k51eOVnLBappjGZLgpTjnWCx3HgLpOUaD40AEQy81dM+iCBaBNa0YTgzp48D41K2T0tn9+elaoXeRwFdIAO0TFy0SWqohtUQ3VE0CN6Rq/ozXqyXqx362PaumDlM3voj6zPH0sYlXo=</latexit>

[ Pang, Rong ’15 ]    
[ also De Luca et al ’18 ] 

L2 ⌘ 2�
31
12 3

3
8 g�2c

1
12

<latexit sha1_base64="cY3g0QsapKlQ2b696QYis3uLAsY="></latexit>

e�0 ⌘ 2�
1
6 3

1
4 c�

5
6

<latexit sha1_base64="BK6At2SrtiVMNbPkMhAonZrXdw8=">AAACLnicbVDLSgMxFM3UV62vUZdugkVwY5npS5cFEVwqWC10asmkd2ww8zDJFEqYL3Ljr+hCUBG3foZpraLVA4Fzzz2Xm3v8hDOpHOfJys3Mzs0v5BcLS8srq2v2+sa5jFNBoUljHouWTyRwFkFTMcWhlQggoc/hwr8+HPUvBiAki6MzNUygE5KriAWMEmWkrn0El9pL+qyrnSzDHtykbIDLl3rPCwSh2s103egVY/qqq6am34ba2NC1i07JGQP/Je6EFNEEJ137wevFNA0hUpQTKduuk6iOJkIxyiEreKmEhNBrcgVtQyMSguzo8bkZ3jFKDwexMC9SeKz+nNAklHIY+sYZEtWX072R+F+vnargoKNZlKQKIvq5KEg5VjEeZYd7TABVfGgIoYKZv2LaJyYGZRIumBDc6ZP/kvNyya2UaqfVYqM+iSOPttA22kUu2kcNdIxOUBNRdIvu0TN6se6sR+vVevu05qzJzCb6Bev9A1pwqVA=</latexit>

N = 3 & SU(2)F ⇥ SO(3)d
<latexit sha1_base64="vCjId7ubwmJ2hmJNvv9LPN/wVw4=">AAACPXicbVDLSgMxFM34rPVVdekmWJQKUmZaXxuhIIgrrWi10Cklk6ZtaOZBckcsw/yYG//BnTs3LhRx69ZMW1/VGwIn55zLzT1OILgC03wwxsYnJqemUzPp2bn5hcXM0vKl8kNJWYX6wpdVhygmuMcqwEGwaiAZcR3BrpzuYaJfXTOpuO9dQC9gdZe0Pd7ilICmGpkL2yXQoUREJ/FBEdtbycH2xhcCdgPSjc4rca6w2Yg+30dxrDXuMvVtOY1zRW1pxo1M1syb/cJ/gTUEWTSsciNzbzd9GrrMAyqIUjXLDKAeEQmcChan7VCxgNAuabOahh7Rc+tRf/sYr2umiVu+1NcD3Gd/dkTEVarnOtqZ7KpGtYT8T6uF0NqvR9wLQmAeHQxqhQKDj5MocZNLRkH0NCBUcv1XTDtEEgo68LQOwRpd+S+4LOStYn7nbDtb2h3GkUKraA3lkIX2UAkdozKqIIpu0SN6Ri/GnfFkvBpvA+uYMexZQb/KeP8A8vWtWw==</latexit>

N = 3
<latexit sha1_base64="vM6Ig059RY48xHFzyk9ByQYqWgk=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiTW10YouHElFewD2lAm00k7dDKJM5NCCf0ONy4UcevHuPNvnLRZaOuBgcM593LPHD/mTGnH+bYKK6tr6xvFzdLW9s7unr1/0FRRIgltkIhHsu1jRTkTtKGZ5rQdS4pDn9OWP7rN/NaYSsUi8agnMfVCPBAsYARrI3ndEOshwTy9n95Ue3bZqTgzoGXi5qQMOeo9+6vbj0gSUqEJx0p1XCfWXoqlZoTTaambKBpjMsID2jFU4JAqL52FnqITo/RREEnzhEYz9fdGikOlJqFvJrOQatHLxP+8TqKDay9lIk40FWR+KEg40hHKGkB9JinRfGIIJpKZrIgMscREm55KpgR38cvLpHlWcauVi4fzcu0yr6MIR3AMp+DCFdTgDurQAAJP8Ayv8GaNrRfr3fqYjxasfOcQ/sD6/AF/rZHj</latexit>

CP1
<latexit sha1_base64="3X/VfqQE0+iSBVslyVOTeRLIQoA=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiS+l4VuXFawD2hjmUwn7dDJJMxMhBryJW5cKOLWT3Hn3zhps9DWAwOHc+7lnjl+zJnSjvNtrayurW9slrbK2zu7exV7/6CtokQS2iIRj2TXx4pyJmhLM81pN5YUhz6nHX/SyP3OI5WKReJeT2PqhXgkWMAI1kYa2JV+iPXY99NGM3tI3WxgV52aMwNaJm5BqlCgObC/+sOIJCEVmnCsVM91Yu2lWGpGOM3K/UTRGJMJHtGeoQKHVHnpLHiGTowyREEkzRMazdTfGykOlZqGvpnMY6pFLxf/83qJDm68lIk40VSQ+aEg4UhHKG8BDZmkRPOpIZhIZrIiMsYSE226KpsS3MUvL5P2Wc09r13eXVTrV0UdJTiCYzgFF66hDrfQhBYQSOAZXuHNerJerHfrYz66YhU7h/AH1ucPt1iTGA==</latexit>



3D : CFT3 duals

•   3d SYM BNYM�>NRU7J�LWT@U�?A�N��+ 0?�YJWR��7J[J7�k)                super CS-matter theory !!

&I�KWJJ�JSJWLC�F�,�!��TL�Z���
HTRU@YJI�[NF�7THF7N>FYNTS���

�������������

E�?HMBFWD ’04 ]
E�4FNTYYT��&TRF>NJ77T ’09 ]
[ .4��7FKKJWN>��BFWJ7F ’15 ]

E�=J>Y@S�’07 ]   E�8FU@>YNS��CN77JYY��DFFPT[ ’09 ]�
E�7FKKJWN>�’10 ] E�7FKKJWN>��87JGFST[��=@K@��?FKIN ’11 ]
E�07T>>JY��1@RNYWJ>H@��3J>Y@HHNF��8TRFWLTI>PN ’12 ’13 ]

N � k
E�2RUFWFS��7TMS>TS��:CJW> ’99 ]

!17

LWF[NYFYNTSF7�KWJJ�JSJWLC��
HTRU@YJI�KWTR�YMJ�BFWU�KFHYTW��
NS�YMJ�RF>>N[J�66.�>T7@YNTS>,

•   Perfect matching :    3d field theory  vs  gravitations free energy 

N=2 :   [ AG, Jafferis, Varela ’15 ] 

N=3 :   [ Pang, Rong ’15 ] 

3 The gravity dual of the Gaiotto–Yin flow

A concrete supersymmetric domain-wall solution of the flow equations derived in Section 2
connects the N = 2 SU(3) ⇥ U(1) -invariant fixed point in the UV to the N = 3 SO(4)
fixed point in the IR. We will argue that this domain-wall corresponds holographically to one
of the field theory RG flows envisaged by GY in [2]. We will review the boundary and bulk
sides of the story in Sections 3.1 and 3.2, and will finally integrate the numerical domain-wall
solution in Section 3.3.

3.1 Field theory

The SCFTs of interest arise as low-energy phases of the theory defined on the worldvolume of
a stack of N planar D2-branes in R7 , namely, three-dimensional N = 8 SU(N) SYM, upon
turning on supersymmetric CS terms at level k for the SU(N) gauge fields. At su�ciently
high energies, the relevant field content thus includes 1 vector field Aµ , 7 real scalars XI ,
I = 1, . . . , 7 , corresponding to the directions transverse to the D2-branes, and 8 Majorana
fermions �A , A = 1, . . . , 8 , all of them in the adjoint of the SU(N) gauge group and in the
indicated representations of the SO(7) R-symmetry. The fields have canonical dimensions
�(XI) = 1

2
, �(Aµ) = �(�A) = 1 . The CS terms overrule the (irrelevant) Yang–Mills

contributions and dominate the low-energy physics. Additional couplings can be included
among the matter fields XI , �A that render the resulting CS-matter models superconformal.

Two such CS-matter SCFTs have N = 2 and N = 3 supersymmetry. In general, the on-
shell field content of this type of theories includes, in N = 2 language, a non-Abelian gauge
field Aµ in a vector multiplet, along with a number Nf (arbitrary for N = 2 and Nf = 2
for N = 3 ) of complex scalars Za and complex fermions �a , a = 1, . . . , Nf . These are the
on-shell components of chiral multiplets �a , and lie in a given representation of the gauge
group. For the cases at hand, we chose gauge group SU(N) and matter in the adjoint in order
to make contact with the D2-brane description at su�ciently high energies. In these cases, the
Za and �a will respectively be complexifications of XI and �A , namely, Z1 = X1 + iX2 ,
etc. At weak coupling, these SCFTs admit the on-shell Lagrangian description [1, 2]

L = tr
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iT jZc) + LW , (3.1)

where the traces are taken in the adjoint and T i are the SU(N) generators. The Yukawa
terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,
we have allowed for further interaction terms LW governed by a superpotential W . This is
a holomorphic function of Za , and arises as the lowest component of a chiral superfield W

holomorphic in �a . Explicitly, these interaction terms read
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see e.g. (A.34) of [23]. The addition of a superpotential will typically break the manifest
U(Nf ) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Nf = 2 , flavour symmetry SU(2) ⌘ SO(3)R , and quartic
superpotential [2]
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k
tr
�
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, (3.3)
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sides of the story in Sections 3.1 and 3.2, and will finally integrate the numerical domain-wall
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I = 1, . . . , 7 , corresponding to the directions transverse to the D2-branes, and 8 Majorana
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field Aµ in a vector multiplet, along with a number Nf (arbitrary for N = 2 and Nf = 2
for N = 3 ) of complex scalars Za and complex fermions �a , a = 1, . . . , Nf . These are the
on-shell components of chiral multiplets �a , and lie in a given representation of the gauge
group. For the cases at hand, we chose gauge group SU(N) and matter in the adjoint in order
to make contact with the D2-brane description at su�ciently high energies. In these cases, the
Za and �a will respectively be complexifications of XI and �A , namely, Z1 = X1 + iX2 ,
etc. At weak coupling, these SCFTs admit the on-shell Lagrangian description [1, 2]
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where the traces are taken in the adjoint and T i are the SU(N) generators. The Yukawa
terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,
we have allowed for further interaction terms LW governed by a superpotential W . This is
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see e.g. (A.34) of [23]. The addition of a superpotential will typically break the manifest
U(Nf ) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Nf = 2 , flavour symmetry SU(2) ⌘ SO(3)R , and quartic
superpotential [2]
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• RG flows are described holographically as non-AdS4 solutions in gravity

r

eφ, eϕ, −χ

r

−β

Figure 4: Plots of the scalars eφ (blue, straight line), eϕ (brown, dashed line) and −χ
(green, dotted line), as well as of the phase −β, as a function of the radial coordinate for a
solution with (c1, c2) = (1.138,−1.68) .

4.4 Non-relativistic UV asymptotics

As previously mentioned, the solutions associated with the points at the boundary of the
shaded region in Figure 1 have a non-relativistic scaling in the UV. An example of this
behaviour is given by the (blue) circle in that figure, for which the BPS solution asymptotes
a scaling solution with broken Lorentz symmetry

e2U ∼ r2 , e2(ψ−U) ∼ r , β ∼ 0 , b0 ∼ r , (4.20)

and constant scalars at large values of the radial coordinate. This corresponds to a non-
relativistic metric of the Lifshitz type with dynamical exponent z = 2. Along the boundary
line that joins the (blue) circle and the (black) rhombus from above (red line), the scaling
solution (4.20) receives some logarithmic corrections that we have not investigated in detail.

A different non-relativistic scaling in the UV occurs for solutions associated with the
points in the boundary line connecting the (blue) circle and the (black) rhombus in Figure 1
from below (brown line). At large values of the radial coordinate, the solutions approach a
behaviour of the form

e2U ∼ r1.7268 , e2(ψ−U) ∼ r1.0484 , b0 ∼ r0.50197 ,

χ ∼ r0.27325 , eφ ∼ r−0.27325 , eϕ ∼ r−0.27325 ,
(4.21)

with β ∼ −1.1597 . A solution featuring this scaling in the UV is the one associated with the
(green) square located at (c1, c2) = (1.138,−1.68) in Figure 1, which we present in Figure 4.
This solution can be written in the form of a non-relativistic metric conformal to a Lifshitz
spacetime, characterised by a dynamical exponent z = 1.86 and a hyperscaling violation
parameter θ = −0.705 .
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Holographic RG flows on the D2-brane

c1

c2

Figure 1: Plot of the two-dimensional parameter space (c1, c2) of BPS solutions (shaded area)
interpolating between the AdS2 ⇥H2 geometry in the IR and the DW4 solution in the UV.

corresponds to a very special point within a two-dimensional parameter space of configura-
tions. These solutions generically interpolate between an AdS2⇥H2 geometry in the IR and
a DW4 domain-wall geometry governed by the D2-brane in the UV (see Figure 1).

To understand how the UV geometry is dictated by the D2-brane, let us recall the form
of such a solution in massless IIA supergravity. This is given by a metric (in Einstein frame)

and a dilaton e
�̂ of the form
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In addition, there is a four-form flux F̂(4) = 5 g e� e2( �U) sinh ✓ dt ^ dr ^ d✓ ^ d� that is
electrically sourced by the D2-brane. The dependence with the radius of the di↵erent functions
is given by

e
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⇠ r
7
4 , e

2( �U)
⇠ r

7
4 and e

�
⇠ r

� 1
4 . (4.16)

The four-dimensional DW4 domain-wall description of the D2-brane in (4.16) is a solution
to the equations of the N = 2 supergravity model considered in this paper only if one sets
the Romans’ mass to zero, i.e. F̂(0) = m = 0 , and restricts the scalars to the SO(7)-invariant

sector: � = 0 and e
' = e

� . When turning on the Romans’ mass, the metric and dilaton
fields in (4.16) are no longer an exact solution of the massive IIA theory. The presence of the
Romans’ mass parameter, F̂(0) = m , necessarily forces a correction to the D2-brane solution,
but this correction is suppressed as one approaches the boundary at r ! 1 [25]. This can
be seen from the potential of the corresponding four-dimensional gauged supergravity or from
the fermion mass terms entering the supersymmetry transformations obtained upon reduction
on S6 . In both cases the Romans’ mass parameter appears dressed up with a function of the
scalars that suppresses its contribution near the boundary. In the presence of non trivial Q

charges, as it is the case in this work, a similar e↵ect occurs: the charges are dressed up with
functions of the scalars that make their induced corrections subleading near the boundary.
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of such a solution in massless IIA supergravity. This is given by a metric (in Einstein frame)
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In addition, there is a four-form flux F̂(4) = 5 g e� e2( �U) sinh ✓ dt ^ dr ^ d✓ ^ d� that is
electrically sourced by the D2-brane. The dependence with the radius of the di↵erent functions
is given by
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The four-dimensional DW4 domain-wall description of the D2-brane in (4.16) is a solution
to the equations of the N = 2 supergravity model considered in this paper only if one sets
the Romans’ mass to zero, i.e. F̂(0) = m = 0 , and restricts the scalars to the SO(7)-invariant

sector: � = 0 and e
' = e

� . When turning on the Romans’ mass, the metric and dilaton
fields in (4.16) are no longer an exact solution of the massive IIA theory. The presence of the
Romans’ mass parameter, F̂(0) = m , necessarily forces a correction to the D2-brane solution,
but this correction is suppressed as one approaches the boundary at r ! 1 [25]. This can
be seen from the potential of the corresponding four-dimensional gauged supergravity or from
the fermion mass terms entering the supersymmetry transformations obtained upon reduction
on S6 . In both cases the Romans’ mass parameter appears dressed up with a function of the
scalars that suppresses its contribution near the boundary. In the presence of non trivial Q

charges, as it is the case in this work, a similar e↵ect occurs: the charges are dressed up with
functions of the scalars that make their induced corrections subleading near the boundary.
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Figure 4: Plots of the scalars eφ (blue, straight line), eϕ (brown, dashed line) and −χ
(green, dotted line), as well as of the phase −β, as a function of the radial coordinate for a
solution with (c1, c2) = (1.138,−1.68) .

4.4 Non-relativistic UV asymptotics

As previously mentioned, the solutions associated with the points at the boundary of the
shaded region in Figure 1 have a non-relativistic scaling in the UV. An example of this
behaviour is given by the (blue) circle in that figure, for which the BPS solution asymptotes
a scaling solution with broken Lorentz symmetry

e2U ∼ r2 , e2(ψ−U) ∼ r , β ∼ 0 , b0 ∼ r , (4.20)

and constant scalars at large values of the radial coordinate. This corresponds to a non-
relativistic metric of the Lifshitz type with dynamical exponent z = 2. Along the boundary
line that joins the (blue) circle and the (black) rhombus from above (red line), the scaling
solution (4.20) receives some logarithmic corrections that we have not investigated in detail.

A different non-relativistic scaling in the UV occurs for solutions associated with the
points in the boundary line connecting the (blue) circle and the (black) rhombus in Figure 1
from below (brown line). At large values of the radial coordinate, the solutions approach a
behaviour of the form

e2U ∼ r1.7268 , e2(ψ−U) ∼ r1.0484 , b0 ∼ r0.50197 ,

χ ∼ r0.27325 , eφ ∼ r−0.27325 , eϕ ∼ r−0.27325 ,
(4.21)

with β ∼ −1.1597 . A solution featuring this scaling in the UV is the one associated with the
(green) square located at (c1, c2) = (1.138,−1.68) in Figure 1, which we present in Figure 4.
This solution can be written in the form of a non-relativistic metric conformal to a Lifshitz
spacetime, characterised by a dynamical exponent z = 1.86 and a hyperscaling violation
parameter θ = −0.705 .
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In addition, there is a four-form flux F̂(4) = 5 g eφ e2(ψ−U) dt ∧ dr ∧ dΣ2 that is electrically
sourced by the D2-brane. The leading UV dependence on the radial coordinate of the different
functions is given by

e2U ∼ r
7
4 , e2(ψ−U) ∼ r

7
4 , eφ ∼ r−

1
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The four-dimensional DW4 domain-wall description of the D2-brane in (4.16) is an exact
solution to the equations of motion in appendix A only if one sets the charges and the
Romans’ mass to zero, takes Σ2 = R2 , and restricts the scalars to the SO(7)-invariant sector:
χ = 0 and eϕ = eφ . When turning on the Romans’ mass and/or the charges and/or a
non-trivial Σ2 , the metric and dilaton fields in (4.16) are no longer an exact solution of
the theory. Their presence necessarily adds corrections to the behaviour in (4.16) which
are suppressed as one approaches the boundary at r → ∞ (see appendix B for an explicit
expansion). Taking as an example the case of the Romans’ mass, this can be understood from
the potential of the corresponding four-dimensional gauged supergravity or from the fermion
mass terms entering the supersymmetry transformations obtained upon reduction on S6 . In
both cases the Romans’ mass parameter appears dressed up with a function of the scalars
that suppresses its contribution near the boundary. A similar effect occurs in the case of
non-trivial charges: they are dressed up with functions of the scalars that make their induced
corrections subleading near the boundary.
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Holographic RG-flows on the D2-brane

All these supersymmetric AdS4 solutions of massive type IIA string theory should corre-
spond to conformal phases of the D2 brane field theory with distinct flavour symmetries and
supersymmetry. They should arise as the IR endpoints of RG flows triggered by di↵erent
symmetry- and supersymmetry-preserving deformations of N = 8 SYM caused by the Ro-
mans mass. We confirm this expectation for the N = 2 flow discussed in [11] by explicitly
constructing an N = 2 domain wall solution in D = 4 dyonic ISO(7) supergravity that inter-
polates between the N = 2, SU(3) ⇥ U(1) vacuum in the IR and the (corresponding D = 4
description of the) planar D2 brane solution in the UV. More generally, we show that there
exists an N = 1 family of flows that originate in N = 8 SYM and drive the theory towards the
N = 2, SU(3)⇥ U(1)-symmetric IR fixed point. We find a second family of N = 1 RG flows
that drive N = 8 SYM into the supersymmetric IR phase with SU(3) invariance. Both fami-
lies are bounded by a unique flow with IR endpoint into the G2-symmetric phase. Finally, we
are also able to construct two unique domain walls that interpolate between the G2 conformal
phase in the in the UV and either the N = 2, SU(3)⇥ U(1) point or the N = 1 SU(3) point
in the IR. By the generic results of [11, 14] and the specific formulae of [25], these domain
walls uplift to massive type IIA supergravity and link the corresponding AdS4 solutions. See
figure 1 for a schematic sketch of this web of domain walls. ov: Say something about the

SO(4) point and flow. In the remainder of the paper we do this and that.

D2-brane

N=1 & G2

N=1 & SU(3)

N=2 & SU(3)xU(1)

Figure 4
Figures 3 & 5

N=3 & SO(4)

Figure 1: RG flows from SYM (dotted lines) and between CFT’s (solid lines) dual to BPS
domain-wall solutions within the SU(3) and SO(4) invariant sectors of the dyonic ISO(7)-
gauged maximal supergravity.

ag: Say this somewhere at the begining: To generate all the figures in this paper, we
have set g = c = 1 without loss of generality, since all theories with c 6= 0 are equivalent to
each other and g sets the unit of length in the gravitational solution. Note however that the
position of the fixed point in scalar-space, and therefore the domain walls connecting them,
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BPS domain-wall  solutions of  the  dyonic  ISO(7)-gauged supergravity  dual  to    
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• Free energy as a function of           for the chiral fields  �a
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with (dimensionless) coe�cient locked in terms of the Chern-Simons level k . With free-field
assignments for the conformal dimensions, �(�a) ⌘ �(Za) = 1

2
, �(�a) = 1 , the superpoten-

tial (3.3) is marginal and the classical action (3.1) is manifestly scale-invariant. A more general
quartic superpotential of the type (3.3) but with a generic coupling ↵ would only preserve
N = 2 . GY argue, at weak coupling k � 1 , that this more general N = 2 ↵ -dependent
theory flows into the theory with superpotential (3.3), therefore experiencing an N = 3 su-
persymmetry enhancement at low energies [2]. The superpotential is non-renormalised and
the N = 3 theory does not have R-charge or wave function renormalisation either. For
this reason, the Lagrangian (3.1)–(3.3) can be expected to provide a good description of the
N = 3 theory also at strong ’t Hooft coupling � ⌘ N/k � 1 with k of order 1 [2]. We will
review evidence from the field theory later in this section and from supergravity in Section 3.2
that support this picture. The full symmetry of this theory is OSp(4|3) ⇥ SO(3)R . Denoting
by SO(3)d the N = 3 R-symmetry group contained in OSp(4|3) , the full global bosonic
symmetry of the N = 3 SCFT is thus SO(3)d ⇥ SO(3)R .

The N = 2 theory (3.1) with no superpotential, W = 0 , and free-field dimension as-
signments is also manifestly scale-invariant. In contrast to the N = 3 case, however, the
N = 2 chirals may undergo both R-charge and wave function renormalisation [2]. Based on
holographic evidence at strong coupling [4], we claim that the N = 2 theory with Nf = 3 ,
which we fix henceforth, and cubic superpotential

WN=2 = 1

6
✏abc tr

�
[�a, �b] �c

�
, (3.4)

is in fact also conformal. This could not possibly happen without R-charge renormalisation.
The coe�cient of (3.4) is not fixed by N = 2 supersymmetry (in particular, it is not fixed
to the Chern-Simons level k ) but is nevertheless dimensionless, consistent with conformal
invariance. Thus, the Lagrangian (3.1), (3.2) does not provide a good description of the
N = 2 theory with superpotential (3.4), and it should be replaced by the Wilsonian e↵ective
action corresponding to the CS-driven flow from N = 8 SYM. The latter may contain, for
example, a Kähler potential for the kinetic terms of the chirals. The full symmetry of this
strongly coupled N = 2 SCFT is thus OSp(4|2) ⇥ SU(3) , where the latter factor is the
flavour symmetry preserved by the (non-renomalised) superpotential (3.4). The R-symmetry
group contained in OSp(4|2) will be denoted U(1) , following the geometric conventions of
Section 5. The full global bosonic symmetry of the N = 2 SCFT is thus U(1) ⇥ SU(3) .

With the benefit of hindsight, it is possible to argue purely in field-theoretical terms that
a strongly coupled N = 2 SCFT theory with flavour SU(3) and superpotential (3.4) makes
perfect sense. The free energy F of this type of field theories on S3 can be determined
at strong coupling [24, 25] using localisation techniques [26, 24, 27]. If the SCFT has a
superpotential, then F can be computed as a function of arbitrary dimension assignments
�a for the chirals �a , a = 1, 2, 3 , subject to the sole requirement that the (exact, non-
renormalised) superpotential be marginal. For (3.4), this translates into the condition

�1 + �2 + �3 = 2 . (3.5)

The real part of the leading order free energy as a function of �a is [28]

F =
3
p

3 ⇡

20 · 21/3

h
1 +

NfX

a=1

�
1 � �a

�⇥
1 � 2 (1 � �a)

2
⇤i2/3

k1/3 N5/3 , (3.6)

with Nf = 3 . On the surface (3.5), the function (3.6) attains an extremum at

�1 = �2 = �3 = 2

3
, (3.7)
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[ Jafferis, Klebanov, Pufu, Safdi ’11 ]

[ Fluder, Sparks ’15 ] 

3 The gravity dual of the Gaiotto–Yin flow

A concrete supersymmetric domain-wall solution of the flow equations derived in Section 2
connects the N = 2 SU(3) ⇥ U(1) -invariant fixed point in the UV to the N = 3 SO(4)
fixed point in the IR. We will argue that this domain-wall corresponds holographically to one
of the field theory RG flows envisaged by GY in [2]. We will review the boundary and bulk
sides of the story in Sections 3.1 and 3.2, and will finally integrate the numerical domain-wall
solution in Section 3.3.

3.1 Field theory

The SCFTs of interest arise as low-energy phases of the theory defined on the worldvolume of
a stack of N planar D2-branes in R7 , namely, three-dimensional N = 8 SU(N) SYM, upon
turning on supersymmetric CS terms at level k for the SU(N) gauge fields. At su�ciently
high energies, the relevant field content thus includes 1 vector field Aµ , 7 real scalars XI ,
I = 1, . . . , 7 , corresponding to the directions transverse to the D2-branes, and 8 Majorana
fermions �A , A = 1, . . . , 8 , all of them in the adjoint of the SU(N) gauge group and in the
indicated representations of the SO(7) R-symmetry. The fields have canonical dimensions
�(XI) = 1

2
, �(Aµ) = �(�A) = 1 . The CS terms overrule the (irrelevant) Yang–Mills

contributions and dominate the low-energy physics. Additional couplings can be included
among the matter fields XI , �A that render the resulting CS-matter models superconformal.

Two such CS-matter SCFTs have N = 2 and N = 3 supersymmetry. In general, the on-
shell field content of this type of theories includes, in N = 2 language, a non-Abelian gauge
field Aµ in a vector multiplet, along with a number Nf (arbitrary for N = 2 and Nf = 2
for N = 3 ) of complex scalars Za and complex fermions �a , a = 1, . . . , Nf . These are the
on-shell components of chiral multiplets �a , and lie in a given representation of the gauge
group. For the cases at hand, we chose gauge group SU(N) and matter in the adjoint in order
to make contact with the D2-brane description at su�ciently high energies. In these cases, the
Za and �a will respectively be complexifications of XI and �A , namely, Z1 = X1 + iX2 ,
etc. At weak coupling, these SCFTs admit the on-shell Lagrangian description [1, 2]

L = tr
h

k

4⇡
✏µ⌫⇢

�
Aµ@A⇢ + 2

3
AµA⌫A⇢

�
+ DµZ̄a DµZa + i �̄a �

µDµ�
a

i

�
4⇡

k
tr(Z̄aTiZ

a) tr(�̄bT
i�b) �

8⇡

k
tr( ̄aT

iZa) tr(Z̄bT
i�b)

�
4⇡

k
tr(Z̄aTiZ

a) tr(Z̄bTjZ
b) tr(Z̄cT

iT jZc) + LW , (3.1)

where the traces are taken in the adjoint and T i are the SU(N) generators. The Yukawa
terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,
we have allowed for further interaction terms LW governed by a superpotential W . This is
a holomorphic function of Za , and arises as the lowest component of a chiral superfield W

holomorphic in �a . Explicitly, these interaction terms read

LW =tr

 
@W (Z)

@Za

@W (Z)

@Z̄a

+
1

2

@2W (Z)

@Za@Zb
�a�b +

1

2

@2W (Z)

@Z̄a@Z̄b

�̄a�̄b

!
, (3.2)

see e.g. (A.34) of [23]. The addition of a superpotential will typically break the manifest
U(Nf ) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Nf = 2 , flavour symmetry SU(2) ⌘ SO(3)R , and quartic
superpotential [2]

WN=3 = 2⇡

k
tr
�
[�1, �2]

�2
, (3.3)
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N = 3 & SU(2)F
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WN=2 = tr
�
[�1,�2]�3

�
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Nf = 3 chiral fields :
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• Mass deforming N = 2 & SU(3)F
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consistent with SU(3) symmetry and renormalised away from the free field values. These, and
only these, must be the dimensions of the chirals at the N = 2 fixed point [24], reproducing
the assignments of [4]. With (3.7), the free energy (3.6) evaluates to

FN=2 =
313/6⇡

40

✓
32

27

◆2/3

k1/3 N5/3 , (3.8)

thus reducing to the result of [4]. Subleading corrections to this free energy have been worked
out in [29].

Of course, the leading order free energy of the N = 3 SCFT can be computed in the
exact same way [30]. Assigning arbitrary dimensions �a to the two chirals consistent with
the marginality of the (again, exact and non-renormalised) superpotential (3.3),

�1 + �2 = 1 , (3.9)

the free energy, (3.6) with Nf = 2 , becomes extremal for the free-field values

�1 = �2 = 1

2
. (3.10)

These are now compatible with SU(2) ⌘ SO(3)R symmetry. This provides evidence that the
classical N = 3 action (3.1)–(3.3) with Nf = 2 is not renormalised at strong coupling. At
the extremum (3.10), the leading contribution of the N = 3 free energy becomes [30]

FN=3 =
313/6⇡

40
k1/3 N5/3 . (3.11)

From (3.8) and (3.11), it straightforwardly follows that

FN=2 > FN=3 . (3.12)

By the argument of [25], these two theories could thus be connected by an RG flow, with the
N = 2 SCFT in the UV and the N = 3 one in the IR. In fact, GY had previously argued
that this flow is indeed generated upon deforming the N = 2 theory by a mass term for one
of the three chirals1. Consider a deformation of the N = 2 superpotential (3.4) quadratic in,
say, the �3 superfield:

WN=2 , def = tr
�
[�1, �2] �3 + 1

2
µ (�3)2

�
. (3.13)

A mass term must always be relevant. Indeed, for the N = 2 assignment �3 = 2

3
in

(3.7), the dimension of the operator (�3)2 is 4

3
, less than the marginal dimension 2 of the

superpotential. The dimensionful parameter µ introduces a scale, conformal invariance is
lost, and the N = 2 theory plunges down an RG flow. At su�ciently low energies, the
massive field �3 is integrated out. From (3.13), the e↵ective superpotential becomes

W = 1

2µ
tr
�
[�1, �2]

�2
. (3.14)

GY argue that this N = 2 superpotential will finally end up flowing to the N = 3 super-
conformal fixed point whose superpotential has coe�cient fixed by the Chern-Simons level
(see below equation (3.3) above). At long distances, conformal invariance is restored and
supersymmetry is even enhanced.

1Here we focus on a simplified version of the model in Section 4.2 of [2] with no D6-branes, Nf = 0 there,
and consequently no fundamental matter, Qj = Q̃j = 0 there. It is this simplified flow that we dub GY after
these authors, although we will argue slightly di↵erently.
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Nf = 2 chiral fields :
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Flavour R-symmetry Flavour R-symmetry

SU(3)F ⇥ U(1) 

SU(2)F ⇥ U(1)⌧ ⇥ U(1) 
SU(2)F ⇥ SO(3)d

SU(2)F ⇥ U(1)d
SU(2)F⇥U(1)d

������������������! SU(2)F ⇥ U(1)d

UV RG flow IR

Table 4: Summary of bosonic global symmetry groups involved in the GY flow. The top lines
correspond to the full symmetry enjoyed by the fixed points, with subsequent rows giving the
explicit subgroups mentioned in the text.

It is interesting to determine the symmetry groups preserved along the GY flow. See
Table 4 for a summary and Appendix C for further details. The mass deformation in (3.13)
obviously breaks the SU(3) UV flavour to the SU(2) subgroup such that 3 ! 2 + 1 . Here
�1 , �2 are the doublet and �3 the singlet. By construction, this SU(2) is identified with the
SO(3)R flavour symmetry of the IR SCFT. In addition, the GY flow preserves an extra U(1).
This is a mixture of the U(1) (call it U(1)⌧ following again Section 5) that commutes with
SO(3)R inside SU(3) , and the UV R-symmetry U(1) . This mixing follows from a group
theory argument whose implementation is cleaner if the parameter µ in (3.13) is thought
as dimensionless. In this case, a reassignment of the dimensions of �a is needed, as in e.g.
[31, 32, 33]. Both terms in the superpotential (3.13) must now be separately requested to be
marginal. This in turn leads to a split of the constraint (3.5) as �1 + �2 = 1 and �3 = 1 .
The free energy (3.6) with Nf = 3 is now extremal under these constraints when

�1 = �2 = 1

2
, �3 = 1 , (3.15)

of course reproducing the SO(3)R –symmetric assignments (3.10) for the doublet that survives
in the IR. But by OSp(4|2) representation theory, these dimensions are also the R-charges
(with opposite sign in our conventions) preserved along the flow. The U(1) charges (3.15) only
branch appropriately from SU(3)⇥U(1) if this U(1) is strictly contained in U(1)⌧ ⇥U(1) .
This U(1) can also be shown to be contained in the SO(3)d R-symmetry of the IR (it can
thus be denoted U(1)d ). This follows by assuming that both UV, SU(3) ⇥ U(1) , and IR,
SO(3)

R
⇥SO(3)

d
, global symmetry groups are contained in SO(7), as required for both N = 2

and N = 3 theories to arise as di↵erent CS-matter phases of the D2-brane field theory. To
summarise, the global bosonic symmetry preserved by the GY flow is U(1)d ⇥SO(3)R , where
SO(3)R is flavour and U(1)d is the R-symmetry. From (3.13), the GY flow is manifestly
N = 2 like the UV theory. However, the R-symmetry U(1)d that rotates the supercharges
along the flow is di↵erent from the R-symmetry U(1) of the UV. Instead, U(1)d corresponds
to the precise mixture of UV R-symmetry U(1) and UV flavour U(1)⌧ that is contained in
the IR R-symmetry group SO(3)d (see Table 4 and Appendix C).

Finally, it is useful to elucidate the N = 2 operators that drive the GY flow at the level of
the Lagrangian. We have argued that the weak-coupling Lagrangian description (3.1) breaks
down at strong coupling. A Kähler potential might be generated, and the superpotential
interaction terms (3.2) should require modification accordingly. We may nevertheless make
naive use of (3.2) to find the schematic form for these operators. Plugging the superpotential
(3.13) into (3.2), cubic interaction terms and quadratic mass terms are generated for the
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SU(2)F ⇥U(1)d ⇢ ISO(7)
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2 Minimal gauged supergravity model

Our starting point to holographically investigate RG flows with an N = 3 and SU(2) flavour
symmetric fixed point in the IR is the half-maximal supergravity coupled to three vector
multiplets that we recently constructed in [15]. This theory describes the dynamics of the
SU(2) ⇠ SO(3)R invariant sector of the maximal ISO(7) supergravity [6]. The latter arises
upon reduction of massive IIA on S6 [4, 5].

2.1 A four-chiral sector of dyonic ISO(7) supergravity

Fortunately, the full SO(3)R -invariant model of [15] is not needed in order to construct the
solutions of interest here. The minimal setup that accommodates such solutions consists
of a subsector thereof containing the metric field gµ⌫ and four complex scalars zI with
I = 1, . . . , 4 . The dictionary between the complex scalars zI and the real fields of [15] is
given by

z1 =
b11
p

2
+ i e��1/

p
2 , z2 = �

b22
p

2
+ i e��2/

p
2 , z3 = �

b33
p

2
+ i e��3/

p
2 , (2.1)

and
z4 = �� + i e�' . (2.2)

Here, ' , �1 , �2 , �3 are proper scalars and � , b11 , b22 , b33 pseudoscalars. All other fields
in the model of [15] can be turned o↵ consistently with their equations of motion. In other
words, the sector that contains the four complex scalars (2.1), (2.2) is a consistent truncation
of the N = 4 SO(3)R -invariant sector [15] of N = 8 dyonic ISO(7) supergravity [6]. See
appendix A for an alternative derivation of this minimal eight-scalar model directly from the
full N = 8 supergravity.

This simple model can be recast as a minimal ( N = 1 ) supergravity coupled to four chiral
fields. The complex scalars zI serve as coordinates on the scalar geometry [SL(2)/SO(2)]4 ,
equipped with the Kähler potential

K = �2
3X

i=1

log[�i(zi � z̄i)] � log[�i(z4 � z̄4)] . (2.3)

Interactions are codified in a cubic holomorphic superpotential

W = 2m + 2 g
⇥
4 z1 z2 z3 +

�
z2

1 + z2

2 + z2

3

�
z4

⇤
, (2.4)

where g and m are the coupling constants of the parent N = 8 supergravity [6]. The
(bosonic) action is then of Einstein-scalar form

Sbos =

Z
d4x

p
g

✓
1

2
R � V �

1

2
K

IJ̄
@µzI @µz̄J̄

◆
, (2.5)

where K
IJ̄

= @zI@z̄J̄K is the Kähler metric on the scalar geometry

K
IJ̄

dzI dz̄J̄ = �

3X

i=1

2

(zi � z̄i)
2
dzi dz̄i �

1

(z4 � z̄4)
2
dz4 dz̄4 , (2.6)

and V = V (zI , z̄J̄) denotes the scalar potential. The latter can be readily computed from
(2.3) and (2.4) using the standard N = 1 formula

V = 8KIJ̄ @zIW @
z̄J̄

W � 12 W
2 , (2.7)

4

W = g
h
c+ 4 z1 z2 z3 +

�
z21 + z22 + z23

�
z4

i
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Table 1: Supersymmetric AdS4 solutions ordered by decreasing value of the scalar potential
VG . The first four columns show respectively the number of preserved supersymmetries in
the maximal theory, the residual gauge symmetry preserved at the AdS4 solution, the value
of the AdS4 radius, and a numeric approximation to the value of VG . The last four columns
give the position of the AdS4 solutions in field space. We have set g = m = 1 .

involving the gravitino mass term

W =
1

2
eK/2

�
WW

�1/2
, (2.8)

and the inverse Kähler metric KIJ̄ .
This N = 1 model su�ces to capture all the known supersymmetric AdS4 solutions of the

ISO(7) maximal supergravity (see Table 1). Moreover, and importantly for the purposes of
this paper, these solutions also appear as supersymmetric within the N = 1 model presented
here, thus satisfying the F-flatness conditions FI = @IW + (@IK) W = 0 that follow from
the superpotential (2.4). This fact will allow us to construct BPS domain-wall solutions that
interpolate between the supersymmetric AdS4 critical points of Table 1. These domain-walls
will describe, holographically, RG flows between the corresponding dual CFTs.

2.2 Domain-wall setup

In order to describe the three-dimensional RG flows holographically, we are interested in
gravitational configurations that preserve SO(1, 2) Lorentz symmetry. This requirement is
accommodated by a domain-wall Ansatz of the type

ds2 = e2A(⇢)⌘µ⌫dxµdx⌫ + d⇢2 , (2.9)

where ⇢ 2 R is the coordinate transverse to the domain-wall and holographically dual to
the energy scale in the field theory, ⌘µ⌫ = diag(�1, 1, 1) is the 2+1-dimensional Minkowski
metric, and A(⇢) is a function that we will refer to as the domain-wall function. This
Ansatz enjoys two reparameterisation symmetries related to shifts in the holographic radial
coordinate and re-scalings of the Minkowski coordinates

xµ
! � xµ , A ! A � log � , ⇢ ! ⇢ + ⇢s . (2.10)

The minimisation of the action (2.5) gives rise to a set of second order ordinary di↵erential
equations. However, we are interested in BPS configurations preserving various amounts of
supersymmetry. Such configurations are solutions of a set of BPS first-order di↵erential
equations

@⇢A = 2W , @⇢z
I = �4 KIJ̄ @z̄

J̄
W , (2.11)
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VG . The first four columns show respectively the number of preserved supersymmetries in
the maximal theory, the residual gauge symmetry preserved at the AdS4 solution, the value
of the AdS4 radius, and a numeric approximation to the value of VG . The last four columns
give the position of the AdS4 solutions in field space. We have set g = m = 1 .
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and the inverse Kähler metric KIJ̄ .
This N = 1 model su�ces to capture all the known supersymmetric AdS4 solutions of the

ISO(7) maximal supergravity (see Table 1). Moreover, and importantly for the purposes of
this paper, these solutions also appear as supersymmetric within the N = 1 model presented
here, thus satisfying the F-flatness conditions FI = @IW + (@IK) W = 0 that follow from
the superpotential (2.4). This fact will allow us to construct BPS domain-wall solutions that
interpolate between the supersymmetric AdS4 critical points of Table 1. These domain-walls
will describe, holographically, RG flows between the corresponding dual CFTs.

2.2 Domain-wall setup

In order to describe the three-dimensional RG flows holographically, we are interested in
gravitational configurations that preserve SO(1, 2) Lorentz symmetry. This requirement is
accommodated by a domain-wall Ansatz of the type

ds2 = e2A(⇢)⌘µ⌫dxµdx⌫ + d⇢2 , (2.9)

where ⇢ 2 R is the coordinate transverse to the domain-wall and holographically dual to
the energy scale in the field theory, ⌘µ⌫ = diag(�1, 1, 1) is the 2+1-dimensional Minkowski
metric, and A(⇢) is a function that we will refer to as the domain-wall function. This
Ansatz enjoys two reparameterisation symmetries related to shifts in the holographic radial
coordinate and re-scalings of the Minkowski coordinates

xµ
! � xµ , A ! A � log � , ⇢ ! ⇢ + ⇢s . (2.10)

The minimisation of the action (2.5) gives rise to a set of second order ordinary di↵erential
equations. However, we are interested in BPS configurations preserving various amounts of
supersymmetry. Such configurations are solutions of a set of BPS first-order di↵erential
equations
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and the inverse Kähler metric KIJ̄ .
This N = 1 model su�ces to capture all the known supersymmetric AdS4 solutions of the

ISO(7) maximal supergravity (see Table 1). Moreover, and importantly for the purposes of
this paper, these solutions also appear as supersymmetric within the N = 1 model presented
here, thus satisfying the F-flatness conditions FI = @IW + (@IK) W = 0 that follow from
the superpotential (2.4). This fact will allow us to construct BPS domain-wall solutions that
interpolate between the supersymmetric AdS4 critical points of Table 1. These domain-walls
will describe, holographically, RG flows between the corresponding dual CFTs.

2.2 Domain-wall setup

In order to describe the three-dimensional RG flows holographically, we are interested in
gravitational configurations that preserve SO(1, 2) Lorentz symmetry. This requirement is
accommodated by a domain-wall Ansatz of the type

ds2 = e2A(⇢)⌘µ⌫dxµdx⌫ + d⇢2 , (2.9)

where ⇢ 2 R is the coordinate transverse to the domain-wall and holographically dual to
the energy scale in the field theory, ⌘µ⌫ = diag(�1, 1, 1) is the 2+1-dimensional Minkowski
metric, and A(⇢) is a function that we will refer to as the domain-wall function. This
Ansatz enjoys two reparameterisation symmetries related to shifts in the holographic radial
coordinate and re-scalings of the Minkowski coordinates

xµ
! � xµ , A ! A � log � , ⇢ ! ⇢ + ⇢s . (2.10)

The minimisation of the action (2.5) gives rise to a set of second order ordinary di↵erential
equations. However, we are interested in BPS configurations preserving various amounts of
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Figure 2: Numerically integrated domain-wall with z1 = �z̄2 that interpolates between AdS4

solutions with SU(3) ⇥ U(1) symmetry in the UV (brown square) and SO(4) symmetry in
the IR (purple circle). This domain-wall is dual to the GY flow reviewed in Section 3.1.

relation between the two IR parameters that determines the domain-wall depicted in Figure 2
uniquely. This relation reads

⇣
⇣SO(4)

2

⌘ 1

1�
p
3

' 15.54
⇣
⇣SO(4)

1

⌘ 1

�
p
3 . (3.25)

As we have just shown, there is a unique domain-wall solution that is SO(3)R -invariant
by construction and is also subject to the relations (3.19) that ensure that U(1)d -invariance
is also preserved. This domain-wall is N = 2 all along and interpolates between the N = 2
AdS critical point in the UV and N = 3 one in the IR. In Section 2.3 we discussed in detail
the allowed deformations around the IR ( ⇢ ! �1 ) as well as the their relations (3.20)
and (3.25). Here we analyse the UV ( ⇢ ! 1 ) regime of the domain-wall and perform a
characterisation of deformations around the N = 2 , SU(3) ⇥ U(1) solution.

Amongst the modes listed in Table 2, only the six that are positive correspond to regular
solutions in the UV. However, not all of them are compatible with the conditions (3.19) and
(3.23) that need to be imposed when constructing the domain-wall of Figure 2. Out of the
six positive modes, only three are compatible with these conditions. These are:

�(SU(3)⇥U(1)),3 =
2

3
, �(SU(3)⇥U(1)),4 = 1 , �(SU(3)⇥U(1)),7 =

1 +
p

17

2
. (3.26)

The fluctuations around the AdS4 UV solution are determined by the matrix of coe�cients

z(SU(3)⇥U(1))

I,a
, where a = 3, 4, 7 in the current notation, with the label specifying the position

in Table 2. It is illuminating to provide higher-order terms in the near-UV solution, corre-
sponding to the complementary modes to those listed in (3.26). These can be calculated as
3 � �(SU(3)⇥U(1)),a , and appear as free coe�cients when integrating the second order equa-
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N = 2 & SU(3)F ⇥U(1) 
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❖  Higher-dimensional origin as Type IIB on  S1 × S5 

Dyonically-gauged  [ SO(1,1) × SO(6) ] ⋉ R12  supergravity

[ Inverso, Samtleben, Trigiante ’16 ]

[ Gallerati, Samtleben, Trigiante ’14 ] 

❖  Holographic expectation:  N=4 interface  SYM theory with SO(4) symmetry & Janus solutions

❖  New AdS4 vacuum with N=4 & SO(4) symmetry

[ D’Hoker, Ester, Gutperle ’07, ’07   ( N = 4 ) ]
[ Gaiotto, Witten ’08 ] 

Question : Simple analytic holographic duals for the N = 0, 1, 2 interface SYM theories with 
SO(6) ,  SU(3)  and  SU(2) × U(1)  internal symmetry using a bottom-up approach ? 

❖  Classification of (original) interface SYM theories

[ Bak, Gutperle, Hirano ’03 ( N = 0 ) ]
[ Clark, Freedman, Karch, Schnabl ’04 ] 

N=4 & SO(4) N=2 & SU(2) × U(1) N=1 & SU(3) N=0 & SO(6)

[ D’Hoker, Ester, Gutperle ’06 ( N = 1 , 2 , 4 ) ] 

[ Assel, Tomasiello ’18 ( N = 3 , 4 ) ]  
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!�?HF7FW>�KNJ7I>��������������������������������������������������(�WJF7�>HF7FW>�������70 ! 1 (⇥6) + non-singlets

LWF[NYNSN�

•�N = 2 LF@LJI�>@UJWLWF[NYC�BNYM�                                              with�
�[JHYTW���
�MCUJWR@7YNU7JY�������������������������������������������

[ Warner ’83 ]A truncation :   SU(3)  invariant subsector

•�&W@SHFYNTS����$JYFNSNSL�YMJ�KNJ7I>�FSI�HT@U7NSL>�BMNHM�FWJ�NS[FWNFSY��>NSL7JY>��@SIJW�YMJ���������
�������������������FHYNTS�TK�F�>@GLWT@U���������������������������

!�BJHYTW�KNJ7I>�������������������������������������������������[JHYTW>��56 ! 1 (⇥4) + non-singlets

Mscalar =
SU(1, 1)

U(1)
⇥ SU(2, 1)

U(2)

(A0, A1 ; Ã0, Ã1 )
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N = 2   SUSY

(' , � , � , � , ⇣ , ⇣̃ )
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G0 ⇢ [ SO(1, 1)⇥ SO(6) ]n R12
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G = SO(1, 1)m ⇥U(1)e
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AdS4 vacua    (          )
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e2� =
1p

1� �2
, � 2 (�1, 1) , |~⇣|2 = 0
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❖  N=0 & SO(6) vacuum

 … it turns out to be perturbatively unstable !!

❖ N=1 & SU(3) vacuum

� = 0 , e�' =

p
5c

3
,
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 … the compact U(1)e symmetry broken by                   (charged)|~⇣|2 6= 0
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Next step :  Uplift to Type IIB on  R × S5  using E7(7)-EFT

!29

[ 1 free parameter ]

[ 2 free parameters ]

e2� =
6

5

1p
1� �2

, � 2 (�1, 1) , |~⇣|2 = 2
3

p
1� �2

<latexit sha1_base64="qEBPLwwlO61/us9AR/JAdxSP4NY="></latexit>

[ AG, Sterckx ’19 ] c 6= 0
<latexit sha1_base64="AZ5qpsfXWImeAB0eTA2lFsyyB78=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV3fx4AXjxHMA5IlzE56kyGzs5uZWSEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4gEVwb1/12VlbX1jc2C1vF7Z3dvf3SwWFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsO7qd98QqV5LB/NOEE/on3JQ86osVKLkY7EEXG7pbJbcWcgy8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBJsZNqTCgb0j62LZU0Qu1ns3sn5NQqPRLGypY0ZKb+nshopPU4CmxnRM1AL3pT8T+vnZrw1s+4TFKDks0XhakgJibT50mPK2RGjC2hTHF7K2EDqigzNqKiDcFbfHmZNM4r3kXl6uGyXL3O4yjAMZzAGXhwA1W4hxrUgYGAZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/EZjzg=</latexit>

[ Hohm, Samtleben ’13 ]



S-folds and (non-) supersymmetric Janus

Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.

8

with                                        and     

3.2 Metric

Setting � = 0 , the blocks of the scalar matrix relevant for the internal metric are given by

M
ij kl = e

'

h
(1� Y )

⇣
J
ij
J
kl
� 3 J [ij

J
kl]
⌘
+ 2Y �

k[i
�
j]l
i

,

M
ij
18 = 0 ,

M18 18 = e
3'

,

(3.10)

where we have defined the quantity

Y = 1 +
1

4
e
2�

|~⇣|
2
, (3.11)

and where the underlined index splits as i = (i, 7) with i = 2, ..., 6 . In the expressions (3.10)
we have made use of the SU(3)-invariant metric �ij as well as of a real (Kähler) two-form
Jij given by

J = e
2
^ e

3 + e
4
^ e

5 + e
6
^ e

7
. (3.12)

Using the uplifting formulas in [7], and setting � = 0 , we find an inverse six-dimensional
internal metric given by

G
11 = � ⇢̊

4
M18 18 = � (1 + ỹ

2
1) e

3'
,

G
1k = � ⇢̊

2
Kij

k
M

ij
18 = 0 ,

G
ij = �Kkl

i
Kmn

j
M

klmn = � e
'
Y

h
Ĝ

ij
�
�
1� 1

Y

�
K

i
K

j

i
,

(3.13)

with
Ĝ

ij = �
ij
� y

i
y
j

, Kmn
i
⌘ Ĝ

ij
@j Y[m Yn] , K

i
⌘ Kmn

i
J
mn

, (3.14)

so that

� =
e
�'

p
Y

. (3.15)

We follow the conventions in [7] so that

Yi =
n
y
i
, Y7 ⌘

�
1� y

k
y
k
� 1

2

o
. (3.16)

One then finds an internal six-dimensional metric of the form

ds
2
6 = ��1

e
�3' dỹ

2
1

1 + ỹ
2
1

+��1
e
�'

Y
�1

h
Ĝij + (Y � 1)KiKj

i
dy

i
dy

j
, (3.17)

with

Ĝij = �ij +
�ik �jl y

k
y
l

1� ym �mn y
n

(3.18)

being the round SO(6) symmetric metric on S5 and where Ki ⌘ Ĝij K
j . Performing a change

of variable of the form ỹ1 = sinh ⌘ , and using embedding coordinates Y
m on R6 , the metric

(3.20) takes the form

ds
2
6 =

p
Y e

�2'
d⌘

2 + 1p
Y

h
�ij + (Y � 1) Jki Jlj Yk

Y
l

i
dY

i
dY

j
,

=
p
Y e

�2'
d⌘

2 + 1p
Y

h
ds

2
S5

+ (Y � 1)⌘2
i
,

(3.19)

6

Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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N=0 & SO(6) N=1 & SU(3)

[ (hyperbolic) SO(1,1)-twist over S1       -STk monodromy  (k > 2) ] 

Finally, using the relation

Ĝik (⌦
�)kj dy

i
^ dy

j = �(⌦�)ijk Y
k
dY

i
^ dY

j
, (3.30)

one obtains the final expression

B↵ = 1
2 Bij

↵
dy

i
^ dy

j = �
1
2 Y

�1
✏
↵� (A�t)�

�
H�� (⌦

�)kij Y
k
dY

i
^ dY

j
, (3.31)

or, using the relations (A.1), the equivalent expression

B↵ = �Y
�1

✏
↵� (A�t)�

�
H�� ⌦

�
, (3.32)

where ⌦
�
⌘ (⌦R

,⌦
I) .

At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that
the scalar-dependent matrix in (3.28) reduces to H�� = 0 and therefore the two-form type IIB
potentials vanish, namely,

B↵ = 0 . (3.33)

At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-(2.22) one has that
the scalar-dependent matrix in (3.28) depends independently on ⇣ and ⇣̃ so the compact
U(1) symmetry associated with kU in (2.16) is broken.

3.4 Axion-dilaton

Setting � = 0 , the blocks of the scalar matrix relevant for the axion-dilaton are given by

M
�k �l = e

�'
�
kl
C

�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
�kl C�� + e

' (1� Y ) Jkl ✏�� .

(3.34)

Using the uplifting formulas in [7], and after some algebra, the SL(2) axion-dilaton matrix
takes the form

m↵� = (A�t)↵
� m�� (A

�1)�� . (3.35)

in terms of the SL(2) scalar-dependent matrix

m�� ⌘
1

Y
C�� =

1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
, (3.36)

and the SL(2) twist (A�1)↵� in (3.26).
At the non-supersymmetric vacuum with SO(6) symmetry in (2.18)-(2.19) one has that

the scalar-dependent SO(1, 1) matrix in (3.36) reduces

m�� =
1

p
1� �2

 
1 ��

�� 1

!
, (3.37)

with � 2 (�1, 1) . At the N = 1 supersymmetric vacuum with SU(3) symmetry in (2.21)-
(2.22) one has that the scalar-dependent SO(1, 1) matrix in (3.36) reads

m�� =
2

3 |~⇣|2

0

B@
1 �

q
1� 9

4 |
~⇣|4

�

q
1� 9

4 |
~⇣|4 1

1

CA , (3.38)

with |~⇣|
2
2 ( 0 , 2

3 ] , so the compact U(1) symmetry associated with kU in (2.16) is preserved
by the axion-dilaton background.
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Y =
6

5
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Y = 1
<latexit sha1_base64="rMV32KPWv809gM+vy30ygIas8M8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHiOYhyRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0c3Ubz5xbUSkHnAccz+kAyX6glG00v3jldctltyyOwNZJl5GSpCh1i1+dXoRS0KukElqTNtzY/RTqlEwySeFTmJ4TNmIDnjbUkVDbvx0duqEnFilR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfYv/VSoOEGu2HxRP5EEIzL9m/SE5gzl2BLKtLC3EjakmjK06RRsCN7iy8ukUSl7Z+XK3Xmpep3FkYcjOIZT8OACqnALNagDgwE8wyu8OdJ5cd6dj3lrzslmDuEPnM8fqguNYw==</latexit>

In (3.26) and (3.27) we used the first relation in (A.1) and (A.4) in order to exhibit the
SU(2)-structure of the five-sphere S5 when viewed as a Sasaki-Einstein manifold.

Including also the four-dimensional (external) part of the geometry, we find a simple and
non-singular AdS4 ⇥ R⇥M5 metric of the form

ds
2
10 =

1
2

p
Y e

'
ds

2
AdS4 +

p
Y e

�2'
d⌘

2 +
1p
Y

⇥
ds

2
CP

2 + Y ⌘2
⇤
, (3.28)

in terms of the function Y in (3.4) depending on the hypermultiplet scalars, and the scalar
Imz = e

�' in the vector multiplet. Our choice of undeformed frames for the metric (3.28)
reads

ds
2
AdS4

: ê
0 =

L

r
dr , ê

i =
L

r
dx

i (i = 1, 2, 3) and ⌘ij = (�1, 1, 1)

ds
2
R

: ê
4 = d⌘

ds
2
CP

2 : ê
a (a = 5, 6, 7, 8)

ds
2
S1

: ê
9 = ⌘

(3.29)

with L being the AdS4 radius at the four-dimensional solutions of section 2.3, and where ê
a

and ê
9 describe a round S5 as discussed in detail in Appendix A. The volume form of the

ten-dimensional space-time specified by the metric (3.28) is then given by

vol10 =
1
4 �

�1
ê
0 ^ ê

1 ^ ê
2 ^ ê

3 ^ ê
4 ^ ê

5 ^ ê
6 ^ ê

7 ^ ê
8 ^ ê

9
. (3.30)

Two cases are of interest for the uplift of the AdS4 solutions obtained in the previous
section:

i) For the N = 1 / SU(3) solution in (2.34)-(2.35) one has

Y =
6

5
and e

�' =

p
5

3
. (3.31)

This makes the internal metric in (3.27) conform CP2 o S1 so that a U(1)� symmetry
associated with ⌘ (see Appendix A) is preserved together with the SU(3) symmetry
of CP2 . We will see that this additional U(1)� symmetry is broken by the three-form
fluxes, thus in agreement with the residual symmetry at the AdS4 solution.

ii) For the N = 0 / SO(6) solution in (2.37)-(2.38) one has

Y = 1 and e
�' =

1p
2
. (3.32)

In this case the round metric on S5 is recovered with SO(6) symmetry in agreement
with the residual symmetry at the AdS4 solution.

B2 and C2 potentials

The SL(2)IIB doublet of two-form potentials B
↵ = (B2 , C2) can be obtained from the second

uplift formula in (3.16). An explicit computation shows that

B1j
↵ = 0 ,

Bij
↵ = �Gik Kkl

k
@jYm

✏
↵� (A�1)�� Mkl

m� ,

(3.33)
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[ AG, Sterckx ’19 ] 

B↵ = A
↵
� b

� = � 1
2 Y

�1
A

↵
� ✏

��
H�� ⌦

�
<latexit sha1_base64="GgxOv6G/+vdgKYdYFLr74rd3VTQ="></latexit>

A↵
� ⌘

 p
1 + ỹ2 ỹ

ỹ
p

1 + ỹ2

!
=

 
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

!
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[ Bak, Gutperle, Hirano ’03 ] unstable !!

No untwisted limit !!
(genuinely dyonic)

in the left hand side precisely cancels against the contribution coming from the first term in
the right hand side so that

Cijkl = Ĉijkl . (3.53)

The purely internal five-form flux then takes the form

dC = ⌦ ^ ⌦̄ ^ ⌘ = 4Y
3
4 vol5 , (3.54)

where
vol5 = Y

� 3
4 ê

5 ^ ê
6 ^ ê

7 ^ ê
8 ^ ê

9
, (3.55)

is the volume form on the deformed S5 in (3.27). Finally the gauge-invariant five-form flux
is given by

eF5 = dC + 1
2 ✏↵� B

↵ ^H
� =

✓
4 +

6 (1� Y )

Y

◆
Y

3
4 (1 + ?) vol5 , (3.56)

which breaks the U(1)U symmetry whenever Y 6= 1 . When particularised to the AdS4
solutions obtained in the previous section the result is:

i) For the N = 1 / SU(3) solution in (2.34)-(2.35) one has

eF5 = 3

✓
6

5

◆ 3
4

(1 + ?) vol5 . (3.57)

ii) For the N = 0 / SO(6) solution in (2.37)-(2.38) one has

eF5 = 4 (1 + ?) vol5 . (3.58)

Axion-dilaton and Janus

The SL(2)-valued axion-dilaton m↵� of type IIB supergravity can be obtained from the last
uplift formula in (3.16). A straightforward computation involving this time the blocks of the
M

MN scalar matrix

M
�k �l = e

�'
Y �

kl m�� + e
�' (1� Y ) Jkl

✏
��

,

M�k �l = e
'
Y �kl m�� + e

' (1� Y ) Jkl ✏�� ,

(3.59)

yields an axion-dilaton of the form

m↵� =
1

Im⌧

 
|⌧ |2 �Re⌧

�Re⌧ 1

!
= (A�t)↵

� m�� (A
�1)�� , (3.60)

with ⌧ = C0 + i e
�� . Note that the full dependence on the coordinate ⌘ is again encoded

into the matrix A
�1(⌘) in (3.34) which acts as an SO(1, 1) ⇢ SL(2)IIB twist on

m�� =
1

Y

 
e
�2� (Y 2 + Z

2) �Z

�Z e
2�

!
. (3.61)

The matrix m�� in (3.61) only depends on the four-dimensional scalars in the universal
hypermultiplet. At both the N = 1 / SU(3) and N = 0 / SO(6) solutions one has that it
reduces to

m�� =
1p

1� �2

 
1 ��

�� 1

!
with � 2 (�1, 1) , (3.62)
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❖ massive IIA :      3d CS-matter theories with simple gauge group SU(N) and adjoint matter

3 The gravity dual of the Gaiotto–Yin flow

A concrete supersymmetric domain-wall solution of the flow equations derived in Section 2
connects the N = 2 SU(3) ⇥ U(1) -invariant fixed point in the UV to the N = 3 SO(4)
fixed point in the IR. We will argue that this domain-wall corresponds holographically to one
of the field theory RG flows envisaged by GY in [2]. We will review the boundary and bulk
sides of the story in Sections 3.1 and 3.2, and will finally integrate the numerical domain-wall
solution in Section 3.3.

3.1 Field theory

The SCFTs of interest arise as low-energy phases of the theory defined on the worldvolume of
a stack of N planar D2-branes in R7 , namely, three-dimensional N = 8 SU(N) SYM, upon
turning on supersymmetric CS terms at level k for the SU(N) gauge fields. At su�ciently
high energies, the relevant field content thus includes 1 vector field Aµ , 7 real scalars XI ,
I = 1, . . . , 7 , corresponding to the directions transverse to the D2-branes, and 8 Majorana
fermions �A , A = 1, . . . , 8 , all of them in the adjoint of the SU(N) gauge group and in the
indicated representations of the SO(7) R-symmetry. The fields have canonical dimensions
�(XI) = 1

2
, �(Aµ) = �(�A) = 1 . The CS terms overrule the (irrelevant) Yang–Mills

contributions and dominate the low-energy physics. Additional couplings can be included
among the matter fields XI , �A that render the resulting CS-matter models superconformal.

Two such CS-matter SCFTs have N = 2 and N = 3 supersymmetry. In general, the on-
shell field content of this type of theories includes, in N = 2 language, a non-Abelian gauge
field Aµ in a vector multiplet, along with a number Nf (arbitrary for N = 2 and Nf = 2
for N = 3 ) of complex scalars Za and complex fermions �a , a = 1, . . . , Nf . These are the
on-shell components of chiral multiplets �a , and lie in a given representation of the gauge
group. For the cases at hand, we chose gauge group SU(N) and matter in the adjoint in order
to make contact with the D2-brane description at su�ciently high energies. In these cases, the
Za and �a will respectively be complexifications of XI and �A , namely, Z1 = X1 + iX2 ,
etc. At weak coupling, these SCFTs admit the on-shell Lagrangian description [1, 2]

L = tr
h

k

4⇡
✏µ⌫⇢

�
Aµ@A⇢ + 2

3
AµA⌫A⇢

�
+ DµZ̄a DµZa + i �̄a �

µDµ�
a

i

�
4⇡

k
tr(Z̄aTiZ

a) tr(�̄bT
i�b) �

8⇡

k
tr( ̄aT

iZa) tr(Z̄bT
i�b)

�
4⇡

k
tr(Z̄aTiZ

a) tr(Z̄bTjZ
b) tr(Z̄cT

iT jZc) + LW , (3.1)

where the traces are taken in the adjoint and T i are the SU(N) generators. The Yukawa
terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,
we have allowed for further interaction terms LW governed by a superpotential W . This is
a holomorphic function of Za , and arises as the lowest component of a chiral superfield W

holomorphic in �a . Explicitly, these interaction terms read

LW =tr

 
@W (Z)

@Za

@W (Z)

@Z̄a

+
1

2

@2W (Z)

@Za@Zb
�a�b +

1

2

@2W (Z)

@Z̄a@Z̄b

�̄a�̄b

!
, (3.2)

see e.g. (A.34) of [23]. The addition of a superpotential will typically break the manifest
U(Nf ) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Nf = 2 , flavour symmetry SU(2) ⌘ SO(3)R , and quartic
superpotential [2]

WN=3 = 2⇡

k
tr
�
[�1, �2]

�2
, (3.3)
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WN=2 = tr
�
[�1,�2]�3

�
<latexit sha1_base64="UcLQAvuGP1xwyi5aiMXRBkJJ/kg="></latexit>

N = 2 & SU(3)F
<latexit sha1_base64="6l58yGMfvfaweR5CYMNoiwQ5ffw=">AAACJHicbVDLSgMxFM3UV62vqks3waJUkDLT+gIRCoK4kor2AZ1SMmmmDc08SO6IZZiPceOvuHHhAxdu/BZn2ipavSFwcs693Jxj+YIr0PV3LTU1PTM7l57PLCwuLa9kV9dqygskZVXqCU82LKKY4C6rAgfBGr5kxLEEq1v900Sv3zCpuOdew8BnLYd0XW5zSiCm2tlj0yHQo0SEF9FJEZu7ycHm9jcCdgvSCa+qUb600w6/3mdRlGlnc3pBHxb+C4wxyKFxVdrZF7Pj0cBhLlBBlGoaug+tkEjgVLAoYwaK+YT2SZc1Y+gSh6lWODQZ4a2Y6WDbk/F1AQ/ZnxMhcZQaOFbcmVhSk1pC/qc1A7CPWiF3/QCYS0eL7EBg8HCSGO5wySiIQQwIlTz+K6Y9IgmFONckBGPS8l9QKxaMUmH/ci9XPhjHkUYbaBPlkYEOURmdowqqIoru0AN6Qs/avfaovWpvo9aUNp5ZR79K+/gEZeGi1A==</latexit>

N = 3 & SU(2)F
<latexit sha1_base64="xEZjPnj5Hb2RI0d8l4xuUX1R4UM=">AAACJHicbVDLSgMxFM3UV62vqks3waJUkDLT+gIRCoK4kor2AZ1SMmmmDc08SO6IZZiPceOvuHHhAxdu/BZn2ipavSFwcs693Jxj+YIr0PV3LTU1PTM7l57PLCwuLa9kV9dqygskZVXqCU82LKKY4C6rAgfBGr5kxLEEq1v900Sv3zCpuOdew8BnLYd0XW5zSiCm2tlj0yHQo0SEF9FJCZu7ycHm9jcCdgvSCa+qUb640w6/3mdRlGlnc3pBHxb+C4wxyKFxVdrZF7Pj0cBhLlBBlGoaug+tkEjgVLAoYwaK+YT2SZc1Y+gSh6lWODQZ4a2Y6WDbk/F1AQ/ZnxMhcZQaOFbcmVhSk1pC/qc1A7CPWiF3/QCYS0eL7EBg8HCSGO5wySiIQQwIlTz+K6Y9IgmFONckBGPS8l9QKxaMUmH/ci9XPhjHkUYbaBPlkYEOURmdowqqIoru0AN6Qs/avfaovWpvo9aUNp5ZR79K+/gEZgCi1A==</latexit>

Holographic dual 

of GY flow

[ Nf = 3 chiral fields ] [ Nf = 2 chiral fields ]

❖ Type IIB  (S-folds) :      3d interface  SYM theories with various (super) symmetries
[ -STk monodromy  (k > 2) ]

N = 0 & SO(6)
<latexit sha1_base64="dP1sfSDzQqhAoZlLhfOQ6/T5f/0=">AAACGnicbVDLSgMxFM3UV62vUZdugkWpIGXGR3UjFNy40or2AZ1SMmnahmYeJHfEMsx3uPFX3LhQxJ248W9MH4K23hDu4Zx7Sc5xQ8EVWNaXkZqZnZtfSC9mlpZXVtfM9Y2KCiJJWZkGIpA1lygmuM/KwEGwWigZ8VzBqm7vfKBX75hUPPBvoR+yhkc6Pm9zSkBTTdN2PAJdSkR8mZxZ2NnXZ3fYsAPsHqQX//Sbq1xhL0maZtbKW8PC08AegywaV6lpfjitgEYe84EKolTdtkJoxEQCp4IlGSdSLCS0RzqsrqFPPKYa8dBagnc008LtQOrrAx6yvzdi4inV91w9OTCiJrUB+Z9Wj6B92oi5H0bAfDp6qB0JDAEe5IRbXDIKoq8BoZLrv2LaJZJQ0GlmdAj2pOVpUDnI24f54+ujbLEwjiONttA2yiEbnaAiukAlVEYUPaAn9IJejUfj2Xgz3kejKWO8s4n+lPH5Dfvxn5Q=</latexit>

unstable !!

❖ �WFSJ�>JY!@U-���������!,��NSYJWKFHJ�?D:-�����������$4�K7TB>-���E�

[ see also Bobev, Gautason, Pilch, Suh, van Muiden ’19 ]

N = 1 & SU(3)
<latexit sha1_base64="51Yx2x5IO2PTbW5SK4ffQBEWBe8=">AAACGnicbVDLSgMxFM3UV62vqks3waJUkDJjfW2EghtXUtFpC51SMmnahmYeJHfEMsx3uPFX3LhQxJ248W9MpxW0ekO4h3PuJTnHDQVXYJqfRmZmdm5+IbuYW1peWV3Lr2/UVBBJymwaiEA2XKKY4D6zgYNgjVAy4rmC1d3B+Uiv3zKpeODfwDBkLY/0fN7llICm2nnL8Qj0KRHxZXJmYWdfn920YQfYHUgv/u7XdrG8lyTtfMEsmWnhv8CagAKaVLWdf3c6AY085gMVRKmmZYbQiokETgVLck6kWEjogPRYU0OfeEy14tRagnc008HdQOrrA07Znxsx8ZQaeq6eHBlR09qI/E9rRtA9bcXcDyNgPh0/1I0EhgCPcsIdLhkFMdSAUMn1XzHtE0ko6DRzOgRr2vJfUDsoWeXS0dVhoXI8iSOLttA2KiILnaAKukBVZCOK7tEjekYvxoPxZLwab+PRjDHZ2US/yvj4AgJJn5g=</latexit>
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