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The AdS/CFT correspondence

String theory on AdSD+1 is mapped to a D-dimensional conformal field theory.

Some famous examples:

AdS5 × S5 superstrings / N = 4 SU(N) super-Yang-Mills.

AdS4 × CP3 superstrings / ABJM theory.

AdS3 × S3 ×M4 superstrings / SCFT2.

In general, many parameters. Simplest case is N = 4 SYM:

(gYM , N) → (λ = g2
YMN,

1

N
)

The correspondence is natural when N →∞, but λ can be arbitrary.
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Large-N Yang-Mills theory
If ψα(x) ≡ [ψα(x)]i j are “gluons”, consider [’t Hooft]

O(x) = Cα1...αnTr
[
ψα1 · · ·ψαn

]
(x) .

propagator: ψi
j ψj

i vertex (e.g.): ψi
j ψj

k

ψi
k

We want to compute some oservables. 〈O(x)〉 = 0. (but see [de Leeuw, Kristjansen, Zarembo, . . . ])

〈OA(x1)OB(x2)〉 =
δAB

|x1 − x2|2∆A(λ,N)

= + + · · ·

≈ ≈

O(1/N2)
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The planar two-point funtion

〈OA(x1)OB(x2)〉 =
δAB

|x1 − x2|2∆A(λ)
+ O(1/N2) .

In the gauge theory we can perturbatively compute, for a generic operator OA,

∆A(λ) = ∆
(0)
A + λ∆

(1)
A + λ2∆

(2)
A + . . .

σ

τ

ΨA

ΨA

In string theory, we get the propagation of a closed-string state ΨA.

A perturbative computation from the string NLSM gives

∆A(λ) =
4
√
λ
(

∆
[0]
A +

1√
λ

∆
[1]
A +

1

λ
∆

[2]
A + . . .

)
+ O(1/N2)

String-spectrum computation depends on
1√
λ
≈
`2

string

R2
AdS

.
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Three-point functions

Three-point functions are also hugely constrained in terms of C(λ):

〈OA(x1)OB(x2)OC (x3)〉 =
1

N

CABC (λ)

|x1 − x2|2∆AB |x1 − x3|2∆AC |x2 − x3|2∆BC
+ O(1/N3)

〈OA(x1)OB(x2)OC (x3)〉 = + O(1/N3)

6 / 33



Four-point functions
Four-point functions instead depend on conformal cross-ratios

〈OA(x1)OB(x2)OC (x3)OD(x4)〉 =
1

N2

FABCD

(x12x34

x13x24
,
x14x23

x13x24
;λ
)

4∏
j<k

|xj − xk |2∆ABCD [j ,k]

+ O(1/N4)

〈OA(x1)OB(x2)OC (x3)OD(x4)〉 = + O(1/N4)
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The string non-linear sigma model (NLSM)

We want to find the energy spectrum of strings, E =

R∫
0

dσP0, where Pµ =
δS

δ∂τXµ
.

S =
√
λ

+∞∫
−∞

dτ

R∫
0

dσ
(√
|g |gµνGJK (X ) + εµνBJK (X )

)
∂µX

J∂νX
K + fermions

For our backgrounds, the action is classically integrable.

Has reparametrisation invariance (and κ-symmetry).

Needs to be gauge-fixed before studying it at quantum level.

Fix light-cone gauge so that R = R-charge, and the Hamiltonian is Hw.s. ≈ E .
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Factorised scattering for R →∞

At the quantum level, integrability means scattering factorisation. [Zamolodchikov2]

τ

σ

p1 p2

p2 p1

= =

“Yang-Baxter equation”
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Bootstrapping the S matrix

In these integrable theories, it is enough to find S(p1, p2) — a 256× 256 matrix.

[
Q(p1, p2),S(p1, p2)

]
= 0 , S S† = 1 , Ss-channel = St-channel ,

fix S(p1, p2) uniquely (almost). This fixes all scattering.

The Hamiltonian H can be computed at τ = −∞, where particles are well-separated.

H |p1, . . . pn〉 =
n∑

j=1

ω(pj) |p1, . . . pn〉

where ω(p) follows from symmetry too.
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The Bethe Ansatz

A discrete spectrum appears when R is finite. Näıvely:

1 particle:
e ipR = 1 , H = ω(p) .

2 particles:

e ip1RS(p1, p2) = 1, e ip2RS(p2, p1) = 1, H = ω(p1) + ω(p2).

.

n particles:

e ipkR
n∏

j 6=k

S(pk , pj) = 1, k = 1, . . . n, H =
n∑

j=1

ω(pj) .
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The (infamous) wrapping corrections
We assumed that the particles are “well-separated”. This is an approximation when R is finite.

[Lüscher] [Ambjørn, Janik, Kristjansen]

ba

d c

=

+
∑
w

∫
dpw e−ω(pw )R + . . .
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Again on wrapping

Perhaps a more familiar idea is that we “cut” the cylinder by inserting

1 = 1 +
∑
w

|pw 〉〈pw |+
∑
w ,w ′

|pw , pw ′〉〈pw , pw ′ |+ . . .

ba

d c
d

ba

c d

ba

c

w w= +
∑
w

〈pw | |pw〉e−ω(pw )R + . . .
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Finite-volume spectrum

The finite-volume spectrum comes from the thermodynamic of a “mirror theory” (σ ↔ τ).

[Yang2] [Zamolodchikov] [Arutyunov, Frolov] [Gromov, Kazakov, Vieira] [Bombardelli, Fioravanti, Tateo] [. . . ]

(λ = 4π2g2)

+ . . .

15 / 33
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Cutting up three-point functions

Three-point functions have strange topology. . . What is R →∞? [Basso, Komatsu, Vieira]
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The “hexagon operator”

Each patch has six edges. QFT interpretation? [Basso, Komatsu, Vieira]

≈

p
p

≈ 〈h|p〉

This is the computation of a form factor 〈h|p〉 for the non-local “hexagon” operator.
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The form-factor bootstrap

We want the form-factor 〈h|.

1 particle: 〈h|p〉 has 16 entries.

2 particle: 〈h|p1, p2〉 has 256 entries.

n particles: 〈h|p1, . . . pn〉 has 16n entries.

Symmetry plus compatibility with S(p1, p2) fixes (almost) uniquely

〈h|p〉 and 〈h|p1, p2〉

Factorisation gives arbitrary 〈h|p1, . . . pn〉.
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“Asymptotic” three-point functions

Using our knowledge of 〈h|, we may compute “aymptotic” correlators. For instance, take

O2, O3 protected (BPS), O1 generic.

•
p1

O1
•p2

•
p3

O2 O3

≈
∑

{pj}=α∪β

W(α, β) ∗

• •
α

•
β
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“Asymptotic” three-point functions

The previous recipe must be corrected due to wrapping. Simplest correction:

∑
{pj}=α∪β

W(α, β)
∑
�

∫
dp e−ω(p)R13 ∗ + · · ·

� �p p

• •α
•
β

Now we must add corrections along every cut.

21 / 33



Some examples
This gives correct results, but breaks down eventually due to wrapping.

[Eden, AS] [Basso, Komatsu, Goncalves, Vieira]

No exact method exists here!
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Four-point functions and position dependence
To tackle n-point functions, we need dependence on x1, . . . xn.

O2(x2) O3(x3)

O1(x1)

Consider an hexagon at points x1, x2, x3.

Add one excitation ∂µ with Lorentz charge.

•∂
µ

The excited object must transform as a vector

(V1;23)µ =
(x12)µ

(x12)ν(x12)ν
− (x13)µ

(x13)ν(x13)ν

This allows to associate weights to excitations on the hexagon, [Eden, AS] [Fleury, Komatsu]

• = ∂± →
x±23

x±12 x
±
13

.
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Four-point function tessellation
We need to “cut open” the four point function. Two options:

1. Cut into two three-point functions. [Basso, Coronado, Komatsu, Lam, Vieira, Zhong]

2. Cut straight into hexagons. [Eden, AS] [Fleury, Komatsu]

≈ ≈

Caveat: more cuts = more wrapping!
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Higher-genus and higher-point functions

More complicated tessellations can describe non-planar observables.

Example: torus four-point function. [Eden, Jiang, le Plat, AS] [Bargheer, Caetano, Fleury, Komatsu, Vieira]
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The AdS3/CFT2 parameter space

This setup has half of the supersymmetry of AdS5 × S5, and more parameters.

Integrability??

Can tune string tension and RR/NSNS fluxes.

Special points

large tension (sugra)

NSNS flux only (WZW model)

Integrability holds in general.

[Babichenko, Stefanski, Zarembo] [Borsato, Ohlsson-Sax, AS] [. . . ]
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The pure-NSNS points

The spectrum for the level-k WZW models is simple [Maldacena, Ooguri]

E (n1, . . . nN) ≈
√
R2 + 2k(n1 + · · ·+ nN)− R

In integrability, this is reflected in the simple S-matrix and dispersion [Hoare, Tseytlin] [Baggio, AS]

S(p1, p2) = e iΦ(p1,p2) 1 , ωµ(p) =
∣∣∣ k
2π

p + µ
∣∣∣ .

Φ(p1, p2) =


− k

2πp1 p2 p1 left-mover, p2 right-mover

+ k
2πp1 p2 p2 left-mover, p1 right-mover

0 else
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The Bethe ansatz (dirty derivation)

Φ(p1, p2) = ± k

2π
p1p2 , ωµ(p) =

∣∣∣ k
2π

p + µ
∣∣∣

We write the usual Bethe equations [Baggio, AS] [Dei, AS]

e ipjR
N∏
k 6=j

S(pk , pj) = 1 ⇒ pjR +
N∑
j

Φ(pj , pk) = 2πnj , nj ∈ Z

Introduce the notation: p+
j ≡ “left”, p−j ≡ “right”, and P± ≡

∑
p±j

p±j

(
R ∓ k

2π
P∓
)

= 2πnj

Sum over j , use that P+ + P− = 0 and introduce N+ = N−

P±
(
R +

k

2π
P±
)

= 2πN± , H ≈ E ≈
√

R2 + 2k(N+ +N−)− R
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The spectrum from integrability

The integrability construction reproduces the short-string spectrum. [Baggio, AS] [Dei, AS]

TBA can be solved exactly (!!)

Wrapping effects can be resummed explicitly.

“Spectral flow” is automatically implemented.

Can be done for AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1

Ideal testing ground for higher-point functions?
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Conclusions and outlook

Integrability can be used to compute non-protected observables.

The spectrum can be studied in detail using thermodynamic Bethe ansatz.

[Ambjørn, Janik, Kristjansen ] [Arutyunov, Frolov] [Gromov, Kazakov, Vieira] [Bombardelli, Fioravanti, Tateo]

Higher-point functions and non-planar observables can also be studied.

[Basso, Komatsu, Vieira][Eden, AS][Fleury, Komatsu] [Eden, le Plat, Jiang, AS][Bargheer, Coronado, Caetano, . . . ]

Wrapping effects need to be tamed.

[Basso, Coronado, Komatsu, Lam, Vieira, Zhong] [de Leeuw, Eden, Jiang, le Plat, Müeller, AS ]

AdS3/CFT2 may be an ideal ground to do this.

[Hoare, Tseytlin] [Lloyd, Ohlsson-Sax, Stefanski, AS] [Baggio, AS] [Dei, AS]

(On top of being hugely interesting by itself.)

[Giribet, Hull, Kleban, Porrati, Rabinovici] [Dei, Eberhardt, Gaberdiel, Gopakumar]
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