Exact Holography from Integrability

Alessandro Sfondrini

Image credits: Scientific American.

Plan

Review of the AdS/CFT setup

2 Integrability for the planar two-point function

3 Tackling three-point functions

4 Non-planar and higher-point functions

(5) AdS_3/CFT_2 as a laboratory

6 Conclusions and outlook

Plan

1 Review of the AdS/CFT setup

- 2 Integrability for the planar two-point function
- 3 Tackling three-point functions
- 4 Non-planar and higher-point functions
- \bigcirc AdS₃/CFT₂ as a laboratory
- 6 Conclusions and outlook

The AdS/CFT correspondence

String theory on AdS_{D+1} is mapped to a *D*-dimensional **conformal field theory**.

The AdS/CFT correspondence

String theory on AdS_{D+1} is mapped to a *D*-dimensional **conformal field theory**.

Some famous examples:

- $AdS_5 \times S^5$ superstrings / N = 4 SU(N) super-Yang-Mills.
- $\bullet~\text{AdS}_4 \times \text{CP}^3$ superstrings / ABJM theory.
- $\bullet \ \mathsf{AdS}_3 \times \mathsf{S}^3 \times \mathcal{M}_4 \ \text{superstrings} \ / \ \mathsf{SCFT}_2.$

The AdS/CFT correspondence

String theory on AdS_{D+1} is mapped to a *D*-dimensional **conformal field theory**.

Some famous examples:

- $AdS_5 \times S^5$ superstrings / N = 4 SU(N) super-Yang-Mills.
- $\bullet~\text{AdS}_4 \times \text{CP}^3$ superstrings / ABJM theory.
- $\bullet \ \mathsf{AdS}_3 \times \mathsf{S}^3 \times \mathcal{M}_4 \ \text{superstrings} \ / \ \mathsf{SCFT}_2.$

In general, many parameters. Simplest case is $\mathcal{N} = 4$ SYM:

$$(g_{YM}, N) \rightarrow (\lambda = g_{YM}^2 N, \frac{1}{N})$$

The correspondence is natural when $N \rightarrow \infty$, but λ can be arbitrary.

Large-*N* **Yang-Mills theory** If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}_{j}$ are "gluons", consider ['t Hooft]

$$\mathcal{O}(x) = C_{\alpha_1...\alpha_n} \operatorname{Tr} [\psi^{\alpha_1} \cdots \psi^{\alpha_n}](x).$$

Large-*N* **Yang-Mills theory** If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}_{j}$ are "gluons", consider ['t Hooft]

$$\mathcal{O}(x) = C_{\alpha_1...\alpha_n} \operatorname{Tr} [\psi^{\alpha_1} \cdots \psi^{\alpha_n}](x).$$

Large-*N* Yang-Mills theory If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}{}_{j}$ are "gluons", consider ['t Hooft] $\mathcal{O}(x) = C_{\alpha_{1}...\alpha_{n}} \operatorname{Tr} [\psi^{\alpha_{1}} \cdots \psi^{\alpha_{n}}](x)$. propagator: $\psi^{i}{}_{j}$ vertex (e.g.): $\psi^{i}{}_{i}$ $\psi^{i}{}_{i}^{k}$ $\psi_{i}{}^{k}$

Large-*N* Yang-Mills theory If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}_{j}$ are "gluons", consider ['t Hooft] $\mathcal{O}(x) = C_{\alpha_{1}...\alpha_{n}} \operatorname{Tr}[\psi^{\alpha_{1}}\cdots\psi^{\alpha_{n}}](x)$. propagator: ψ^{i}_{j} vertex (e.g.): ψ^{i}_{i} ψ^{k}_{i}

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = rac{\delta_{AB}}{|x_1 - x_2|^{2\Delta_A(\lambda,N)}}$$

Large-*N* Yang-Mills theory If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}{}_{j}$ are "gluons", consider ['t Hooft] $\mathcal{O}(x) = C_{\alpha_{1}...\alpha_{n}} \operatorname{Tr}[\psi^{\alpha_{1}}\cdots\psi^{\alpha_{n}}](x)$. $\psi_{i}{}^{k}$

propagator:
$$\psi^{i}_{j}$$
 wertex (e.g.): ψ^{i}_{j}

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = \frac{\delta_{AB}}{|x_1 - x_2|^{2\Delta_A(\lambda,N)}} = \left(\right) + \left(\right) + \cdots$$

Large-*N* Yang-Mills theory If $\psi^{\alpha}(x) \equiv [\psi^{\alpha}(x)]^{i}{}_{j}$ are "gluons", consider ['t Hooft] $\mathcal{O}(x) = C_{\alpha_{1}...\alpha_{n}} \operatorname{Tr}[\psi^{\alpha_{1}}\cdots\psi^{\alpha_{n}}](x)$. propagator: $\psi^{i}{}_{j}$ vertex (e.g.): $\psi^{i}{}_{i}$ $\psi^{i}{}_{k}$

$$\langle \mathcal{O}_{A}(x_{1})\mathcal{O}_{B}(x_{2})\rangle = \frac{\delta_{AB}}{|x_{1} - x_{2}|^{2\Delta_{A}(\lambda,N)}} = () + () + () + \cdots$$

The planar two-point funtion

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = rac{\delta_{AB}}{|x_1-x_2|^{2\Delta_A(\lambda)}} + O(1/N^2).$$

In the gauge theory we can perturbatively compute, for a generic operator \mathcal{O}_A ,

$$\Delta_{\mathcal{A}}(\lambda) = \Delta_{\mathcal{A}}^{(0)} + \lambda \Delta_{\mathcal{A}}^{(1)} + \lambda^2 \Delta_{\mathcal{A}}^{(2)} + \dots$$

The planar two-point funtion

au

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\rangle = rac{\delta_{AB}}{|x_1-x_2|^{2\Delta_A(\lambda)}} + O(1/N^2).$$

In the gauge theory we can perturbatively compute, for a generic operator \mathcal{O}_A ,

$$\Delta_{\mathcal{A}}(\lambda) = \Delta_{\mathcal{A}}^{(0)} + \lambda \Delta_{\mathcal{A}}^{(1)} + \lambda^2 \Delta_{\mathcal{A}}^{(2)} + \dots$$

A perturbative computation from the string NLSM gives

$$\Delta_{\mathcal{A}}(\lambda) = \sqrt[4]{\lambda} \left(\Delta_{\mathcal{A}}^{[0]} + rac{1}{\sqrt{\lambda}} \Delta_{\mathcal{A}}^{[1]} + rac{1}{\lambda} \Delta_{\mathcal{A}}^{[2]} + \dots
ight) + O(1/N^2)$$

String-spectrum computation depends on $\frac{1}{\sqrt{\lambda}} \approx \frac{\ell_{\text{string}}^2}{R_{\text{AdS}}^2}$.

Three-point functions

Three-point functions are also hugely constrained in terms of $C(\lambda)$:

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\mathcal{O}_C(x_3) \rangle = \frac{1}{N} \frac{\mathsf{C}_{ABC}(\lambda)}{|x_1 - x_2|^{2\Delta_{AB}}|x_1 - x_3|^{2\Delta_{AC}}|x_2 - x_3|^{2\Delta_{BC}}} + O(1/N^3)$$

$$+ O(1/N^3)$$

$$\langle \mathcal{O}_A(x_1)\mathcal{O}_B(x_2)\mathcal{O}_C(x_3)\rangle =$$

Four-point functions

Four-point functions instead depend on conformal cross-ratios

$$\langle \mathcal{O}_{A}(x_{1})\mathcal{O}_{B}(x_{2})\mathcal{O}_{C}(x_{3})\mathcal{O}_{D}(x_{4})\rangle = \frac{1}{N^{2}} \frac{\mathcal{F}_{ABCD}\left(\frac{x_{12}x_{34}}{x_{13}x_{24}}, \frac{x_{14}x_{23}}{x_{13}x_{24}}; \lambda\right)}{\prod_{j < k}^{4} |x_{j} - x_{k}|^{2\Delta_{ABCD}[j,k]}} + O(1/N^{4})$$

$$\langle \mathcal{O}_{A}(x_{1})\mathcal{O}_{B}(x_{2})\mathcal{O}_{C}(x_{3})\mathcal{O}_{D}(x_{4})\rangle = \left(\int_{\mathcal{O}_{A}(x_{1})}^{2} \mathcal{O}_{A}(x_{1})\mathcal{O}_{B}(x_{2})\mathcal{O}_{C}(x_{3})\mathcal{O}_{D}(x_{4})\rangle \right) = \left(\int_{\mathcal{O}_{A}(x_{1})}^{2} \mathcal{O}_{A}(x_{1})\mathcal{O}_{B}(x_{2})\mathcal{O}_{C}(x_{3})\mathcal{O}_{D}(x_{4})\rangle \right)$$

Plan

1 Review of the AdS/CFT setup

- 2 Integrability for the planar two-point function
- 3 Tackling three-point functions
- 4 Non-planar and higher-point functions
- \bigcirc AdS₃/CFT₂ as a laboratory
- 6 Conclusions and outlook

The string non-linear sigma model (NLSM)

We want to find the energy spectrum of strings, $E = \int_{-\infty}^{R} d\sigma P^{0}$, where $P_{\mu} = \frac{\delta S}{\delta \partial_{\tau} X^{\mu}}$.

$$S = \sqrt{\lambda} \int_{-\infty}^{+\infty} \mathrm{d}\tau \int_{0}^{R} \mathrm{d}\sigma \Big(\sqrt{|g|} g^{\mu\nu} G_{JK}(X) + \epsilon^{\mu\nu} B_{JK}(X) \Big) \partial_{\mu} X^{J} \partial_{\nu} X^{K} + \text{fermions}$$

The string non-linear sigma model (NLSM)

We want to find the energy spectrum of strings, $E = \int_{-\infty}^{K} d\sigma P^{0}$, where $P_{\mu} = \frac{\delta S}{\delta \partial_{\tau} X^{\mu}}$.

$$S = \sqrt{\lambda} \int_{-\infty}^{+\infty} d\tau \int_{0}^{R} d\sigma \Big(\sqrt{|g|} g^{\mu\nu} G_{JK}(X) + \epsilon^{\mu\nu} B_{JK}(X) \Big) \partial_{\mu} X^{J} \partial_{\nu} X^{K} + \text{fermions}$$

• For our backgrounds, the action is **classically integrable**.

The string non-linear sigma model (NLSM)

We want to find the energy spectrum of strings, $E = \int_{-\infty}^{\infty} d\sigma P^0$, where $P_{\mu} = \frac{\delta S}{\delta \partial_{\tau} X^{\mu}}$.

$$S = \sqrt{\lambda} \int_{-\infty}^{+\infty} d\tau \int_{0}^{R} d\sigma \Big(\sqrt{|g|} g^{\mu\nu} G_{JK}(X) + \epsilon^{\mu\nu} B_{JK}(X) \Big) \partial_{\mu} X^{J} \partial_{\nu} X^{K} + \text{fermions}$$

- For our backgrounds, the action is **classically integrable**.
- Has reparametrisation invariance (and κ -symmetry).
- Needs to be gauge-fixed before studying it at quantum level.
- Fix light-cone gauge so that R = R-charge, and the Hamiltonian is $H_{w.s.} \approx E$.

Bootstrapping the S matrix

In these integrable theories, it is enough to find $S(p_1, p_2)$ — a 256 × 256 matrix.

Bootstrapping the S matrix

In these integrable theories, it is enough to find $S(p_1, p_2)$ — a 256 × 256 matrix.

$$\left[\mathbf{Q}(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2), \mathbf{S}(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2) \right] = 0\,, \qquad \mathbf{S}\,\mathbf{S}^\dagger = \mathbf{1}\,, \qquad \mathbf{S}_{\text{s-channel}} = \mathbf{S}_{\text{t-channel}}\,,$$

fix $S(p_1, p_2)$ uniquely (almost). This fixes all scattering.

Bootstrapping the S matrix

In these integrable theories, it is enough to find $S(p_1, p_2)$ — a 256 × 256 matrix.

$$ig[\mathbf{Q}(\mathbf{\textit{p}}_1,\mathbf{\textit{p}}_2),\mathbf{S}(\mathbf{\textit{p}}_1,\mathbf{\textit{p}}_2) ig] = 0\,, \qquad \mathbf{S}\,\mathbf{S}^\dagger = \mathbf{1}\,, \qquad \mathbf{S}_{ ext{s-channel}} = \mathbf{S}_{ ext{t-channel}}\,,$$

fix $S(p_1, p_2)$ uniquely (almost). This fixes all scattering.

The Hamiltonian **H** can be computed at $\tau = -\infty$, where particles are well-separated.

$$\mathsf{H}\ket{p_1,\ldots p_n} = \sum_{j=1}^n \omega(p_j)\ket{p_1,\ldots p_n}$$

where $\omega(p)$ follows from symmetry too.

A **discrete spectrum** appears when *R* is finite. Naïvely:

A **discrete spectrum** appears when *R* is finite. Naïvely:

1 particle:

$$e^{ipR} = 1$$
, $H = \omega(p)$.

A **discrete spectrum** appears when *R* is finite. Naïvely:

1 particle:

$$e^{ipR} = 1$$
, $H = \omega(p)$.

2 particles:

.

$$e^{ip_1R}S(p_1,p_2)=1, \quad e^{ip_2R}S(p_2,p_1)=1, \qquad H=\omega(p_1)+\omega(p_2).$$

A **discrete spectrum** appears when *R* is finite. Naïvely:

1 particle:

$$e^{ipR} = 1$$
, $H = \omega(p)$.

2 particles:

$$e^{ip_1R}S(p_1,p_2)=1, \quad e^{ip_2R}S(p_2,p_1)=1, \qquad H=\omega(p_1)+\omega(p_2).$$

n particles:

.

$$e^{ip_kR}\prod_{j\neq k}^n S(p_k,p_j)=1, \quad k=1,\ldots n, \qquad H=\sum_{j=1}^n \omega(p_j).$$

The (infamous) wrapping corrections

We assumed that the particles are "well-separated". This is an approximation when R is finite.

[Lüscher] [Ambjørn, Janik, Kristjansen]

The (infamous) wrapping corrections

We assumed that the particles are "well-separated". This is an approximation when R is finite.

[Lüscher] [Ambjørn, Janik, Kristjansen]

The (infamous) wrapping corrections

We assumed that the particles are "well-separated". This is an approximation when R is finite.

[Lüscher] [Ambjørn, Janik, Kristjansen]

Again on wrapping

Perhaps a more familiar idea is that we "cut" the cylinder by inserting

$$\mathbf{1} = 1 + \sum_{w} |p_w\rangle \langle p_w| + \sum_{w,w'} |p_w, p_{w'}\rangle \langle p_w, p_{w'}| + \dots$$

Again on wrapping

Perhaps a more familiar idea is that we "cut" the cylinder by inserting

$$\mathbf{1} = 1 + \sum_{w} |p_{w}\rangle \langle p_{w}| + \sum_{w,w'} |p_{w}, p_{w'}\rangle \langle p_{w}, p_{w'}| + \dots$$

Finite-volume spectrum

Δ

The **finite-volume spectrum** comes from the **thermodynamic** of a "mirror theory" ($\sigma \leftrightarrow \tau$).

[Yang²] [Zamolodchikov] [Arutyunov, Frolov] [Gromov, Kazakov, Vieira] [Bombardelli, Fioravanti, Tateo] [...]

C. Marboe, D. Volin / Nuclear Physics B 899 (2015) 810-847

$$(\lambda = 4\pi^2 g^2)$$

$$= 4 + 12g^{2} - 48g^{4} + 336g^{6} + g^{8}(-2496 + 576\zeta_{3} - 1440\zeta_{5}) + g^{10}(15\,168 + 6912\zeta_{3} - 5184\zeta_{3}^{2} - 8640\zeta_{5} + 30\,240\zeta_{7}) + g^{12}(-7680 - 262\,656\zeta_{3} - 20\,736\zeta_{3}^{2} + 112\,320\zeta_{5} + 155\,520\zeta_{3}\zeta_{5} + 75\,600\zeta_{7} - 489\,888\zeta_{9}) + g^{14}(-2\,135\,040 + 5\,230\,080\zeta_{3} - 421\,632\zeta_{3}^{2} + 124\,416\zeta_{3}^{3} - 229\,248\zeta_{5} + 411\,264\zeta_{3}\zeta_{5} - 993\,600\zeta_{5}^{2} - 1\,254\,960\zeta_{7} - 1\,935\,360\zeta_{3}\zeta_{7} - 835\,488\zeta_{9} + 7\,318\,080\zeta_{11}) + \dots$$

Plan

1 Review of the AdS/CFT setup

2 Integrability for the planar two-point function

3 Tackling three-point functions

4 Non-planar and higher-point functions

 \bigcirc AdS₃/CFT₂ as a laboratory

6 Conclusions and outlook

Cutting up three-point functions

Three-point functions have strange topology...What is $R \to \infty$? [Basso, Komatsu, Vieira]

Cutting up three-point functions

Three-point functions have strange topology...What is $R \to \infty$? [Basso, Komatsu, Vieira]

The "hexagon operator"

Each patch has six edges. QFT interpretation? [Basso, Komatsu, Vieira]

The "hexagon operator"

Each patch has six edges. QFT interpretation? [Basso, Komatsu, Vieira]

The "hexagon operator"

Each patch has six edges. QFT interpretation? [Basso, Komatsu, Vieira]

This is the computation of a form factor $\langle \mathbf{h} | p \rangle$ for the non-local "hexagon" operator.

The form-factor bootstrap

We want the form-factor $\langle \mathbf{h} |$.

- 1 particle: $\langle \mathbf{h} | p \rangle$ has 16 entries.
- 2 particle: $\langle \mathbf{h} | p_1, p_2 \rangle$ has 256 entries.
- *n* particles: $\langle \mathbf{h} | p_1, \dots, p_n \rangle$ has 16^n entries.

The form-factor bootstrap

We want the form-factor $\langle \mathbf{h} |$.

- 1 particle: $\langle \mathbf{h} | p \rangle$ has 16 entries.
- 2 particle: $\langle \mathbf{h} | p_1, p_2 \rangle$ has 256 entries.
- *n* particles: $\langle \mathbf{h} | p_1, \dots, p_n \rangle$ has 16^n entries.

Symmetry plus compatibility with $S(p_1, p_2)$ fixes (almost) uniquely

 $\langle \mathbf{h} | \mathbf{p}
angle$ and $\langle \mathbf{h} | \mathbf{p}_1, \mathbf{p}_2
angle$

Factorisation gives arbitrary $\langle \mathbf{h} | p_1, \dots, p_n \rangle$.

"Asymptotic" three-point functions

Using our knowledge of $\langle \boldsymbol{h}|,$ we may compute "aymptotic" correlators. For instance, take

 $\mathcal{O}_2, \quad \mathcal{O}_3 \quad \text{protected (BPS)}, \qquad \mathcal{O}_1 \quad \text{generic.}$

"Asymptotic" three-point functions

Using our knowledge of $\langle \mathbf{h} |$, we may compute "aymptotic" correlators. For instance, take

 $\mathcal{O}_2, \mathcal{O}_3$ protected (BPS), \mathcal{O}_1 generic.

"Asymptotic" three-point functions

The previous recipe must be corrected due to wrapping. Simplest correction:

$$\sum_{\{p_j\}=\alpha\cup\beta} \mathcal{W}(\alpha,\beta) \sum_{\bullet} \int dp \, e^{-\omega(p) R_{13}} \bigvee_{\alpha} / * \bigvee_{\beta} / + \cdots$$

Now we must add corrections along every cut.

Some examples

This gives correct results, but breaks down eventually due to wrapping.

Some examples

This gives correct results, but breaks down eventually due to wrapping.

[Eden, AS] [Basso, Komatsu, Goncalves, Vieira]

Some examples

This gives correct results, but breaks down eventually due to wrapping.

[Eden, AS] [Basso, Komatsu, Goncalves, Vieira]

No exact method exists here!

Plan

Review of the AdS/CFT setup

2 Integrability for the planar two-point function

3 Tackling three-point functions

4 Non-planar and higher-point functions

 \bigcirc AdS₃/CFT₂ as a laboratory

6 Conclusions and outlook

To tackle *n*-point functions, we need dependence on $x_1, \ldots x_n$.

 $\mathcal{O}_2(x_2)$ $\mathcal{O}_3(x_3)$ $\int \mathcal{O}_1(x_1)$

Consider an hexagon at points x_1 , x_2 , x_3 .

To tackle *n*-point functions, we need dependence on $x_1, \ldots x_n$.

 $\mathcal{O}_2(x_2)$ $\mathcal{O}_3(x_3)$ $\partial^{\mu} \partial^{\mu} \partial_{\mathcal{O}_1(x_1)}$

Consider an hexagon at points x_1 , x_2 , x_3 .

Add one excitation ∂^{μ} with Lorentz charge.

To tackle *n*-point functions, we need dependence on $x_1, \ldots x_n$.

Consider an hexagon at points x_1 , x_2 , x_3 .

Add one excitation ∂^{μ} with Lorentz charge.

The excited object must transform as a vector

$$(V_{1;23})^{\mu} = rac{(x_{12})^{\mu}}{(x_{12})^{
u}(x_{12})_{
u}} - rac{(x_{13})^{\mu}}{(x_{13})^{
u}(x_{13})_{
u}}$$

To tackle *n*-point functions, we need dependence on $x_1, \ldots x_n$.

Consider an hexagon at points x_1 , x_2 , x_3 .

Add one excitation ∂^{μ} with Lorentz charge.

The excited object must transform as a vector

$$(V_{1;23})^{\mu} = rac{(x_{12})^{\mu}}{(x_{12})^{
u}(x_{12})_{
u}} - rac{(x_{13})^{\mu}}{(x_{13})^{
u}(x_{13})_{
u}}$$

This allows to associate weights to excitations on the hexagon, [Eden, AS] [Fleury, Komatsu]

• =
$$\partial_{\pm} \to \frac{x_{23}^{\pm}}{x_{12}^{\pm} x_{13}^{\pm}}$$
.

We need to "cut open" the four point function. Two options:

- 1. Cut into two three-point functions. [Basso, Coronado, Komatsu, Lam, Vieira, Zhong]
- 2. Cut straight into hexagons. [Eden, AS] [Fleury, Komatsu]

We need to "cut open" the four point function. Two options:

- 1. Cut into two three-point functions. [Basso, Coronado, Komatsu, Lam, Vieira, Zhong]
- 2. Cut straight into hexagons. [Eden, AS] [Fleury, Komatsu]

We need to "cut open" the four point function. Two options:

- 1. Cut into two three-point functions. [Basso, Coronado, Komatsu, Lam, Vieira, Zhong]
- 2. Cut straight into hexagons. [Eden, AS] [Fleury, Komatsu]

We need to "cut open" the four point function. Two options:

- 1. Cut into two three-point functions. [Basso, Coronado, Komatsu, Lam, Vieira, Zhong]
- 2. Cut straight into hexagons. [Eden, AS] [Fleury, Komatsu]

Caveat: more cuts = more wrapping!

Higher-genus and higher-point functions

More complicated tessellations can describe non-planar observables.

Example: torus four-point function. [Eden, Jiang, le Plat, AS] [Bargheer, Caetano, Fleury, Komatsu, Vieira]

Plan

Review of the AdS/CFT setup

2 Integrability for the planar two-point function

3 Tackling three-point functions

4 Non-planar and higher-point functions

 \bigcirc AdS₃/CFT₂ as a laboratory

6 Conclusions and outlook

The AdS_3/CFT_2 parameter space

This setup has half of the supersymmetry of $AdS_5 \times S^5$, and more parameters.

The AdS_3/CFT_2 parameter space

The AdS_3/CFT_2 parameter space

The pure-NSNS points

The spectrum for the level-k WZW models is simple [Maldacena, Ooguri]

$$E(n_1,\ldots,n_N)\approx \sqrt{R^2+2k(n_1+\cdots+n_N)}-R$$

The pure-NSNS points

The spectrum for the level-k WZW models is simple [Maldacena, Ooguri]

$$E(n_1,\ldots,n_N)\approx \sqrt{R^2+2k(n_1+\cdots+n_N)}-R$$

In integrability, this is reflected in the simple S-matrix and dispersion [Hoare, Tseytlin] [Baggio, AS]

$$\mathbf{S}(p_1,p_2)=e^{i\Phi(p_1,p_2)}\,\mathbf{1}\,,\qquad \omega_\mu(p)=\left|rac{k}{2\pi}p+\mu
ight|.$$

$$\Phi(p_1, p_2) = \begin{cases} -\frac{k}{2\pi}p_1 p_2 & p_1 \text{ left-mover}, p_2 \text{ right-mover} \\ +\frac{k}{2\pi}p_1 p_2 & p_2 \text{ left-mover}, p_1 \text{ right-mover} \\ 0 & \text{else} \end{cases}$$

$$\Phi(p_1,p_2)=\pmrac{k}{2\pi}p_1p_2\,,\qquad \omega_\mu(p)=\Big|rac{k}{2\pi}p+\mu\Big|$$

$$\Phi(p_1,p_2)=\pmrac{k}{2\pi}p_1p_2\,,\qquad \omega_\mu(p)=\left|rac{k}{2\pi}p+\mu
ight|$$

We write the usual Bethe equations [Baggio, AS] [Dei, AS]

$$e^{ip_jR}\prod_{k\neq j}^N S(p_k,p_j)=1 \qquad \Rightarrow \qquad p_jR+\sum_j^N \Phi(p_j,p_k)=2\pi n_j, \quad n_j\in\mathbb{Z}$$

$$\Phi(p_1,p_2)=\pmrac{k}{2\pi}p_1p_2\,,\qquad \omega_\mu(p)=\left|rac{k}{2\pi}p+\mu
ight|$$

We write the usual Bethe equations [Baggio, AS] [Dei, AS]

$$e^{ip_jR}\prod_{k
eq j}^N S(p_k,p_j)=1 \qquad \Rightarrow \qquad p_jR+\sum_j^N \Phi(p_j,p_k)=2\pi n_j, \quad n_j\in\mathbb{Z}$$

Introduce the notation: $p_j^+ \equiv$ "left", $p_j^- \equiv$ "right", and $P^{\pm} \equiv \sum p_j^{\pm}$

$$p_j^{\pm}\left(R\mp\frac{k}{2\pi}P^{\mp}\right)=2\pi n_j$$

$$\Phi(p_1,p_2)=\pmrac{k}{2\pi}p_1p_2\,,\qquad \omega_\mu(p)=\Big|rac{k}{2\pi}p+\mu\Big|$$

We write the usual Bethe equations [Baggio, AS] [Dei, AS]

$$e^{ip_jR}\prod_{k
eq j}^N S(p_k,p_j)=1 \qquad \Rightarrow \qquad p_jR+\sum_j^N \Phi(p_j,p_k)=2\pi n_j, \quad n_j\in\mathbb{Z}$$

Introduce the notation: $p_j^+ \equiv$ "left", $p_j^- \equiv$ "right", and $P^{\pm} \equiv \sum p_j^{\pm}$

$$p_j^{\pm}\left(R\mp\frac{k}{2\pi}P^{\mp}\right)=2\pi n_j$$

Sum over j, use that $P^++P^-=0$ and introduce $\mathcal{N}^+=\mathcal{N}^-$

$$P^{\pm}\Big(R+rac{k}{2\pi}P^{\pm}\Big)=2\pi\mathcal{N}^{\pm}\,,\qquad Hpprox Epprox \sqrt{R^2+2k(\mathcal{N}^++\mathcal{N}^-)}-R$$

The spectrum from integrability

The integrability construction reproduces the short-string spectrum. [Baggio, AS] [Dei, AS]

- TBA can be solved exactly (!!)
- Wrapping effects can be resummed explicitly.
- "Spectral flow" is automatically implemented.
- \bullet Can be done for $AdS_3 \times S^3 \times T^4$ and $AdS_3 \times S^3 \times S^3 \times S^1$
The spectrum from integrability

The integrability construction reproduces the short-string spectrum. [Baggio, AS] [Dei, AS]

- TBA can be solved exactly (!!)
- Wrapping effects can be resummed explicitly.
- "Spectral flow" is automatically implemented.
- \bullet Can be done for $AdS_3 \times S^3 \times T^4$ and $AdS_3 \times S^3 \times S^3 \times S^1$

Ideal testing ground for higher-point functions?

Plan

Review of the AdS/CFT setup

2 Integrability for the planar two-point function

3 Tackling three-point functions

4 Non-planar and higher-point functions

 \bigcirc AdS₃/CFT₂ as a laboratory

6 Conclusions and outlook

Conclusions and outlook

- Integrability can be used to compute non-protected observables.
- The spectrum can be studied in detail using **thermodynamic** Bethe ansatz. [Ambjørn, Janik, Kristjansen] [Arutyunov, Frolov] [Gromov, Kazakov, Vieira] [Bombardelli, Fioravanti, Tateo]
- Higher-point functions and non-planar observables can also be studied.
 [Basso, Komatsu, Vieira][Eden, AS][Fleury, Komatsu] [Eden, le Plat, Jiang, AS][Bargheer, Coronado, Caetano, ...]
- Wrapping effects need to be tamed.

[Basso, Coronado, Komatsu, Lam, Vieira, Zhong] [de Leeuw, Eden, Jiang, le Plat, Müeller, AS]

• AdS_3/CFT_2 may be an ideal ground to do this.

[Hoare, Tseytlin] [Lloyd, Ohlsson-Sax, Stefanski, AS] [Baggio, AS] [Dei, AS] (On top of being hugely interesting by itself.)

[Giribet, Hull, Kleban, Porrati, Rabinovici] [Dei, Eberhardt, Gaberdiel, Gopakumar]