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Introduction

Non-supersymmetric solutions of string theory

® have no compelling geometrical story to tell, so far
(unlike susy: generalized/exceptional geometry...)

® for AdS, have been conjectured to be unstable

o less easy to prove their existence:
unprotected from higher-curvature corrections
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Non-supersymmetric solutions of string theory

® have no compelling geometrical story to tell, so far
(unlike susy: generalized/exceptional geometry...)

® for AdS, have been conjectured to be unstable

o less easy to prove their existence:
unprotected from higher-curvature corrections

Today I'll try to address the first two issues

looking at some large classes of examples.



Plan

® Breaking supersymmetry with pure spinors

® Non-BPS AdS7 solutions

- ® perturbative: part of the KK tower
e Stability

® non-perturbative: bubbles
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U
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take @ adapted to this metric

Vo i

fluxes are determined. Bianchi > 'A S+ 2025% = O. K =-%+0.S

---------------

S($1,ZC2,ZB3,Z)

rare case where single PDE (Legramandi, AT “ro]
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A3S + %8352 =0 ds? = S™12ds3 + K(S71/2dz% 4 S1/2ds3s)

probably rich, should be studied further. Some local solutions: 73

oS =5(2)5%(x) > A3S=-S5% quasilinear; theorems exist

e S(x1,2) ‘hodograph’ transf. linearizes it:

le - aaSny > 03V + 802V =0  “Tricomi equation’

oS =kz+ S3(x) A3S; = —k? gen. Green function; analytic solution

can be made compact with O8+
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e S=kz+ Ss(xr) again produces solutions

® can we ‘reverse-engineer’ it? yes: [Legramandi, AT 19}
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Susy br eaking: keep same metric & RR fluxes; change NSNS

impose Bianchi, but not BPS [Legramandi, AT "1o]

NS+ 10282 =0 ~~ AS+1a§s2+c(c—zazS):oE

e S=kz+ Ss(xr) again produces solutions

® can we ‘reverse-engineer’ it? yes: [Legramandi, AT 19}

dp (347 9P, ) =0
di(e*A7?PRed_) = c B4 2%voly,,
di (e** ?Im®_) = e %« \(F)

® we have worked out several other classes taken or generalized from
classif. of Mink, x S? solutions

[Macpherson, T ’17; Apruzzi, Geipel, Legramandi,
Macpherson, Zagermann ’18; Legramandi, Macpherson 18}

® Why does this work?



Susy-breaking in AdS7

e All AdS7 solutions in type II: [Apruzzi, Fazzi, Rosa, AT 1

Apruzzi, Fazzi, Passias, Rota, AT ‘15;
Cremonesi, AT ’15}
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e All AdS7 solutions in type II:

1 2 Q9 a 2 a” 2
7r\/§d8 :81/_5d3Ads7+\/_a (dz +d2—20464d852

interval

& =F, ©§>  «piecewise cubic

® position of a DS8:

z = k =its D6-charge

oz € |0, NN]
NS5 flux

Susy-breaking in AdS~

[Apruzzi, Fazzi, Rosa, AT ’13
Apruzzi, Fazzi, Passias, Rota, AT ‘15;
Cremonesi, AT ’15}

b _ ol/4 5/2 (—a/é&)/*
e? = 21116215/ S —

B:TF(—Z—I— _ aa )V0152

a2 — 2acy

F2 = ( a + Troad >V0152
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D8s

smooth
endpoint



® Any AdS7 solution in ITA — consistent truncation to
‘minimal gauged 7d sugra’

[Passias, Rota, AT ’15;
Malek, Samtleben, Vall Camell ‘19}

fields: g,(w), A, X

[susy vacuum: X = 1}

uplift:
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potential
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® Any AdS7 solution in ITA — consistent truncation to
‘minimal gauged 7d sugra’

[Passias, Rota, AT ’15;
Malek, Samtleben, Vall Camell ‘19}

fields: g,(w), A, X

[susy vacuum: X = 1}

uplift:
1 120 5/2 a? 2
Lods? = 120 TR g+ X0 8 (A2 4 g ds, )
potential (—a)a)s/s
e® — 162 . 21/4,5/2 x5/4 S B=nm ( Z+ 5 35'55&&) vol g2

7I'F004d

Fy = <16gw2 + a?-zx%a) volg:

i e AdS; — AdS; x X7_4 comp. & RG flows

N |

e non-susy AdS7 solution: X° =



So we get a susy-breaking sister solution:

2
dS —)3\/ dSAdS7 \ — = (dZ + aonozdSS2> e = 2{/416271'5/2 i/%
interval

aQ
B=m (—z + 2 —Xad) vol g2

o’ 7TF()O((3&
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[Passias, Rota, AT ’15;

Malek, Samtleben, Vall Camell ‘19}

a = Iy C> « piecewise cubic
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® Can we have a 7d theory with more than one susy vacuum?

couple minimal 7d gauged sugra to SU(k)* vector multiplets  [De Luca, Gnecehi, Lo Monaco, AT i8]

e many nonabelian vacua = AdS7 vacua with different D8 configurations

e susy RG flows — Nahm equations. Agree with CFT expectations

no DS
ni DS

Q S(U(ny) x U(n,) x

)

k D6:
SU(k)
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AdS7 (in)stability

Possible instabilities:

o Ty Chy onic’ modes.  Particles with mass negative enough .(‘BF bound’)
have solutions that grow in time

® ‘Bubbles’. Via tunnel effect, bubble of true vacuum develops
and then grows classically

Supersymmetric vacua are protected against both.

But nOn‘SupersymmetriC OneS? {Bfeitenlohner, Freedman 82,
Gibbons, Hull, Warner ’83...}
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® “Tachyonic’ modes: Full KK computation is challenging.

® Spin-two masses: simple universal equation [Bachas, Estes 'ri]

p—5A+29

spectrum of ‘warped Laplacian’ 77 O (67A_2¢ \/gém”’@n)

internal metric

Universal bound: realized for 1) = a™'Y] [Passias, AT 16]
) [Apruzzi, De Luca, Gnecchi,
spherical harm. on S? Lo Monaco, AT to appear]

® supersymmetric case: ~ m® > 8[(2l +3) > 40
[in units where Lpqs = 11

® susy-breaking case: m? > 12(1 +2) > 36
—> no separation of scales proof for susy AdS7!

[notice: reasonable est. Mxx ~ f e*4 Rg can fail for solutions with O-planes}
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® Spin-zero: we can compute many masses in 7d gauged sugra

® aISO: nOnabelian DBI E:> same I'CsultS [Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appearl
potential: —4(137’(1)7’ — 2€ijk[q)ia (I)]](I)k -+ [(I)’u (I)]H(I)Z, (I)j] vacua: [(I)Z, (I)J] — eijk(bk
® supersymmetric case: [units where BF bound: m?* > —9]
m? =4(k+2)(k—1) = -8, 0, 16, 40, ... multiplicities depend on # of DS8s
® Susy_br eaking casc: [Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appearl

m? = 3(k+2)(k—2)=—-12, -9, 0, 15, 36, ...

below the BF bound!

but this —12 appears only with coincident D8s

plausible

scenario:




® Another pert. instability exists for solutions with D6s

such as the non-susy
version of the ‘teardrop’ ‘ > Dé6s

D6s seem to repel.

[Danielsson, Dibitetto, Vargas "17}
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® Another pert. instability exists for solutions with D6s

such as the non-susy
version of the ‘teardrop’ ‘ > Dé6s

D6s seem to repel.

[Danielsson, Dibitetto, Vargas "17}

another m? = —15

endpoint: D6 smeared solution?

[Blabick, Danielsson, Junghans,
Van Riet, Wrase, Zagermann 11}
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. bubble evolution: real time
time

® ‘Bubbles’.

false vacuum

true vacuum

AdS radial coord.

bubble creation: [Coleman, De Luccia ’8o}

evolution in Eucl. time [Maldacena, Michelson, Strominger ’98}

® NS5 bubble. tunnel effect: NSg gets created

non-susy case: NS5 potential “1dS radial coord:

® this is the type of process that led to the instability conjecture Frgigg‘;i e

. . \ !
e this process ‘shortens’ the region where Fjy = 0 Q —> 0



® Other possible tunnel effect:

[motivated by nonabelian potential}

2 D8s combine: one of them keeps all D6 charge, the other tunnels away

® Together these effects seem to rule everything out.

[Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appearl



Conclusions

® Steps towards procedure to break supersymmetry

in the Minkowski case [Legramandi, AT 19}

® Older method: consistent truncation. Are non-susy AdS7 stable?

® Tachyons make D8s repel each other

® Tunnel eftects probably make remaining ones unstable



