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Today I’ll try to address the first two issues 

looking at some large classes of examples.



Plan

• Breaking supersymmetry with pure spinors

• Non-BPS AdS7 solutions

• Stability • perturbative: part of the KK tower

• non-perturbative: bubbles
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probably rich, should be studied further. Some local solutions:

ds2 = S�1/2ds2Mink6 +K(S�1/2dz2 + S1/2ds2R3)

• S = kz + S3(x) �3S3 = �k2 gen. Green function; analytic solution

can be made compact with O8±

• S(x1, z)

x1 ⌘ @UV

z ⌘ @SV
@2
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UV = 0 ‘Tricomi equation’

‘hodograph’ transf. linearizes it:

• S = s(z)S3(x) �3S = �S2 quasi-linear; theorems exist
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susy breaking: keep same metric & RR fluxes; change NSNS 
impose Bianchi, but not BPS
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• Why does this work?

 



Susy-breaking in AdS7
Let us also show how the metric looks like in the coordinate z we just introduced:9
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e� = 25/4⇡5/234
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Notice that (2.25) implies ↵̈ < 0. We also have
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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• All AdS7 solutions in type II:

e� = 21/4162⇡5/2 (�↵/↵̈)3/4p
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[Apruzzi, Fazzi, Rosa, AT ’13
Apruzzi, Fazzi, Passias, Rota, AT ‘15; 

Cremonesi, AT ’15]
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• position of a D8:
z = k =its D6-charge

• z 2 [0, N ]
NS5 flux



¿HOGV� g(7)
µ� � Ai

µ� X

• Any AdS7 solution in IIA consistent truncation to 
‘minimal gauged 7d sugra’

7!

[Passias, Rota, AT ’15;
Malek, Samtleben, Vall Camell ‘19]
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The dilaton reads
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Notice that (2.25) implies ↵̈ < 0. We also have
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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So we get a susy-breaking sister solution:

[Passias, Rota, AT ’15;
Malek, Samtleben, Vall Camell ‘19]
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• Can we have a 7d theory with more than one susy vacuum? 

couple minimal 7d gauged sugra to SU(k)2 vector multiplets [De Luca, Gnecchi, Lo Monaco, AT ’18]

• many nonabelian vacua ⇠= AdS7 vacua with different D8 configurations

• susy RG flows!Nahm equations. Agree with CFT expectations

pointed out that X

i,j

C�1
ij =

1

12
(N3 � N) . (3.11)

Thus the leading term in (3.10) is given by
P

i,j C
�1
ij rirj ⇠ 1

12
k2N3; the term

P
i r

2
i =

k2(N � 1) grows less fast at large N , and the other terms even less so.

N

k

k

N

⇠ =

Figure 5: A theory that is dual to the massless solution in the holographic limit. From the

top left, anticlockwise, we show: the Young diagrams, the quiver, a sketch of the internal space

M3, and the brane configuration; cf. the general case in figures 2(c), 2(a), 3(c), 3(b). The brane

picture is shown in the version that would follow from applying the general correspondence

reviewed in section 2.2, as well as in an equivalent version, using the fact that a stack of

D8-branes on each of which only one D6 terminates is equivalent to having semi-infinite D6’s

[29]. Also, taking the general correspondence literally, one would see in the gravity solution

two D8 stacks with charges ±1, but in the holographic limit these become so small as to be

indistinguishable from a D6 and an anti-D6 stack.

We will now evaluate these terms in general. Let us start from the term

X

i,j

C�1
ij rirj , (3.12)

which will turn out to give the leading contribution, like in the example we just ex-

amined. The first thing we need is an expression for C�1. This is readily obtained by

writing C = �@@⇤; @ and @⇤ are the discrete derivative operators introduced after (2.1),

which are easy to invert in terms of partial sum operators. This gives

C�1
ij =

1

N

(
i(N � j) , i  j ,

j(N � i) , i � j .
(3.13)
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k D6:
SU(k)

n1 D8
n2 D8

S(U(n1)⇥U(n2)⇥ . . .)
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AdS7 (in)stability
Possible instabilities: 

• ‘Tachyonic’ modes.  Particles with mass negative enough (‘BF bound’)
have solutions that grow in time

• ‘Bubbles’. Via tunnel effect, bubble of true vacuum develops 
and then grows classically

Supersymmetric vacua are protected against both. 
But non-supersymmetric ones? [Breitenlohner, Freedman ’82,

Gibbons, Hull, Warner ’83…]



• ‘Tachyonic’ modes: Full KK computation is challenging.

• Spin-two masses: simple universal equation [Bachas, Estes ’11]

spectrum of ‘warped Laplacian’

— amount to a di↵erential equation for Y :6

LY = �M2Y , (3.5)

where L is second order di↵erential operator (see below). The central point of the

derivation of [17] is that �ḡµ⌫ decouples from all other perturbations of the background

solution; this is reflected in the variation of the stress-energy tensor which reads �Tµ⌫ /
tr(T ) �ḡµ⌫ , with tr(T ) being the trace of the stress-energy tensor of the background

solution. Notice that this is also true for local sources of the stress-energy tensor, such

as D-branes or O-planes.

The result of [17] was obtained in the Einstein frame to which we henceforth switch

after a rescaling

g
Einstein

= e��/2g
string

(3.6)

of the string frame metric presented in the previous section.

The analysis of the mass spectrum of hµ⌫ thus becomes an eigenvalue problem (3.5)

where L is a modified Laplacian on the internal manifold M
3

L ⌘ e�5A+2�

p
ĝ

@m
⇣
e7A�2�

p
ĝĝmn@n

⌘
, (3.7)

ĝ being the metric on M
3

.

We can reduce the eigenvalue problem to an ordinary di↵erential equation (ODE)

by expanding Y in terms of the S2 spherical harmonics:

Y =
1X

`=0

X̀

m=�`

�`/2f`,m(y)Y
m
` . (3.8)

The factor �`/2 is included as it simplifies the resulting ODE: dropping the labels ` and

m from f , the latter satisfies

Sf = ��w(y)f , (3.9)

6Their result was obtained for compactifications to four dimensions but can easily be extended to
any dimensions.
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ĝ being the metric on M
3

.

We can reduce the eigenvalue problem to an ordinary di↵erential equation (ODE)

by expanding Y in terms of the S2 spherical harmonics:

Y =
1X

`=0

X̀

m=�`

�`/2f`,m(y)Y
m
` . (3.8)

The factor �`/2 is included as it simplifies the resulting ODE: dropping the labels ` and

m from f , the latter satisfies

Sf = ��w(y)f , (3.9)

6Their result was obtained for compactifications to four dimensions but can easily be extended to
any dimensions.

8

internal metric

• supersymmetric case:

• susy-breaking case:

m2 � 8l(2l + 3) � 40

m2 � 12l(l + 2) � 36

[in units where LAdS = 1]

[Passias, AT ’16]

[Apruzzi, De Luca, Gnecchi, 
Lo Monaco, AT to appear]

Universal bound: realized for  = ↵�lYl

spherical harm. on S2
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derivation of [17] is that �ḡµ⌫ decouples from all other perturbations of the background

solution; this is reflected in the variation of the stress-energy tensor which reads �Tµ⌫ /
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no separation of scales proof for susy AdS7!

[notice: reasonable est. MKK ⇠
R
e4AR6 can fail for solutions with O-planes]
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• Spin-zero: we can compute many masses in 7d gauged sugra

• also: nonabelian DBI  same results

m2 = 4(k + 2)(k � 1) = �8, 0, 16, 40, . . .

• supersymmetric case: [units where BF bound: m2 � �9]

multiplicities depend on # of D8s

[Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appear]

• susy-breaking case:

below the BF bound!

plausible
scenario:

[Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appear]

m2 = 3(k + 2)(k � 2) = �12, �9, 0, 15, 36, . . .

but this �12 appears only with coincident D8s

vacua: [�i,�j ] = ✏ijk�kpotential: �4�i�i � 2✏ijk[�i,�j ]�k + [�i,�j ][�i,�j ]



• Another pert. instability exists for solutions with D6s

such as the non-susy
version of the ‘teardrop’

[Danielsson, Dibitetto, Vargas ’17]

D6s

D6s seem to repel.

another m2 = �15



• Another pert. instability exists for solutions with D6s

such as the non-susy
version of the ‘teardrop’

[Danielsson, Dibitetto, Vargas ’17]

D6s

D6s seem to repel.

endpoint: D6 smeared solution?
[Blåbäck, Danielsson, Junghans, 
Van Riet, Wrase, Zagermann ’11]

another m2 = �15
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bubble creation: 
evolution in Eucl. time

AdS radial coord.
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true vacuum
false vacuum

[Coleman, De Luccia ’80]
[Maldacena, Michelson, Strominger ’98]



• ‘Bubbles’. time

bubble creation: 
evolution in Eucl. time

AdS radial coord.

bubble evolution: real time

true vacuum
false vacuum

[Coleman, De Luccia ’80]
[Maldacena, Michelson, Strominger ’98]

• NS5 bubble.

non-susy case: NS5 potential AdS radial coord.

z

tunnel effect: NS5 gets created

• this is the type of process that led to the instability conjecture [Ooguri, Vafa ’16,
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evolution in Eucl. time

AdS radial coord.

bubble evolution: real time

true vacuum
false vacuum

[Coleman, De Luccia ’80]
[Maldacena, Michelson, Strominger ’98]

• this process ‘shortens’ the region where F0 = 0

• NS5 bubble.

non-susy case: NS5 potential AdS radial coord.

z

tunnel effect: NS5 gets created

• this is the type of process that led to the instability conjecture [Ooguri, Vafa ’16,
Freivogel, Kleban ‘16]



• Other possible tunnel effect:
[motivated by nonabelian potential]

2 D8s combine: one of them keeps all D6 charge, the other tunnels away

• Together these effects seem to rule everything out.
[Apruzzi, De Luca, Gnecchi, Lo Monaco, AT to appear]



Conclusions
• Steps towards procedure to break supersymmetry

• Older method: consistent truncation. Are non-susy AdS7 stable?

 [Legramandi, AT ’19] in the Minkowski case

• Tachyons make D8s repel each other

• Tunnel effects probably make remaining ones unstable


