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Modular forms for coefficients of n-point MAXIMAL U(1)-VIOLATING INTERACTIONS

with CONGKAO WEN ArXiv: 1904.13394
I. SL(2,Z) MODULAR FORMS AND U(1)-VIOLATION IN IIB SUPERSTRING

First-order differential relations between coefficients in low energy expansion, which
imply Laplace eigenvalue equations for low order terms.

0.    HIGHER-DERIVATIVE INTERACTIONS IN CLOSED SUPERSTRING THEORY

NON-PERTURBATIVE FEATURES – S-DUALITY IN SUPERSTRING THEORY: 
Older work with Pierre Vanhove, Sav Sethi, Michael Gutperle,  Anirban Basu,  ….

MONTONEN-OLIVE SL(2,Z) DUALITY
OF N=4 SUSY YANG-MILLS

SL(2,Z) S-DUALITY OF TYPE IIB 
SUPERSTRING

Predicts precise perturbative and non-perturbative (D-instanton) terms. 

with  SHAI CHESTER,  SILVIU PUFU YIFAN WANG, CONGKAO WEN (TO APPEAR)

II. MOTIVATION : HOLOGRAPHIC CONNECTION OF TYPE IIB SUPERSTRING
AMPLITUDES WITH CORRELATION FUNCTIONS OF N=4 SUSY YANG-MILLS



THE LOW ENERGY EXPANSION OF STRING THEORY

EINSTEIN-HILBERT
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∫
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• LOWEST ORDER TERM reproduces the results of classical supergravity 
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• HIGHER ORDER TERMS:   

Coefficient depends on moduli (scalar fields).  
- constrained by S-DUALITY

(maximal supersymmetry)
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Transformation to string frame
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√
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(fixed     and    - i.e and fixed        )α′ g gYMN → ∞
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THE LOW ENERGY EXPANSION OF (TYPE IIB) STRING THEORY
HIGHER DERIVATIVE CORRECTIONS to Einstein theory
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S-DUALITY GROUP SL(2,Z) a, b, c, d ∈ Z
ad− bc = 1

τ → a τ + b

c τ + d

HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY
(MAXIMAL) SUSY AND DUALITY ??

Investigate the exact moduli dependence of low lying terms in the low energy expansion.

Duality relates different regions of moduli space –
Connects perturbative and non-perturbative features in a highly nontrivial manner.

TEN-DIMENSIONAL TYPE IIB - MAXIMAL SUPERSYMMETRY

inverse string 
coupling constantOne complex modulus τ = τ1 + iτ2 τ2 =

1

g
= e−φ

32 supersymmetries



CHARGES OF FIELDSU(1) Φ = qΦ

TRANSFORMATIONS OF MASSLESS TYPE IIB FIELDSSL(2,R)

• A                transformation induces a compensating         transformation to preserve
gauge condition.      

U(1)SL(2,R)
e2iφ =

(
cτ + d

cτ̄ + d

)• Fix         gauge - embed the          in              .  SL(2,R)U(1)U(1)

gauge symmetry U(1)• Coset space paramterise coset by complex scalar
τ = τ1 + iτ2

Λ Λ̄ ψ̄µ qψ̄ = 1
2ψµ qψ = − 1

2FERMIONS qΛ = − 3
2

qΛ̄ = 3
2

Complex Dilatini Complex  Gravitini

ANTISYMMETRIC TENSORS qḠ = 1qG = −1G G
Complex combinations of RR and NSNS  three-form field strengths 

Pµ = i
�µ�

2�2
qP = −2 P̄µ = �i

�µ�̄

2�2
SCALAR BOSONS qP̄ = 2

qF5 = qR = 0dC(4) , RNEUTRAL BOSONS

Self-dual five-form and curvature

SL(2,Z)\SL(2,R)/U(1)MODULI SPACE

NOTE:  CHIRAL U(1) ANOMALY IN TYPE IIB SUPERGRAVITY IN D=10 DIMENSIONS

breaks                to              . SL(2,R) SL(2,Z)

NOT A SYMMETRY IN STRING THEORYSL(2,R)



SYSTEMATICS OF U(1) VIOLATION

Linearised action
∫

d16θ F [τ0 + Φ(x, θ)] =

∫
d16θ

∑

n

∂nF (τ0)

∂τn0
[Φ(x, θ)]n

• These 8-derivative interactions are  1
2 −BPS

• More generally consider derivatives on these interactions  - e.g.  d4R4 , d6R4

1
4 −BPS 1

8 −BPS

FΛ16 =
∂12FR4

∂τ120
• Note for example that 

F(n)(τ0) =
∂nF (τ0)

∂τn0
= F(4)(�0) R4 + F(5)(�0) G2 R3 + · · · + F(16)(�0) �16

τ = τ0
(Howe, West)

Consider a linearised constrained SCALAR CHIRAL ON-SHELL SUPERFIELD describing 
fluctuations around           . Function of a single 16-component Grassman spinor,   .  θ

U(1)-charge of = −1

2
θU(1)-charge of superfield = −2

All four-point functions conserve U(1)• U(1) VIOLATION FOR N-POINT FUNCTIONS:     

Maximal U(1) violation in n-particle amplitude  

q = −2(n− 4)

�(x, �) = �� + � � + �2 G + �3 d�� + �4 (R4 + dF5) + �5 d2� + �6 d2Ḡ + �7 d3�� + �8 d4�̄ψ∗



HIGHER DERIVATIVE SL(2,Z)-COVARIANT ACTION

• Degeneracy first arises for n=4,  p=6;  n=5,  p=4; n=6, p=3 e.g. d6 G4R2

• The complete nonlinear action is not known - even in the p=0 case (1/2-BPS).
although it is known for backgrounds in which certain bosonic fields vanish 

d6 R4 ∼ (s3 + t3 + u3)R4e.g. for 

• Derivatives       (contractions suppressed) explicit in amplitude calculationsd2p(i)

n = 4, p = 3

• The quantity                is the product of n fields in linearised approximation with  Pn({Φ}) q = −2(n− 4)

p = 0
p = 2

R4

d4 R4

d6 R4
Degeneracy in
kinematic factorsp = 3

q = −2(n− 4)
= −2w

• Since               carries a non-zero U(1) charge, the moduli-dependent coefficient                
must transform with a compensating charge.   

Pn({Φ})

NON-HOLOMORPHIC MODULAR FORM

F (p)
w i (τ)

modular weight w

κ = (α′)2 g

The linearised interactions fit into a               - invariant action of the form    SL(2,Z)

Monomial in 
n fields

Sp
n = (κ)

p−1
2

∫
d10x eF (p)

w i (τ) d
2p
(i) Pn({Φ})



NON-HOLOMORPHIC MODULAR FORMS

Consider a                transformation SL(2,Z) τ → aτ + b

cτ + d a, b, c, d ∈ Z ad− bc = 1

φ =
i

2
log

(
cτ̄ + d)

cτ + d

)

e2iwφTransforms with phase – U(1) charge  q = 2w

Dw f (w,−w) = f (w+1,−w−1) D̄w f (w,−w) = f (w−1,−w+1)

Increases the U(1) charge Decreases the U(1) charge

COVARIANT DERIVATIVES: Dw = iτ2
∂

∂τ
+

w

2
D̄w′ = −iτ2

∂

∂τ̄
+

w′

2

A NON-HOLOMORPHIC MODULAR FORM with weight              transforms as(w,w′)

holomorphic anti-holomorphic

f (w,w′)(τ) → (cτ + d)w (cτ̄ + d)w
′
f (w,w′)(τ)

So if w′ = −w f (w,−w)(τ) →
(
cτ + d

cτ̄ + d

)w

f (w,−w)(τ)



NON-HOLOMORPHIC EISENSTEIN SERIES

• invariant  (generalises to higher rank duality groups) - weight          form SL(2, Z) (0, 0)

• Fourier series E(s, τ) = 2
∞∑

k=0

Fk(τ2) cos(2πikτ1)

E(s, τ) =
∑

(m,n)!=(0,0)

τ s2
|m+ nτ |2s

• ZERO MODE - TWO POWER-BEHAVED TERMS (perturbative) :  k = 0

F0 = 2ζ(2s) τs2 +
2
√
π Γ(s− 1

2 ) ζ(2s− 1)

Γ(s)
τ1−s
2

�n(k) =
X

p|k

pn

divisor sum
• NON-ZERO MODES - D-INSTANTON SUMk > 0 K Bessel

Fk =
4πs

Γ(s)
|k|s− 1

2σ1−2s(|k|) τ
1
2
2 Ks− 1

2
(2π||k|τ2)

∼ 2πs

Γ(s)
|k|s−1σ1−2s(|k|) (1 +O(τ−1

2 )

• Solution of LAPLACE EIGENVALUE EQN.

∆ = τ22 (∂2
τ1 + ∂2

τ2) = 4∂τ∂τ̄(∆− s(s− 1))E(s, τ) = 0



LOW ORDER INTERACTION COEFFICIENTS

Laplace equations motivated by supersymmetry and various dualities

for U(1)-conserving four-point amplitudes  - e.g. four gravitons

(α′)−1 R4

(
∆− 3

4

)
F (0)
0 (τ) = 0 F (0)

0 (τ) = E( 3
2 , τ)solution

no. of derivatives

weight w
1
2 − BPS

Contains tree-level and genus-two together with D-instantons 

NON-RENORMALISATION BEYOND 2 LOOPS FOR d4R4

α′ d4 R4

(
∆− 15

4

)
F (2)
0 (τ) = 0 F (2)

0 (τ) = E( 5
2 , τ)

1
4 −BPS

Contains tree-level and genus-one together with D-instantons

NON-RENORMALISATION BEYOND 1 LOOP FOR R4

• Similarly for other dimension-12 interactions α′d2R5, α′R6, F 4
5R

4, . . .

AdS5 × S5

α′

L2
g

1
2 R4 ∼ N− 1

2 R4
• correction to 

1

N
R4



PRECISE AGREEMENT WITH EXPLICIT PERTURBATIVE STRING THEORY MULTI-LOOP CALCULATIONS

THE SOLUTION OF THIS EQUATION HAS SOME WEIRD AND WONDERFUL FEATURES.

NOT Eisenstein series but satisfies INHOMOGENEOUS Laplace equation

R4
The square of the
coefficient of 

(∆− 12) E(3)
0 (τ) = −E( 3

2 , τ)E( 3
2 , τ)

[PARENTHETICAL COMMENT:   THE NON-RENORMALISATION STATEMENTS IN MAXIMAL SUPERGRAVITY

ARE IN AGREEMENT WITH THESE STRING THEORY RESULTS.]

F (3)
0 (τ) = E(3)

0 (τ)(α′)2 d6 R4

1
8 −BPS

NON-RENORMALISATION BEYOND 3 LOOPS

ZERO MODE OF SOLUTION (zero net D-instanton number):

SUM OF D-INSTANTONSGENUS ZERO GENUS ONE GENUS TWO GENUS THREE

g E(3)
0 (τ)

∣∣
zero
mode

=
2

3
ζ(3)2 g−2+

4

3
ζ(2)ζ(3) g0+4ζ(4) g2+

4

27
ζ(6) g4+

∑

k

ck e
− 4πk

g (1 +O(g))



FIRST-ORDER EQUATIONS FOR U(1)-VIOLATING COEFFICIENTS

so Ew(s, τ) =
2w(s− 1)!

s+ w − 1)!
Dw−1 . . .D0 E0(s, τ) =

∑

(m,n)"=(0,0)

(
m+ nτ̄

m+ nτ

)w τs2
|m+ nτ |2s

Likewise, Ew−1(s, τ) =
s− w

2
D̄wEw(τ)

NON-HOLOMORPHIC EISENSTEIN MODULAR FORMS

∆w
+ = 4 D̄w+1Dw ∆w

− = 4Dw−1D̄wLAPLACE OPERATORS ∆w
+ −∆w

− = −2w

Eisenstein series with holomorphic/anti-holomorphic  weights              defined by (w,−w)

Ew+1(s, τ) =
s+ w

2
DwEw(τ) (arbitrary normalisation)FIRST-ORDER EQUATIONS

tree-level    genus-one              D-instantons        anti-D-instantons

e,g,

τ2 = 1/g

Ew( 3
2 , τ) = 2ζ(3) τ

3
2
2 +

4ζ(2)

1− 4w2
τ
− 1

2
2 +

∞∑

K=1

(
CK,w(τ2)e

2πiKτ1 + CK,−w(τ2)e
−2πiKτ1

)

LAPLACE EQUATIONS ∆−Ew = (s(s− 1)− w(w − 1))Ew

E0(s, τ) ≡ E(s, τ)

The coefficient of a term violating the U(1) charge by                                    units is given byq = −2(n− 4) = −2w

F (0)
n−4(τ) = c(0)n Ew( 3

2 , τ)



½-BPS AND ¼-BPS U(1)-VIOLATING COEFFICIENTS

n = 4− w 4 5 6 8 12

(α′)−1 : R4 G2R3 G4R2 . . . G8 . . .Λ16

Supersymmetry together with S-duality: 

• Satisfy sequence of Laplace eigenvalue equations.

• Coefficients determined by amplitude analysis

F (0)
n−4(τ) = c(0)n Ew( 3

2 , τ)

F (0)
n−4(τ) = c(2)n Ew( 5

2 , τ)

d4R4 d4G2R3 d4G4R2 . . . d4G8 . . . d4Λ16α′ :

d4 ∼ s2 + t2 + u2 =
∑

i<j

s2ij



1/8-BPS U(1)-VIOLATING COEFFICIENTS

RECALL W = 0 CASE:
∆ = ∆0

+ = ∆0
−

4 D̄D E(3)
0 = 12E(3)

0 − (E0( 3
2 ))

2

D̄E(3)
1 = E(3)

0 − 1

12
(E0( 3

2 ))
2

INHOMOGENEOUS
FIRST-ORDER EQUATION

Applying      and requiring consistency with w=0 Laplace equation leads to D̄

Apply      to            equation, D 4DD̄(DE(3)
0 ) = 12(DE(3)

0 )−D(E0( 3
2 ))

2w = 0

(α′)2 : d6(i)R
4 d6(i)G

2R3 d6(i)G
4R2 . . . d6(i)G

8 . . . d6(i)Λ
16

4 5 6 8 12

n = 4 + w

n = 4 + w

F (3)
n−4,i(τ) = c(3)n,i E

(3)
w (τ)

TWO INDEPENDENT KINEMATIC STRUCTURES

w = 2
d6(1) ∼

∑

i<j

s3ij +
3

8

∑

i<j<k

s3ijk d6(2) ∼
∑

i<j

s3ij −
1

2

∑

i<j<k

s3ijk

Tree-level contribution Does not contribute at tree-level 

n = 6

FIRST-ORDER EQUATIONDefine:CONSIDER W = 1 CASE: E(3)
1 = 2DE(3)

0

LAPLACE EQUATIONw = 1∆−E(3)
1 = 12E(3)

1 − 3E1( 3
2 )E0( 3

2 )



1/8-BPS COEFFICIENTS - THE W=2, n=6 CASE

E(3)
2,i d

6
(i)

(
G4R2 + Λ8R2 + . . .

) Labels distinct    
kinematic structures 
– motivated by 
amplitude analysis

i = 1.2

The factor  E(3)
2,1 (τ) d

6
(1) contains the tree-level contribution 

i = 1

i = 2
The factor                   does not have a tree-level contributionE(3)

2,2 (τ) d
6
(2)

∆−E(3)
2,2 = 10E(3)

2,2 − 5a

12
(E0( 3

2 )E2( 3
2 )− E1( 3

2 )E1( 3
2 )) .LAPLACE EQUATION

1/8-BPS COEFFICIENTS - THE W>2, n>6 CASES

The extension to all terms of the form E(3)
2,i (τ) d

6
(i) Pn({Φ})

∆−E(3)
2,1 = 10E(3)

2,1 − 15

2

(
E0( 3

2 )E2( 3
2 ) +

3

5
E1( 3

2 )E1( 3
2 )

)
Leads to LAPLACE EQUATION

Then consistency with        equation  E(3)
1Define: E(3)

2,1 = 2DE(3)
1

and  FIRST-ORDER EQUATION D̄E(3)
2,1 = 5DE(3)

1 − 3

2
E1( 3

2 )E0( 3
2 )

E(3)
2,2 =

a

5
(E(3)

2,1 − 2E1( 3
2 )E1( 3

2 ))

FIRST-ORDER EQUATION

Fix the constant by
one-loop calculation. 

Tree-level term cancels 
in this combination
Leading term from 
one-loop contribution.

D̄E(3)
2,2 (τ

0) = a

(
E(3)
1 (τ0)− 1

2
E0( 3

2 , τ
0)E1( 3

2 , τ
0)

)



SUPERSTRING SCATTERING AMPLITUDES

Redefine coordinate τ → Z Z =
τ − τ0

τ − τ̄0
Transforms with U(1) charge = -2 

under SL(2,Z)

F0(τ) =
∞∑

w=0

2w Dw−1 . . .D0 F0(τ)

∣∣∣∣
τ=τ0

Zw/w! + · · ·

(very sketchy)

Recall Sp
n = (κ)

p−1
2

∫
d10x eF (p)

w i (τ) d
2p
(i) Pn({Φ})

(i)  Amplitudes with external     from  
Φ

Pn(Φ)

Z

Z1

2

3 n

n+ 1

n+m

DmF (p)
n−4,i(τ

0)

Amplitudes with m   s and n s  Z Φ

These are “MAXIMALLY U(1)-VIOLATING” amplitudes – determined by contact interactions
No poles

Weight - amplitude ~ covariant derivative on weight -w (w − 1)

(ii)  Amplitudes with fluctuations                   not covariant

Background  

δτ = τ − τ0

τ = τ0

(MBG, Wen  Arxiv: 1904.13394



Soft Limits
An(X,Zn)

∣∣
pn→0

= 2DAn−1(X) ,

O(3)
n,1 =

1

32



(28− 3n)
∑

i<j

s3ij + 3
∑

i<j<k

s3ijk



 O(3)
n,2 = (n � 4)

�

i<j

s3
ij �

�

i<j<k

s3
ijk

n > 6, p = 3

O(2)
n,1

∣∣
pn→0

= O(2)
n−1,1O(3)

n,1

∣∣
pn→0

= O(3)
n−1,1

n ≤ 5 p = 2, 3

O(3)
n

∣∣
pn→0

= O(3)
n−1O(2)

n

∣∣
pn→0

= O(2)
n−1

O(2)
n =

1

2

∑

1≤<j≤n

s2ij O(3)
n =

1

2

∑

1≤i<j≤n

s3ij

O(3)
6,2 =

1

8

∑

permutation

s12s34s56O(3)
6,1 =

1

32



10
∑

1≤i<j≤6

s3ij + 3
∑

1≤i<j<k≤6

s3ijk





n = 6, p = 3

O(3)
6,2

∣∣
pi→0

→ 0O(3)
6,1

∣∣
pi→0

→ O(3)
5

Function of Mandelsatam invariants

More explicitly F (p)
n−4(τ

0)O(p)
n,i

∣∣
pn→0

= 2DF (p)
n−5(τ)

∣∣
τ=τ0O

(p)
n−1,i

e.g. relates             to  AggggZ Agggg

Low energy expansion



e.g. Amplitudes with a    and a      à Laplace equations Z Z̄

D̄D E(3)
0 (τ0) + aE(3)(τ0) + bE0( 3

2 , τ
0)E0( 3

2 , τ
0) = 0Leads to Laplace eqn.

Coefficients may be fixed by comparison with tree-level amplitudes

Viz.  (Yin, Wang)

R4 interaction

d6R4 interaction

d4R5 interaction

d6R4 interaction

d6R4 interaction

Zcovariant    ,    derivatives 
of          interaction

Z̄
d6R4

This argument extends to all the Laplace equations (MBG, Wen)

Z

Z̄

D̄D F (3)
0 (�0)

(a)

Z̄

Z

F (3)
0 (�0)

(b)

Z̄

Z

F (3)
0 (�0)

(c)

Z̄

Z

F (3)
0 (�0)

(d)

Z

Z̄

F (2)
R5 (�0)

(e)

Z̄

Z

F (0)
0 (�0) F (0)

0 (�0)

(f)

Above diagrams follow from interactions in low energy effective action

SUPERSYMMETRIC CONTACT TERMS FORBIDDEN FOR NON-MAXIMAL U(1) VIOLATING PROCESSES



CONNECTION OF SL(2,Z) IN TYPE IIB SUPERSTRING WITH
MONTONEN-OLIVE DUALITY IN N=4 SUSY YANG-MILLS



• CONSIDER CORRELATION FUNCTION OF FOUR SUPERCONFORMAL PRIMARIIES 20’ OPERATORS

DUAL TO FOUR-GRAVITON AMPLITUDE.

• Technical issues: Transform from       to       ; Mellin transform; .;…
(Gerchkovitz, Gomis, Ishtiaque, Karaa, Komargodski, Pufu)

S4 R4

Perturbative part (Binder, Chester, Pufu, Wang)

• Would like to consider approach to flat space limit (Penedones, Polchinski,….)

Zpert = Zclass Z1�loop

Perturbative terms agree but instantons suppressed

FLAT-SPACE LIMIT OF YANG-MILLS CORRELATION FUNCTIONN = 4

• The PESTUN PARTITION FUNCTION on Supersymmetric LocalisationS4

• Leading contribution              - Supergravity  ∼ N2

�2
m����̄ log Z

����̄ log Z

�����
m=0

• Integrated correlation function = 
Classical   1-loop     Nekrasov

partition
function

Z = Zclass Z1�loop Zinst���
���
2

m = 0 N = 2�• limit of             theory    (mass-deformed            Super Yang-Millls on     )S4N = 4

(A)    ’tHOOFT LIMIT with               fixed λ = g2=M NN → ∞

Large-N limit
g =

g2=1
4π

(
α′

R2

)2

=
1

g2=1N

AdS/CFT dictionary

N
1
2 E( 3

2 , �, �̄) � N2�� 3
2 + �

1
2 +

�

k �=0

e�2�k N
� e2�ik�R4• coefficient



UNCONVENTIONAL LIMIT OF YANG-MILLSN = 4

Localisation reduces functional integral on      to integral over constant scalar expectation value      .      S4 aij

The Nekrasov instanton partition function:
contribution from instantons at North Pole 
and anti-instantons at South Pole of S4 

Z(m, τ, τ̄) =

∫
dN−1a

∏

i<j

a2ijH
2(aij)

H(aij −m)H(aij +m)
e
− 8π2

g2=1

∑
i a

2
i |ZMRWX(m, τ, τ̄ , aij)|2 ,

H(z) = G(1 + z)G(1 � z)

Barnes G-function
Perturbative

The Pestun partition function:

(Binder, Chester, Pufu, Wang)• Leading order       determined to all orders in    in the ‘tHooft limit.    N2 λ

String tree level

k D-instanton contribution must emerge
from k Yang—Mills instanton sector 

K1(8π
2kg−2

=1 ) = g=1 e
− 8π2k

g2=1 (1 +O(g=1))g=1 → 0

gYM(B) FIXED AND PRESERVES MONTONEN-OLIVE DUALITYN → ∞ SL(2,Z)

Expect to get ∼ N
1
2 E( 3

2 , τ) ∼ N
1
2



g−3
=1 + g=1 + g−1

=1

∑

k "=0

K1(8π
2g−2
=1 k)e2πikθ





� = � + i
4�

g2
=1

� �1 + i�2



UNCONVENTIONAL LIMIT OF YANG-MILLSN = 4

• Asymptotic expansion of       at small       gives an infinite set of perturbative corrections
to the k D-instanton contribution.  

g=1K1

Using Nekrasov’s result as interpreted by Pestun we have

where the integration contour circles the poles in a particular (and complicated) manner.

Z(k)
inst(m, �2, a) =

1

k!

�
2m2

m2 + 1

�k � k�

I=1

d�I

2�

N�

i=1

(�I � aI)2 � m2

(�I � ai)2 + 1

k�

I<J

�2
IJ (�2

IJ + 4)(�2
IJ � m2)2

(�2
IJ + 1)((�IJ � m)2 + 1)((�IJ + m)2 + 1)

〈O 〉 =
∫

dNa e
− 8π2

g2=1

∏

I<J

a2IJ Owhere

So
∂2
m logZinst(m, τ, , a)

∣∣
m=0

=
∞∑

k=1

2(eikθ+e−ikθ) e
− 8π2k

g2=1 〈∂2
mZ(k)

inst(m, τ2, a)〉
∣∣
m=0

• The leading k D-instanton contribution of order       was obtained from a ADHM construction
for                          super Yang-Mills by a  large- saddle point method.

g0
=1

SU(N) NN = 4

(Dorey, Khoze, Mattis, Hollowood)

• Reproduces factor of                                                 in k D-instanton contribution to    |k| 12 σ2(|k|) g
− 1

2
=1 K1(8π

2g−2
=1 k) E( 3

2 , τ)

Non-perturbative terms:

Fourier sum (sum over instanton number)Zinst(m, τ, , a) =
∞∑

k=0

e2πikτ Z(k)
inst(m, τ2, a)

(MBG, Chester, Pufu, Wang,  Wen) 



COMMENTS

• We have determined non-perturbative behaviour of all “protected’’ terms in the low-energy

expansion of the form                                 - up to overall constantsE(p)
w,i(τ) d

2p
(i) Pn({Φ}) c(p)n,i (n = 4 + w)

that are determined from tree (or one-loop) amplitudes and (in principle) by supersymmetry.

• These interactions are related by FIRST-ORDER DIFFERENTIAL EQUATIONS – consequence of 
SUPERSYMMETRY as is apparent from the amplitude calculations. 

• LAPLACE EQUATIONS follow as consequence of first-order equations.
Leading to the same non-renormalisation conditions as in maximal supergravity. 

• Generalisations to toroidally compactified theory – higher rank duality groups 

• Four-point integrated correlator in                         super Yang-Mills in ultra-strong coupling limitN = 4 SU(N)

fixed       :    Leading term           reproduces ten-dim. IIB supergravity amplitude.N → ∞ g=1 ∼ N2

• At higher orders there are ambiguities since we are looking at the integrated correlator.

The           cases do not arise in maximal supergravity
• These violate the continuous U(1) R-symmetry in string theory b     y                               units. 

w != 0

q = −2w = −2(n− 4)

• Next term             reproduces                           ∼ N
1
2 α′−1

E( 3
2 , τ)R

4


