19 Jun 2018 Max Planck Institute for Gravitational Physics Hannover

GW-DE Meeting 2018

Stabilized High-Power Lasers for 3rd Generation Gravitational Wave Detectors

Benno Willke

19 June 2018 (Hannover)

General Requirements

ibniz

annovei

2

- Several hundred Watt power (cw, single-frequency, linearly-polarized)
 - To enable high circulating power in interferometer arms
- High spatial purity and low beam jitter
 - Good coupling to input-modecleaner
 - Low shot noise on sensors for laser and input-modecleaner stabilization
- Low free running noise (in laser power and frequency
 - Acceptable stabilization effort (loop gain and cross-couplings)
- Low-noise sensors (for laser power and frequency)
 - To achieve required stability for light entering the input modecleaner
- Fast actuators (for laser power and frequency) with large range
 - To allow for required loop gain in stabilization control loops
- High robustness and reliability with low maintenance requirements

Advanced LIGO Pre-Stabilized High-Power Laser

Kwee et al. Opt. Lett. (2009), Kwee et al. Opt. Express (2012)

Advanced LIGO Pre-Stabilized High-Power Laser

l Leibniz v 2 Universität v 4 Hannover

Requirements For Next Generation GWDs

Project	Wavelength	Power	Spatial mode
Einstein Telescope low f	1550 nm	3 W	HG ₀₀
Einstein Telescope high f	1064 nm	500 W	LG ₃₃ (?)
Voyager	≥ 1550 nm	200W	HG ₀₀
Cosmic Explorer	≥ 1550 nm	1kW	HG ₀₀
Asia- Australia GWD	1064 nm	200 W	HG ₀₀

- Single-mode, single-frequency, linearly polarized, low free running noise
- Stabilization: factor 10 better than second generation GWDs
- Fast actuators with large range and low cross coupling
- High reliability

eibniz

annover

5

Low maintenance downtime and costs

All numbers are still subject to change !

LZH / AEI Fiber Amplifier at 1064nm

6

Leibniz Universität Hannover

- two stage fiber amplifier with NPRO seed
- good spatial profile
- output power up to 300W
- so far no long-term reliable operation

LASER ZENTRUM

T. Theeg et al. IEEE Photon. Tech. Lett. (2012); T. Theeg et al. Opt. Express (2012)

1064nm Fiber Amplifier - Performance

relative pointing:
$$\epsilon = \sqrt{\left(\frac{\Delta x}{w}\right)^2 + \left(\frac{\Delta \Phi}{\theta_{div}}\right)^2}$$

1550nm LZH Fiber Amplifier

- Off-peak pumping at 940nm
- Linear slope up to 110W
- At 110W no SBS (no excess power noise in MHz region)
- No Yb-band ASE and good suppression of Er-band ASE (~60dB)
- Output power limited by available pump power

8

Leibniz Universität Hannover

100

de Varona et al. Opt. Express (2017)

Coherent Beam Combination at AEI / LZH

proof of principle experiments with

- two independent 5W beams taken from 70W and 35W laser
- two identically seeded 10W fiber amplifiers
- next step: two 150W lasers
- final goal: 2x250W

Power Stabilization

Universität

10

Hannover

- beam is split onto two sets of four photodiodes (in-loop, out-of-loop)
- all stray beams are steered to absorption filters
- signal conditioning filters to reduce electronic noise coupling
- achieved $2 \times 10^{-9} 1/\sqrt{Hz}$ stability

Kwee et al., Opt. Lett. 34 p 2912 (2009)

OAC with 32.2A Equivalent Photocurrent

- Power noise of 150W beam in an optical AC coupling scheme with output modecleaner
- Achieved sensing sensitivity

 $RPN = 1 \times 10^{-10} \ 1/\sqrt{Hz}$

 This corresponds to shot noise of 32.2A photocurrent

Squeezing Enhanced Power Stabilization

Simulation:

9.5 mW pump, 5.07 % losses, 10.9 dB

Prediction:

10.9 dB, +PDIL DN, +Stab IL noise

Limitations:

Losses, PD_{IL} DN, Loop Gain

Challenges

- Design and fabricate robust and reliable 250-300 W (fiber) amplifier for 1064 nm, 1.5µm and 2µm
- Low-noise coherent combination of such laser with pure spatial beam profile and low beam jitter
- Power stabilization at the $RPN = 10^{-10} 1/\sqrt{Hz}$ level
- Transfer laser stability to suspended reference frame of GWD

