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� *OUSPEVDUJPO

ćF HSPVOECSFBLJOH EJTDPWFSZ PG (SBWJUBUJPOBM 8BWFT
	(8T
 CZ HSPVOE�CBTFE MBTFS JOUFSGFSPNFUSJD EFUFD�
UPST JO ���� JT DIBOHJOH BTUSPOPNZ <�> CZ PQFOJOH
UIF IJHI�GSFRVFODZ HSBWJUBUJPOBM XBWF XJOEPX UP PC�
TFSWF MPX NBTT TPVSDFT BU MPX SFETIJę� ćF 4FOJPS
4VSWFZ $PNNJUUFF 	44$
 <�> TFMFDUFE UIF -� TDJFODF
UIFNF
 ćF (SBWJUBUJPOBM 6OJWFSTF <�>
 UP PQFO UIF ���
UP ���N)[ (SBWJUBUJPOBM 8BWF XJOEPX UP UIF 6OJ�
WFSTF� ćJT MPX�GSFRVFODZ XJOEPX JT SJDI JO B WBSJFUZ
PG TPVSDFT UIBU XJMM MFU VT TVSWFZ UIF 6OJWFSTF JO B OFX
BOE VOJRVF XBZ
 ZJFMEJOH OFX JOTJHIUT JO B CSPBE SBOHF
PG UIFNFT JO BTUSPQIZTJDT BOE DPTNPMPHZ BOE FOBCMJOH
VT JO QBSUJDVMBS UP TIFE MJHIU PO UXP LFZ RVFTUJPOT� 	�

)PX
 XIFO BOE XIFSF EP UIF ĕSTU NBTTJWF CMBDL IPMFT
GPSN
 HSPX BOE BTTFNCMF
 BOE XIBU JT UIF DPOOFDUJPO
XJUI HBMBYZ GPSNBUJPO 	�
 8IBU JT UIF OBUVSF PG HSBW�
JUZ OFBS UIF IPSJ[POT PG CMBDL IPMFT BOE PO DPTNPMPHJ�
DBM TDBMFT 
8F QSPQPTF UIF -*4" NJTTJPO JO PSEFS UP SFTQPOE UP
UIJT TDJFODF UIFNF JO UIF CSPBEFTU XBZ QPTTJCMF XJUIJO
UIF DPOTUSBJOFE CVEHFU BOE HJWFO TDIFEVMF� -*4" FO�
BCMFT UIF EFUFDUJPO PG (8T GSPN NBTTJWF CMBDL IPMF
DPBMFTDFODFT XJUIJO B WBTU DPTNJD WPMVNF FODPNQBTT�
JOH BMM BHFT
 GSPN DPTNJD EBXO UP UIF QSFTFOU
 BDSPTT
UIF FQPDIT PG UIF FBSMJFTU RVBTBST BOE PG UIF SJTF PG
HBMBYZ TUSVDUVSF� ćF NFSHFS�SJOHEPXO TJHOBM PG UIFTF
MPVE TPVSDFT FOBCMFT UFTUT PG &JOTUFJO�T (FOFSBM ćFPSZ
PG 3FMBUJWJUZ 	(3
 JO UIF EZOBNJDBM TFDUPS BOE TUSPOH�
ĕFME SFHJNF XJUI VOQSFDFEFOUFE QSFDJTJPO� -*4" XJMM
NBQ UIF TUSVDUVSF PG TQBDFUJNF BSPVOE UIF NBTTJWF
CMBDL IPMFT UIBU QPQVMBUF UIF DFOUSFT PG HBMBYJFT VTJOH
TUFMMBS DPNQBDU PCKFDUT BT UFTU QBSUJDMF�MJLF QSPCFT� ćF
TBNF TJHOBMT XJMM BMTP BMMPX VT UP QSPCF UIF QPQVMBUJPO
PG UIFTF NBTTJWF CMBDL IPMFT BT XFMM BT BOZ DPNQBDU PC�
KFDUT JO UIFJS WJDJOJUZ� " TUPDIBTUJD (8 CBDLHSPVOE PS
FYPUJD TPVSDFT NBZ QSPCF OFX QIZTJDT JO UIF FBSMZ 6OJ�
WFSTF� "EEFE UP UIJT MJTU PG TPVSDFT BSF UIF OFXMZ EJTDPW�
FSFE -*(0�7JSHP IFBWZ TUFMMBS�PSJHJO CMBDL IPMF NFSH�
FST
 XIJDIXJMM FNJU(8T JO UIF -*4"CBOE GSPN TFWFSBM
ZFBST VQ UP B XFFL QSJPS UP UIFJS NFSHFS
 FOBCMJOH DPPS�
EJOBUFE PCTFSWBUJPOT XJUI HSPVOE�CBTFE JOUFSGFSPNF�
UFST BOE FMFDUSPNBHOFUJD UFMFTDPQFT� ćF WBTU NBKPSJUZ
PG TJHOBMT XJMM DPNF GSPN DPNQBDU HBMBDUJD CJOBSZ TZT�
UFNT
 XIJDI BMMPX VT UP NBQ UIFJS EJTUSJCVUJPO JO UIF
.JMLZ 8BZ BOE JMMVNJOBUF TUFMMBS BOE CJOBSZ FWPMVUJPO�
-*4" CVJMET PO UIF TVDDFTT PG -*4" 1BUIĕOEFS
	-1'
 <�>
 UXFOUZ ZFBST PG UFDIOPMPHZ EFWFMPQNFOU

BOE UIF (SBWJUBUJPOBM 0CTFSWBUPSZ "EWJTPSZ 5FBN
	(0"5
 SFDPNNFOEBUJPOT� -*4" XJMM VTF UISFF BSNT

BOE UISFF JEFOUJDBM TQBDFDSBę 	4�$
 JO B USJBOHVMBS GPS�
NBUJPO JO B IFMJPDFOUSJD PSCJU USBJMJOH UIF &BSUI CZ
BCPVU ��○� ćF FYQFDUFE TFOTJUJWJUZ BOE TPNF QPUFO�
UJBM TJHOBMT BSF TIPXO JO 'JHVSF ��

'JHVSF �� &YBNQMFT PG (8 TPVSDFT JO UIF GSF�
RVFODZ SBOHF PG -*4"
 DPNQBSFE XJUI JUT TFOTJ�
UJWJUZ GPS B ��BSNDPOĕHVSBUJPO� ćFEBUB BSF QMPU�
UFE JO UFSNT PG EJNFOTJPOMFTT ADIBSBDUFSJTUJD TUSBJO
BNQMJUVEF� <�>� ćF USBDLT PG UISFF FRVBMNBTT CMBDL
IPMF CJOBSJFT
 MPDBUFE BU z = 3 XJUI UPUBM JOUSJO�
TJD NBTTFT 107
 106 BOE 105M⊙
 BSF TIPXO� ćF
TPVSDF GSFRVFODZ 	BOE 4/3
 JODSFBTFT XJUI UJNF

BOE UIF SFNBJOJOH UJNF CFGPSF UIF QMVOHF JT JOEJ�
DBUFE PO UIF USBDLT� ćF � TJNVMUBOFPVTMZ FWPMW�
JOH IBSNPOJDT PG BO &YUSFNF .BTT 3BUJP *OTQJSBM
TPVSDF BU z = 1.2 BSF BMTP TIPXO
 BT BSF UIF USBDLT PG
B OVNCFS PG TUFMMBS PSJHJO CMBDL IPMF CJOBSJFT PG UIF
UZQF EJTDPWFSFE CZ -*(0� 4FWFSBM UIPVTBOE HBMBD�
UJD CJOBSJFT XJMM CF SFTPMWFE BęFS B ZFBS PG PCTFS�
WBUJPO� 4PNF CJOBSZ TZTUFNT BSF BMSFBEZ LOPXO

BOE XJMM TFSWF BT WFSJĕDBUJPO TJHOBMT� .JMMJPOT PG
PUIFS CJOBSJFT SFTVMU JO B ADPOGVTJPO TJHOBM�
 XJUI B
EFUFDUFE BNQMJUVEF UIBU JT NPEVMBUFE CZ UIF NP�
UJPO PG UIF DPOTUFMMBUJPO PWFS UIF ZFBS� UIF BWFSBHF
MFWFM JT SFQSFTFOUFE BT UIF HSFZ TIBEFE BSFB�

"O PCTFSWBUPSZ UIBU DBO EFMJWFS UIJT TDJFODF JT EF�
TDSJCFE CZ B TFOTJUJWJUZ DVSWF XIJDI
 CFMPX �N)[
 XJMM
CF MJNJUFE CZ BDDFMFSBUJPO OPJTF BU UIF MFWFM EFNPO�
TUSBUFE CZ -1'� *OUFSGFSPNFUSZ OPJTF EPNJOBUFT BCPWF
�N)[
 XJUI SPVHIMZ FRVBM BMMPDBUJPOT GPS QIPUPO TIPU
OPJTF BOE UFDIOJDBM OPJTF TPVSDFT� 4VDI B TFOTJUJWJUZ
DBO CF BDIJFWFE XJUI B ���NJMMJPO LN BSN�MFOHUI DPO�
TUFMMBUJPO XJUI �� DN UFMFTDPQFT BOE �8 MBTFS TZTUFNT�
ćJT JT DPOTJTUFOU XJUI UIF (0"5 SFDPNNFOEBUJPOT
BOE
 CBTFE PO UFDIOJDBM SFBEJOFTT BMPOF
 B MBVODINJHIU
CF GFBTJCMF BSPVOE ����� 8F QSPQPTF BNJTTJPO MJGFUJNF
PG � ZFBST FYUFOEBCMF UP �� ZFBST GPS -*4"�

1BHF � -*4" o �� */530%6$5*0/

Terminology:
• Supermassive black holes binaries (SMBHBs)
• Stellar black hole binaries (SBHBs): multiband ?
• Extreme mass ratio inspirals (EMRIs)
• Galactic binaries (GBs)
• Other sources: cosmic strings, …

LISA Sources

[LISA Proposal 2017]
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SJOH�EPXOPG UIF OFX.#) UIBU GPSNFE� #FJOH TPVSDFT
BU DPTNPMPHJDBM SFETIJęT
 NBTTFT JO UIF PCTFSWFS GSBNF
BSF (1+ z) IFBWJFS UIBO JO UIF TPVSDF GSBNF
 BOE TPVSDF
SFETIJęT BSF JOGFSSFE GSPN UIF MVNJOPTJUZ EJTUBODF Dl 

FYUSBDUFE GSPN UIF TJHOBM 	XJUI UIF FYDFQUJPO PG UIPTF
TPVSDFT GPS XIJDIXF IBWF BO JOEFQFOEFOUNFBTVSF PG z
GSPN BO JEFOUJĕFE FMFDUSPNBHOFUJD DPVOUFSQBSU
� $PO�
TJTUFOU XJUI DVSSFOU
 DPOTFSWBUJWF QPQVMBUJPO NPEFMT
<�>
 UIF FYQFDUFE NJOJNVN PCTFSWBUJPO SBUF PG B GFX
.#) #JOBSJFT 	.#)#
 QFS ZFBS XPVME GVMĕMM UIF SF�
RVJSFNFOUT PG 40��

'JHVSF �� .BTTJWF CMBDL IPMF CJOBSZ DPBMFTDFODFT�
DPOUPVST PG DPOTUBOU 4/3 GPS UIF CBTFMJOF PCTFS�
WBUPSZ JO UIF QMBOF PG UPUBM TPVSDF�GSBNF NBTT
 M

BOE SFETIJę
 z 	MFę NBSHJO�BTTVNJOH 1MBODL DPT�
NPMPHZ

 BOE MVNJOPTJUZ EJTUBODF
 Dl 	SJHIU NBS�
HJO

 GPS CJOBSJFT XJUI DPOTUBOU NBTT SBUJP PG q =
0.2� 0WFSMBJE BSF UIF QPTJUJPOT PG UIF UISFTIPME CJ�
OBSJFT VTFE UP EFĕOF UIF NJTTJPO SFRVJSFNFOUT�

'JHVSF � QSFTFOUT UIF SJDIOFTT PG TPVSDFT UIBU TIPVME
CF WJTJCMF UP -*4"
 TIPXJOH B XJEF SBOHF PG NBTTFT PC�
TFSWBCMF XJUI IJHI 4/3 PVU UP IJHI SFETIJę� ćF EFG�
JOJUJPO PG UIF UISFTIPME TZTUFNT 	XIJDI BSF TIPXO BT
SFE TUBST JO 'JHVSF �
 GPS FBDI 03 MFBET UP POF PS NPSF
.3
 TIPXO JO 'JHVSF ��

4*���� 4FBSDI GPS TFFE CMBDL IPMFT BU DPTNJD EBXO

03��� )BWF UIF DBQBCJMJUZ UP EFUFDU UIF JOTQJSBM PG
.#)#T JO UIF JOUFSWBM CFUXFFO B GFX 103M⊙ BOE B GFX
105M⊙ JO UIF TPVSDF GSBNF
 BOE GPSNBUJPO SFETIJęT CF�
UXFFO �� BOE ��� &OBCMF UIFNFBTVSFNFOU PG UIF TPVSDF
GSBNF NBTTFT BOE UIF MVNJOPTJUZ EJTUBODF XJUI B GSBD�
UJPOBM FSSPS PG ��� UP EJTUJOHVJTI GPSNBUJPO NPEFMT�

.3���� &OTVSF UIF TUSBJO TFOTJUJWJUZ JT CFUUFS UIBO 1.6×
10−20Hz−1/2 BU ���N)[ BOE 1 × 10−20Hz−1/2 BU �N)[

UP FOBCMF UIF PCTFSWBUJPO PG CJOBSJFT BU UIF MPX FOE PG
UIJT QBSBNFUFS TQBDF XJUI B 4/3 PG BU MFBTU ��� 4VDI
B iUISFTIPMEw TZTUFN XPVME IBWF B NBTT PG 3000M⊙


NBTT SBUJP q = 0.2, BOE CF MPDBUFE BU B SFETIJę PG ���
"MM PUIFS .#)#T JO 03��� XJUI NBTTFT JO UIF RVPUFE
SBOHF BOE NBTT SBUJPT IJHIFS UIBO UIJT BOE�PS BU MPXFS
SFETIJę
 XJMM UIFO CF EFUFDUFEXJUI IJHIFS 4/3 ZJFMEJOH
CFUUFS QBSBNFUFS FTUJNBUJPO�

4*���� 4UVEZ UIF HSPXUI NFDIBOJTN PG .#)T GSPN
UIF FQPDI PG UIF FBSMJFTU RVBTBST

03����B )BWF UIF DBQBCJMJUZ UP EFUFDU UIF TJHOBM GPS DP�
BMFTDJOH .#)T XJUI NBTT 104 < M < 106M⊙ JO UIF
TPVSDF GSBNF BU z ≲ 9� &OBCMF UIF NFBTVSFNFOU PG UIF
TPVSDF GSBNF NBTTFT BU UIF MFWFM MJNJUFE CZ XFBL MFOT�
JOH 	� �
�

03����C 'PS TPVSDFT BU z < 3 BOE 105 < M < 106M⊙

FOBCMF UIF NFBTVSFNFOU PG UIF EJNFOTJPOMFTT TQJO PG
UIF MBSHFTU .#) XJUI BO BCTPMVUF FSSPS CFUUFS UIBO ���
BOE UIF EFUFDUJPO PG UIF NJTBMJHONFOU PG TQJOT XJUI
UIF PSCJUBM BOHVMBS NPNFOUVN CFUUFS UIBO 10 EFHSFFT�
ćJT QBSBNFUFS BDDVSBDZ DPSSFTQPOET UP BO BDDVNV�
MBUFE 4/3 	VQ UP UIF NFSHFS
 PG BU MFBTU ∼ 200�
.3���� ćF NPTU TUSJOHFOU SFRVJSFNFOU JT TFU CZ CF�
JOH BCMF UP NFBTVSF UIF TQJO PG B UISFTIPME TZTUFN XJUI
UPUBM JOUSJOTJD NBTT PG 105M⊙
 NBTT SBUJP PG q = 0.2, MP�
DBUFE BU z = 3� ćJT XJMM TBUJTGZ CPUI 03����B BOE ����C�
"DIJFWJOH BO 4/3 PG ��� SFRVJSFT B TUSBJO TFOTJUJWJUZ
PG 4 × 10−20Hz−1/2 BU �N)[ BOE 1.3 × 10−20Hz−1/2 BU
��N)[� "MM TZTUFNT JO 03����B BOE ����C XJUI IJHIFS
NBTT
 NBTT SBUJPT
 TQJOT
 PS MPXFS SFETIJę XJMM SFTVMU JO
IJHIFS 4/3
 BOE CFUUFS TQJO FTUJNBUJPO�

4*���� 0CTFSWBUJPO PG &. DPVOUFSQBSUT UP VOWFJM UIF
BTUSPQIZTJDBM FOWJSPONFOU BSPVOENFSHJOH CJOBSJFT

03����B 0CTFSWF UIFNFSHFST PG.JMLZ�8BZ UZQF.#�
)#T XJUI UPUBM NBTTFT CFUXFFO 106 BOE 107M⊙ BSPVOE
UIF QFBL PG TUBS GPSNBUJPO 	z ∼ 2

 XJUI TVďDJFOU 4/3
UP BMMPX UIF JTTVJOH PG BMFSUT UP &. PCTFSWBUPSJFT XJUI
B TLZ�MPDBMJTBUJPO PG 100deg2 BU MFBTU POF EBZ QSJPS UP
NFSHFS� ćJT XPVME ZJFME DPJODJEFOU &.�(8 PCTFSWB�
UJPOT PG UIF TZTUFNT JOWPMWFE�

03����C "ęFS HSBWJUBUJPOBMMZ PCTFSWJOH UIF NFSHFS PG
TZTUFNT EJTDVTTFE JO 03����B
 UIF TLZ MPDBMJTBUJPO XJMM
CF TJHOJĕDBOUMZ JNQSPWFE
 BMMPXJOH GPMMPX�VQ &. PC�
TFSWBUJPOT UP UBLF QMBDF� ćJT IBT UIF QPUFOUJBM UP XJU�
OFTT UIF GPSNBUJPO PG B RVBTBS GPMMPXJOH B #) NFSHFS�
ćJT OFFET FYDFMMFOU TLZ MPDBMJTBUJPO 	BCPVU � EFH2
 UP
EJTUJOHVJTI GSPN PUIFS WBSJBCMF &. TPVSDFT JO UIF ĕFME
NPOUIT UP ZFBST BęFS UIF NFSHFS�

.3���� 'PS UIF MPXFTU 4/3 TZTUFN JO 03����B
 XIJDI
DPSSFTQPOET UP B NBTT PG 106M⊙ BU z = 2
 XF XJMM EFUFDU
UIF JOTQJSBM TJHOBM 	XJUI 4/3���
 ∼ 11.5 EBZT QSJPS UP

-*4" o �� 4$*&/$& 1&3'03."/$& 1BHF �

(source-frame mass)

LISA sources and SNR: comparable-mass systems

[LISA Proposal 2017]

q = 5

� = 0
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• Very high SNR for SMBHBs
• Challenge for waveforms: keep systematic errors smaller than statistical errors
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Accumulation of SNR with time for SMBHB/IMBHB

M = 106M�, q = 5, z = 2
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M = 104M�, q = 5, z = 2
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Accumulation of SNR as time left before merger diminishes
Shaded areas: thresholds SNR=1 and SNR=10

Two different definitions of “signal duration”:
• Looking back in time from merger, when is the signal negligible ? Here SNR=1
• Accumulating signal towards merger, when is the signal detected ? Here SNR=10

For SMBHBs, SNR accumulates 
shortly before merger (days)
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LISA sources and SNR: stellar black hole binaries

SNR vs time-to-merger
Catalog: [Sesana 2016]

4

bottom panel of the figure shows the inspiral time for
these binaries versus fpeak

GW
at the time of formation.

The colors in Figure 1 denote the three di↵erent for-
mation channels, as described in the figure caption. For
ejected and in-cluster binaries, the orbital parameters at
formation are well-defined: they are simply the binary
parameters following the last dynamical encounter. How-
ever, for GW capture mergers, the time of binary forma-
tion is not well-defined (and if merger occurs through “di-
rect collision” of BHs, a binary is never actually formed;
see [30]), so we simply assume these GW capture binaries
form at a reference eccentricity of 0.9999 and integrate
these systems backward from the a and e values recorded
by the fewbody calculation at a pericenter distance of
100M , where M is the total mass of the BBH. Since
the pericenter distance (which determines the peak fre-
quency of GW emission) asymptotically approaches the
true (and unknown) initial pericenter distance for these
binaries as e approaches 1, the particular choice of the
reference eccentricity has no significant e↵ect (see, e.g.,
[27]).

As Figure 1 clearly demonstrates, the ejected, in-
cluster, and GW capture channels produce BBHs with
increasing fpeak

GW
at the time of formation. In particu-

lar, while BBHs produced through the ejected and in-
cluster channels form at lower frequencies and subse-
quently evolve through the LISA and then LIGO bands,
BBHs creates via GW capture form at higher frequen-
cies and typically skip the LISA band entirely. [43] also
noted that some sources detected by ground-based detec-
tors cannot be observed by LISA; for high eccentricity
binaries, a detector in the decihertz regime is necessary
for co-detection.

Similar tracks in strain-frequency space for these three
formation channels were explored in [33] using semi-
analytic methods to model binary-single encounters un-
dergone by BHs in typical GC environments. In con-
trast, our results arise from realistic, full-scale GC mod-
els that span a range in GC properties including metal-
licity, total mass, virial radius, and galactocentric dis-
tance. While [33] considered only 30 + 30M� BBHs (as
a fiducial case) and a realistic range of BBH formation
times and static GC properties, our models produce a
self-consistent population of BBHs with a realistic spec-
trum in BH masses, and their formation times. Satisfy-
ingly, the general trends observed in our strain-frequency
diagram agree quite well between our detailed models and
their more approximate ones.

C. Eccentricity Distribution in LISA

Figure 2 shows the eccentricity distribution for all BBH
mergers shown in Figure 1 at fpeak

GW
= 10�2 Hz, which

approximately corresponds to the so-called “bucket” of
the LISA sensitivity curve [e.g., 70]. The top and middle
panels, respectively, show the distributions of semi-major
axis and eccentricity at formation (following the last dy-

FIG. 2. The eccentricities of all merging BBHs at a GW fre-
quency of 10�2 Hz are shown on the x-axis of all three panels
above. As before, red color denotes in-cluster BBH mergers
and blue denotes BBHs that merge after ejection from their
host cluster. The top panel shows the semi-major axis at the
time of formation (defined as the last dynamical encounter) on
the y-axis. The middle panel shows on the y-axis the eccen-
tricity at the time of formation, and the bottom panel shows
the cumulative distribution of all sources at fpeak

GW
= 10�2 Hz.

The bottom panel also includes the eccentricity distribution
for a population of binaries formed in the Galactic field also
at fpeak

GW
= 10�2 Hz, created using the cosmic population syn-

thesis code, as described in the text.

namical encounter). All binaries formed through the GW
capture channel (yellow systems in Figure 1) form at fre-
quencies in excess of 10�2 Hz, so are not shown here.

As the bottom panel of Figure 2 shows, 78% (8%) of
the in-cluster (ejected) mergers will have e > 10�2 at
fpeak

GW
= 10�2 Hz. We also include in the bottom panel

the eccentricity distribution at fpeak

GW
= 10�2 Hz for a

population of BBHs formed in the Galactic field. This
population is created using the same binary evolution
models as our GC populations, but is initialized accord-
ing to a metallicity-dependent Milky Way star formation
history based on galaxy m12i in the Latte simulation
suite. The Latte suite of FIRE-2 cosmological, zoom-in,
baryonic simulations of Milky Way-mass galaxies [73],
part of the Feedback In Realistic Environments (FIRE)
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• Deep inspiral, can use analytic PN models
• Possible significant eccentricity in the LISA band
• Two populations: chirping, exiting the band / 

slowly-chirping, staying in band

[Kremer&al 2018]
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Waveform accuracy: goals 

Explorations of data analysis (5 yrs?) Data analysis for the mission (10 yrs?)

Interactions:
• EM observations: advance warning for 

EM partners ? Localisation of sources ?
• Instrument: impact of instrumental 

design choices on LISA science ?

Case for approximate waveforms in 
injection/recovery
• LISA science case: how well are we going 

to detect and characterise sources ? 
• Playground for data analysis techniques
• Explore tests of GR

• Detection: templates enabling the detection of all 
signals (effectualness) 

• Characterisation: waveform models enabling the 
recovery of source parameters without bias (faithfulness)

Challenges :
• Need waveforms realistic enough
• Physical effects: merger, higher harmonics, 

spin, precession, eccentricity, astro. effects
• Computational efficiency required

• Provide “final” waveforms with low 
enough systematic errors

• Residuals low enough to enable high-
accuracy tests of GR

• Computational costs: integration with 
data analysis pipeline, coexistence of 
slow/fast models for low-latency ?

• HPC resources in ~2035 ?

• Demonstrate feasibility of waveform 
developments in advance ?

LISA: Global fit
sources and 
instrument
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Waveform accuracy: tools

ph1|h2q “ 4Re

ª
df

h̃1pfqh̃˚
2 pfq

Snpfq

Bayesian formalism

• Matched-filtering overlap:

• Likelihood for Gaussian, stationary noise, for 
independent channels:

• Bayes theorem defines the posterior:

• Fisher matrix (high SNR limit):

lnL(d|✓) = �
X

channels

1

2
(h(✓)� d|h(✓)� d)
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• Effectualness of a template bank:
    
    Need to study full search, false-alarm rate

• Faithfulness:
   Max/averaged for different sets of params.
   Depends on detector

FF = maxh2bank(ĥ|ŝ)
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Which waveform accuracy ?

• Conservative criterion for bias, from 
unfaithfulness:

• Golden standard : Bayesian parameter 
estimation injection/recovery studies (costly)

• Intermediate approaches ?

systematic < statistical
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MM <
D

2SNR2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Solving two-body problem in General Relativity 
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Effective one-body theory

Numerical 
Relativity

Post-Newtonian theory

Perturbation 
theory 

gravitational 
self-force

(A
B &

 Sathyaprakash 14)

v2/c2 ~ GM/rc2

•GR is non-linear theory.  

• Einstein’s field equations can 
be solved: 

•Synergy between analytical and numerical relativity has been and will 
continue to be crucial.

- approximately, but analytically 
(fast way)  

- “exactly”, but numerically on 
supercomputers (slow way) 
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Faithfulness

[Note that only 7% of 200,000 points have matches < 97%.]

• Differences for large mass ratios (> 4) and large spins (> 0.8). 

(Bohe’,…,  AB et al. 16)

Comparing EOBNR & IMRPhenom models: inferring parameters

• Aligned/anti-aligned waveform models. Only dominant (2,2) mode.



Extending waveform model in all BBH parameter space

141 NR waveforms 
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validation

• Difficult to run NR simulations for large mass ratios (> 4) and large spins 
(> 0.8), with large number of GW cycles (> 50).

• For large mass ratios (> 4) combine PN & GSF results in EOB framework.
(Damour 09; Barausse et al. 12, Le Tiec et al. 12, Bini et al. 12-16, Antonelli et al. in progress)

(Bohe’,…,  AB et al. 16)
(q = 8,�1 = 0.85,�2 = 0.85)

NR waveform with only 
15 GW cycles, it  
constrains EOBNR 
model only for masses 
larger than 150 Msun. 

• Inclusion of GSF also important for EMRIs (LISA) and IMRIs (3G detectors).



Assessing accuracy requirements for SBHBs

• Compare different PN truncation orders in the phase
• No eccentricity yet in this analysis

• The 3PN order is sufficient for all sources, 2PN sufficient for slowly-chirping

8

FIG. 4. Top panel: stacked SNR distribution for PN sub-
populations, labeled with di↵erent colors. Each bin is divided
by the number of catalogs in our simulations, Ncat = 30, to
provide mean estimates. Bottom panel: same distribution
but selecting only systems with tc < 4 yr. The PN sub-
populations are constructed computing the faithfulness for
each event and considering the lowest PN order satisfying the
threshold value, from Eq. (8).

FIG. 5. Stacked coalescence time distribution for each sub-
population, color-coded as indicated in figure.

requirement. The upper panel shows that for the major-
ity of SBHBs, 1.5PN waveforms are su�cient. Indeed, it
is clear that the vast majority (⇡90%) of the SBHBs are
described accurately by using low PN waveform (PN < 2)
with only a small fraction of sources requiring 2.5PN or
higher-PN waveforms. The lower panel shows that the
sub-population of SBHBs with tc < 4 yr, i.e. those cross-

FIG. 6. Stacked cumulative coalescence time distribution
for the complete catalogs (top panel) and for each PN sub-
population (lower panel), color-coded as indicated in figure.
The vertical dashed black line represents tc = 4yr.

ing to the LIGO/Virgo band within the LISA lifetime,
generally require 2.5PN and 3PN waveforms. In fact 93%
(80%) of the SBHBs requiring 3PN (2.5PN) waveforms
fall in this sub-population. We also observe that the PN
requirements are largely independent of the SNR for the
global population, while for systems merging within the
mission lifetime, more stringent PN requirements corre-
spond to larger SNRs.
In Fig. 5 we plot the average number of sources as

a function of time to coalescence, again color-coded ac-
cording to the PN order required for a faithful recov-
ery of the signal. As expected from the analysis pre-
sented in the Section IV, longer coalescence times im-
ply less stringent requirement on the PN waveform ac-
curacy necessary to track the signal phase. Indeed PN
sub-populations are quite sharply separated in terms of
coalescence time. For tc < 4 yr the main contribution
comes from the 2.5PN and 3PN sub-populations. In the
interval 4 yr < tc < 10 yr, SBHBs require 2PN and 1.5PN
corrections to be appropriately described. As can be seen
in the top panel of Fig. 4, the larger sub-population
is the 1.5PN one, which dominates the distribution for
tc 2 [10, 100] yr, with an important contribution from
the 1PN population for tc ' 100 yr. For longer tc, most
systems can be modeled by 0PN waveforms.
We also computed the cumulative distribution of

sources as a function of coalescence time, divided accord-
ing to the required PN order in waveform modeling. The
result is presented in Fig. 6. The upper panel shows
the cumulative stacked distribution, color-coded for the
di↵erent PN sub-populations. The lower panel shows
the cumulative distribution separately for each PN sub-
population. As expected from the previous results, all

(Mangiagli&al 18)

Slowly-chirpingFast-chirping

Faithfulness criterion:

MM <
D

2SNR2
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Open problems, questions  & challenges

•Current waveform models for SMBHs, IMBHs, SBHBs do not contain 
all relevant physics. Which physics is needed for exploratory studies 
and by 2034? 

•How do we assess waveform accuracy? Can we use approximate 
criteria? 

•Which waveform accuracy is required for SMBHs, SBHBs, EMRIs, 
IMRIs for exploratory studies and by 2034? 

•Do accuracy requirements change for overlapping signals?

•Which accuracy is required for multi-band sources (LISA-3G)?



Open problems, questions & challenges

•What are the best strategies for building fast waveforms for 
exploratory studies and by 2034? How much accuracy we can 
sacrifice for speed?

•What are efficient strategies for parameter estimation of SMBHs, 
SBHBs, EMRIs, IMRIs?

•Can we forecast accuracy of future waveform models, and 
computational resources?

•Do we need novel and efficient (analytical and/or numerical) 
methods to solve 2-body problem?

•Several waveform modeling and data analysis challenges of LISA are 
also shared by 3G detectors.
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Current waveform models for SMBHs/IMBHs

•PN theory (Taylor-models) [only inspiral stage; fast; freq & time domain]

•Numerical relativity (NR waveforms) [IMR stages; slow; limited in length 
and parameter space; time domain]

•Effective-one-body theory (EOBNRvN models, TEOBResumS model), 
builds on PN, GSF, PM and NR [IMR stages; not sufficiently fast; time domain]

•Phenomenological framework (IMRPhenom models), builds on EOB and 
NR [IMR stages; fast; frequency domain]

•EOBNR reduced order models (EOBNR_ROM models) [IMR stages; fast; 
frequency domain]

•NR surrogate models, build on analytic IMR and NR [IMR stages; fast, but 
limited in length and parameter space; time domain]



(Abbott et al.  CQG 34 (2017) 104002 )

• Overall, no evidence for systematic bias relative to the statistical error of 
original parameter recovery of GW150914.

• Mock signal from NR simulation with 
parameters close to GW150914.

Systematics of current waveforms used in LIGO & Virgo



(Abbott et al.  CQG 34 (2017) 104002 )

(see also  Williamson et al. 2017)

•Parameter biases are found to occur 
  for some configurations disfavored  
  by data of GW150914.

• E.g., biases are present for binaries 
inclined edge-on to the detector over 
a small range of choices of polarization 
angles.

• Biases can be present for binaries with 
eccentricity > 0.05.

Systematics of current waveforms used in LIGO & Virgo (contd.)
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[Note that only 2.1% of 100,000 points have matches < 97%.]

Comparing EOBNR & IMRPhenom models: detection

• Aligned/anti-aligned waveform models. Only dominant (2,2) mode.

(Bohe’,…,  AB et al. 16)



PN versus PM expansion for conservative two-body dynamics

…
…
…
…

non-spinning compact objects

current known 
 PM results

unknowncurrent known 
 PN results

overlap between 
PN & PM results

…

• PM results (Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10,   
Damour 16-17, Guevara 17,  Vines 17, Bini & Damour 17-18, Vines, Steinhoff & AB 18)

(credit: Vines)

E(v) = �µ

2
v2 + · · ·



Comparison between 3PM and NR binding energies

• 2-body Hamiltonian at 3PM order computed using scattering-amplitude methods

(Antonelli, AB, Steinhoff, van de Meent & Vines 19)

(Cheung et al. 18, Bern et al. 19)

• Crucial to push PM calculations 
 at higher order.

NR

NR error

binding energy



New ideas, new methods to solve 2-body problem

•Post-Minkowskian results through modern scattering-amplitude 
calculations may help improving accuracy.

•For PM results to have “real” phenomenological impact (LIGO-Virgo-
LISA-3G), we need conservative and dissipative results (i.e., also 
waveforms).

⇠

0

BBB@

1

CCCA

2

=

0

BBB@

1

CCCA

2

On the right, the springy line represents a gluon, in a non-Abelian gauge theory

(Yang-Mills theory) (like QCD), and the dashed lines represent massive color charges

(like quarks). On the left, the wavy line represents a graviton, and the straight lines

represent massive bodies (like black holes). This is a cartoon graphic for the “double

copy” relationship between gauge theory and gravity. In a certain sense, the scattering

amplitudes for gravity are obtained from squaring (certain parts of) the gauge-theory

amplitudes.

1

BH

BH BH

BH

graviton gluon

quark

quark quark

quark

?

(credit: Vines)

•Need of more efficient resummation of 2-body problem for entire 
parameter space.

•Could 2-body problem be obtained from 1-body problem exactly?



The SXS Collaboration catalog of binary black hole simulations 19
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Figure 3. Coverage of the SXS Catalog parameter space. Each point is one simulation.
Shown here are the mass ratio q = m1/m2 and the spin magnitudes |‰1| and |‰2| of the
larger and smaller black hole, respectively. Orange points correspond to configurations
that are not precessing (spins aligned with the orbital angular momentum), while blue
points correspond to precessing configurations.

range of mass ratio and dimensionless spin magnitudes. The masses and spins plotted
here are measured at the relaxation time, as discussed in Sec. 2.2.2. In the scatter plots,
we see a substantial number of precessing simulations with mass ratios up to q = 4 and
|‰A| Æ 0.8, which were produced in order to construct the surrogate models of [81, 187].
The subscript A corresponds to the larger (A = 1) and smaller (A = 2) black holes. In
addition, we show improved coverage of the nonprecessing subspace with mass ratios
up to q = 8 and |‰A| Æ 0.8. New simulations in this part of the parameter space were
produced in order to construct the surrogate model of [82].

In contrast, there remain large regions that are unexplored in all BH merger catalogs,
including ours. The projections in q ≠ |‰A| space in Fig. 3 show that while we have fairly
dense coverage at low mass ratios, mass ratios larger than q = 4 remain sparsely explored
or completely unexplored. Similarly, aside from a few equal-mass, equal-aligned spin
cases, the region of spin magnitudes above 0.8 remains almost completely unexplored.
Few simulations exist with both high spins and high mass ratio. These are especially
challenging, as they require high resolution and delicate control of the computational

Illustration of NR status: SXS catalog 2019

Unfaithfulness distribution

(Boyle&al 19)

The SXS Collaboration catalog of binary black hole simulations 26
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Figure 9. Histogram of flat-noise-curve mismatches between the two highest-resolution
simulations for 20 uniformly distributed detector-direction angles for each case in the
catalog. The horizontal axis represents the mismatch, and the vertical axis represents
the fraction of all cases with that mismatch. The top plot shows the mismatch between
h computed via Regge-Wheeler-Zerilli extraction, and the bottom plot shows the
mismatch between �4f≠2 as computed via Newman-Penrose extraction. The factor of
f≠2 gives the top and bottom plots the same frequency weighting. The entries labeled
“convergent” indicate that the mismatch between the two highest resolutions is less than
the mismatch between the next two highest resolutions; the entries labeled “nonconv.”
indicate the opposite. Cases with only two resolutions are so labeled, and cases with
only a single resolution are omitted.

rotation ”„ of one relative to the other, and a time o�set ”t. For each pair of waveforms
and direction (◊, „) from the binary to the detector, this results in a mismatch

M(h1, h2) = 1 ≠ max
”„,”t

O(h1, h2, ”„, ”t). (24)

For every configuration we include in Figures 9 and 10, we evaluate the mismatch at 20
distinct source frame directions (◊, „).

Figure 9 shows a histogram of the resulting mismatches between the two highest
resolution simulations for the 1872 simulations in the catalog with more than one
resolution. The majority of the simulations, 1777, have more than two resolutions and in
these cases we can assess the convergence of the waveforms by comparing the mismatch
between the two highest resolutions with that between the second and third highest
resolutions. We expect the former mismatch to be smaller than the latter mismatch in
waveforms that converge with increasing resolution settings, and when this fails to occur
we label the waveform “nonconvergent.”

The top panel of Fig. 9 depicts the mismatches for the extrapolated metric
perturbation h computed using the Regge-Wheeler-Zerilli extraction technique described

Parameter 
coverage

Typical length:
Longest: 

�t < 5000� 10000M

�t = 105M
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•Demands on waveform accuracy are higher, modeling is more challenging.

•  3G detectors will observe binary coalescences with SNR (~20) even at 
high redshift (z ~10-15), and with SNR > 100 at z < 5.

mass ratio = 1

Binary’s masses/distance spanned by 3G detectors
(credit: Pürrer for 3G

 report)



•Demands on waveform accuracy are higher, modeling is more challenging.

•  3G detectors will observe binary coalescences with SNR (~10) up to 
redshift (z ~12), and with SNR > 100 at z < 2.

mass ratio = 10

Binary’s masses/distance spanned by 3G detectors
(credit: Pürrer for 3G

 report)



3G Sources

Numerical
Relativity

Post Newtonian theory

Gravitational self force

Effective One Body

1 10-1 10-2 10-3 10-4
1
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10-3

Mass ratio M2/M1

C
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pa
ct
ne
ss

(M
1+
M
2)
/r•GR is non-linear theory.  

- approximately, but analytically 
(fast way)  

- “exactly”, but numerically on 
supercomputers (slow way) 

• Einstein’s field equations can 
be solved: 

•Synergy between analytical and numerical relativity is crucial.

Need to solve 2-body problem in larger region of parameter space with 3G 

3G sources

(credit: Van de M
eent for 3G

 report)



New sources with 3G detectors: intermediate-mass black-hole inspirals

• Sweeping in band for a few thousand 
GW cycles, probing strong-field gravity.

•GSF is likely to be important, we need
to develop accurate waveform models.

geodesics in Kerr

M = 1000M�

•eccentricity = 0.5

• central BH’s spin = 0.9 GW frequency around 1Hz

GW frequency around 10 Hz

(credit: Van de M
eent for 3G

 report)
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SBHB Waveforms

Several flavours of models have been proposed that can describe stellar black
hole binary inspirals.

Taylor F2-like eccentric models (e.g. Tanay+ 1602.03081), based on
expanding PN phase and amplitudes for low eccentricities.

Taylor T4-like eccentric models (e.g. Huerta+ 1609.05933, AK+
1801.08542), based on PN expanding the phase evolution equation, and
expanding amplitudes for low eccentricities.

Moderately eccentric PN model (Moore & Yunes 1903.05203), based on
solving for phase functions as a function of eccentricity.

EOB eccentric model (Hinderer & Babak 1707.08426), based on a
reparametrization of the equations of motion.

EOB eccentric model (Cao & Han 1708.00166), based on treating
eccentricity as a perturbation to the circular EOB evolution equations.

Since those signals lie in the high-frequency range of the LISA band, all those
models need to be adapted to take into account the full LISA response.

29



SBHB Waveform Accuracy

Studies have looked at the convergence of the eccentricity expansion of the
amplitude series, and compared circular to eccentric phasing.

(AK+ 1801.08542)30



SBHB Waveform Accuracy

Can we compare the convergence properties of di↵erent PN phasing
flavours? Compare with EOB models? Are they all equivalent at 3PN
order?

What can we say about the convergence of PN eccentric phasing? What
can we say about the convergence of the eccentricity expansion in the
phase?

What can we say about the PN requirements for multiband binaries? Can
we achieve phase-locking between LISA and 3G detectors?

31



EMRI/IMRI Waveforms

Currently, three types of waveforms are being used to study extreme mass ratio
inspirals.

Analytic Kludge (Barack & Cutler gr-qc/0310125), based on treating the
orbit as a Newtonian one with parameters adiabatically evolving.

Numerical Kludge (Glampedakis+ gr-qc/0205033, Gair & Glampedakis
gr-qc/0510129), based on combining relativistic orbits with PN fluxes.

Fast Self-Forced Inspirals (van de Meent & Warburton 1802.05281), based
on reformulating self-force corrected equations of motion using near
identity transforms.

See high mass ratios panel tomorrow for more details.

32
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FIG. 6. SNR distribution for detectable events with AKS and AKK waveforms for all considered models.

FIG. 7. Top panel: Event rates (detected and intrinsic) as
function of the astrophysical model. Lower panel: Fraction
of detection with ⇢ > 20 with respect to the total number of
EMRIs featuring a central MBH with 104M� < M < 107M�,
considering all events at z < 4.5 (z < 6.5 for M4).

tions at these low masses out to z ⇡ 2 are extremely
challenging, whereas the bulk of LISA MBH binary ob-
servations are expected to be at z > 5, with only few
events expected at z < 2 (cf. [114]). EMRIs are a unique
opportunity to obtain a large sample of confirmed MBHs
at relatively low redshift. Figure 8 further highlights that
the number of detected EMRIs is sensitive to the mini-
mum mass scale of nuclear MBHs (Alexander and Bar-

Or [91] recently proposed a universal lower limit of about
2⇥105M�), but in the majority of the investigated mod-
els, we predict a few detections at M > 106M�, which
is a relatively safe mass range as it has already been ex-
plored by MBH measurements in the local Universe (see,
e.g., [115]).
Examples of LISA’s completeness as an EMRI survey

are given in Figure 10, where we plot the fraction of de-
tected sources in the (source-frame) mass–redshift plane
for selected models. In the default M1 case, LISA will
provide an essentially complete survey in the 105M�–
106M� mass range, out to z ⇡ 1, and it is still 50%
complete at z ⇡ 3 when AKK waveforms are considered.
If inspiralling COs are massive (M4), the survey is com-
plete out to z ⇡ 2 and still 50% complete out beyond
z ⇡ 4 for AKK waveforms.

B. Parameter estimation

Typical EMRIs spend O(105) orbits in the LISA fre-
quency band, and key parameters of the system are en-
coded in the fine details of the waveform phasing mod-
ulation (see, e.g., [51]). The redshifted MBH mass Mz

sets the characteristic observed frequencies for the EMRI.
The rate of inspiral is controlled by the mass ratio, and
so gives constraints on the redshifted CO mass mz. The
MBH spin a also influences the orbital frequencies, and

34

LISA sources and SNR: extreme mass ratio inspirals
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AK model provides only an approximation to the true
strong-field dynamics, as the orbital frequencies do not
exactly match [103], and features such as the final plunge
or transient resonances [64, 104] are neglected and cannot
be readily incorporated. However, the model is cheap to
generate and it should include the most important quali-
tative features of real EMRI signals. The simplicity of the
model allows it to be generated in the large numbers re-
quired to scope out EMRI science questions such as those
being explored in this paper, and so we use it here. The
AK model has been widely used for similar applications
in the literature, in particular it was the EMRI model
used in the context of the Mock LISA Data Challenges
(MLDCs) [105–108].

The AK model is known to be imperfect, and so in
order to quantify inaccuracies we consider two di↵erent
variants. In the classic work by Barack and Cutler [51],
the AK model was cut o↵ when the orbital frequency
reached the value corresponding to the Schwarzschild
LSO. We denote this form of the AK model by “AKS”,
where the “S” stands for “Schwarzschild”. Prograde in-
spirals into spinning MBH can get much closer before
plunge, generating many cycles of higher frequency and
amplitude. Thus, omitting those cycles from the model is
likely to significantly underestimate the possible signal-
to-noise ratio (SNR). An alternative is to continue the
inspiral until the frequency reaches the Kerr ISCO. We
denote this form of the AK model by “AKK”, where the
“K” stands for “Kerr”. The post-Newtonian evolution
equations used to construct the AK model are increas-
ingly inaccurate as the orbital separation decreases, and
so the additional portion of inspiral included in the AKK
model is unlikely to be accurately represented, and most
likely will lead to an over-estimate of the SNR. We will
present results for both the AKK model and the AKS
model in order to quantify the uncertainty that comes
from the modelling assumptions. SNRs can also be com-
puted using results from BH perturbation theory, in par-
ticular solutions to the Teukolsky equation, which pro-
vides the first-order radiative part of the perturbative
evolution. Teukolsky results for circular, equatorial in-
spirals into spinning BHs were presented in Finn and
Thorne [109], and we can use those results to assess the
accuracy of the AKS and AKK prescriptions.

Finn and Thorne [109] tabulate their results in terms
of corrections relative to a Newtonian inspiral. By set-
ting those corrections equal to 1 we can obtain SNRs
for Newtonian inspirals, which we can terminate at the
Schwarzschild ISCO or at the Kerr ISCO. This provides
an approximation to the AK model, which is built on
Newtonian inspirals, albeit with precession added and
inspiral augmented by higher order corrections. Figure 5
shows the sky-averaged horizon distance for a prograde,
circular, equatorial inspiral into a black hole with spin
a = 0.99, computed either using the Teukolsky fluxes, or
using Newtonian inspirals truncated at the two di↵erent
ISCOs. We see that, as expected, the approximate AKS
and AKK horizons bracket the accurate Teukolsky hori-
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FIG. 5. The redshift at which the sky-averaged SNR of a
prograde, circular, equatorial EMRI into a MBH with spin
a = 0.99 reaches the threshold % = 20. The horizon is shown
as a function of intrinsic MBH mass and for the two di↵er-
ent choices of the compact object mass used in these studies,
m = 10M� and m = 30M�. The horizon is computed us-
ing accurate Teukolsky fluxes and using a Newtonian inspiral
truncated either at the Schwarzschild ISCO, labelled “AKS”,
or at the Kerr ISCO, labelled “AKK”. Individual sources may
be detected to even larger distances if their orientation is near
optimal.

zon. The AKS horizon suggests increased sensitivity to
lower mass black holes, while the AKK horizon has peak
sensitivity at the same MBH mass as the Teukolsky hori-
zon. Although these are just approximations to the true
AKS and AKK horizons, we expect the true horizons to
have the same shape with the AKS horizon extending to
slightly higher redshift than the Newtonian calculations
indicate and the AKK horizon to slightly lower redshift,
still bracketing the true horizon.
Given a waveform model, we represent the sensitivity

of LISA to a given EMRI by a simple SNR threshold. If
the EMRI has SNR above the specified threshold, the sys-
tem will be detected, otherwise it will not. Early work on
EMRIs assumed that an SNR of 30 would be required for
detection, to allow for the complexities of LISA data anal-
ysis [62]. However, in the Mock LISA Data Challenges
EMRI signals with SNRs as low as ⇠ 15 were successfully
identified, albeit under idealized conditions [108]. There-
fore, we use a more modest SNR threshold of 20. The
SNR is calculated as

% = hh|hi
1/2 (35)

using the noise-weighted inner product [110]

hg|hi = 2

Z 1

0

g̃(f)h̃⇤(f) + g̃
⇤(f)h̃(f)

Sn(f)
df, (36)

where the EMRI signal is denoted by h(t;⇥), ⇥ repre-
sents the parameters of the signal, a tilde indicates the
Fourier transform of the signal, and Sn(f) is the noise
power spectral density.

[Babak&al 2017]

SNR=20 horizons for waveforms:
• Analytic Kludge, termination at 

Schwarzschild ISCO
• Analytic Kludge, termination at Kerr 

ISCO
• Teukolsky fluxes

SNR = 20
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Rate and SNR for12 
different astrophysical 
models:

[Babak&al 2017]
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LISA sources and SNR: extreme mass ratio inspirals

[Babak&al 2017] 10

Mass MBH Cusp M–� CO EMRI rate [yr�1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15

M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261

M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the e↵ect of cusp erosion following
MBH binary mergers (column 4), the M–� relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms.

of 2).2 Even smaller is the e↵ect of spin, a↵ecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more di�-
cult to directly plunge [88]), but this only a↵ects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–� relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s�1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large di↵erence in
masses of the two objects to regard the smaller as a per-
turbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [99] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [100, 101] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [102], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The
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LISA sources and SNR: galactic binaries

SNR and Fisher PE

• Quasi-monochromatic with 
• Astrophysical effects: mass transfer, 

perturbing third body

[Robson-Cornish 2017]

6 mo 1 yr 2 yr 4 yr

# detected 6,590 11,142 18,281 29,059
2D mapped 104 1,065 4,138 6,304
3D mapped 19 129 1,010 2,373
M measured 233 737 4,432 10,770

Table 2. The first row indicates the number of sources detected using the two Michelson-like
data channels for 6 months, 1 year, 2 year, and 4 year observation periods. If a source is
localized to better than a square degree we deemed it to be mapped on the sky (2D mapped).
Additionally, if its distance has also been obtained to better than 10% we deemed to have been
mapped in 3D. The last row indicates the number of sources whose chirp mass M have been
determined to better than 20%.

localized in sky position and distance, and the number for which we can measure the chirp mass.
The parameter measurement accuracy is estimated using the Fisher information matrix. The
limitations of this approach are well known, but we expect the estimates given in Table 2 would
be close to those found using a full Bayesian analysis since the results are for the best measured
systems, which typically have high SNR.
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Figure 4. Histograms for the SNR and parameter estimation errors for sources with SNR
> 20 using the two Michelson-like data channels for 4 year observation period. The orbital
period (upper right) is determined to better than a second accuracy, reflecting the precision
to which we expect to measure the galactic binary frequencies. In the lower left panel we see
that the angular resolution of many sources is determined to within a square degree. Distance
is the hardest parameter to extract, as depicted by the lower right panel. Results which are
nonphysical (i.e. �D/D > 1) are dashed.

Figure 4 shows histograms of the SNR, and the expected accuracy in the measurement of
orbital period, sky location and distance for systems with SNR > 20, assuming a 4 year mission

Waveforms

f, ḟ , f̈
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6 mo 1 yr 2 yr 4 yr

# detected 6,590 11,142 18,281 29,059
2D mapped 104 1,065 4,138 6,304
3D mapped 19 129 1,010 2,373
M measured 233 737 4,432 10,770

Table 2. The first row indicates the number of sources detected using the two Michelson-like
data channels for 6 months, 1 year, 2 year, and 4 year observation periods. If a source is
localized to better than a square degree we deemed it to be mapped on the sky (2D mapped).
Additionally, if its distance has also been obtained to better than 10% we deemed to have been
mapped in 3D. The last row indicates the number of sources whose chirp mass M have been
determined to better than 20%.

localized in sky position and distance, and the number for which we can measure the chirp mass.
The parameter measurement accuracy is estimated using the Fisher information matrix. The
limitations of this approach are well known, but we expect the estimates given in Table 2 would
be close to those found using a full Bayesian analysis since the results are for the best measured
systems, which typically have high SNR.
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Figure 4. Histograms for the SNR and parameter estimation errors for sources with SNR
> 20 using the two Michelson-like data channels for 4 year observation period. The orbital
period (upper right) is determined to better than a second accuracy, reflecting the precision
to which we expect to measure the galactic binary frequencies. In the lower left panel we see
that the angular resolution of many sources is determined to within a square degree. Distance
is the hardest parameter to extract, as depicted by the lower right panel. Results which are
nonphysical (i.e. �D/D > 1) are dashed.

Figure 4 shows histograms of the SNR, and the expected accuracy in the measurement of
orbital period, sky location and distance for systems with SNR > 20, assuming a 4 year mission
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Length of LISA signals: for the observer

t(SNR): time to merger left when the signals has accumulated a given SNR

• SNR=1 assuming everything before that 
point can be neglected in PE

• SNR=10 as the time to merger 
left when we can claim detection
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Length of LISA signals: for waveform models

t(SNR)/M: same length of signal, but seen in geometric units for 
waveforms models

• SNR=1 assuming everything before that 
point can be neglected in PE

• SNR=10 as the time to merger 
left when we can claim detection
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LISA: simulated catalog for MBHB astrophysical models
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Astrophysical models:
• Heavy seeds - delay (35 / 5yrs)
• Light seeds - no delay (627 / 5yrs) 
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LISA: simulated catalog for MBHB astrophysical models

Astrophysical models:
• Heavy seeds - delay (35 / 5yrs)
• Light seeds - no delay (627 / 5yrs) 
• PopIII seeds - delay (189 / 5yrs)

 [Barausse 2012] 
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Higher harmonics in the waveform

The role of higher harmonics

h+ � ih⇥ =
X

�2Y`m(◆,')h`m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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• Distance/inclination degeneracy broken
• Phase independently measured

M = 2.106M�, q = 3, � = 0, z = 4
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Bayesian analysis

• Setting the noise realization to 0

• Amplitude/Phase sparse representation, inner products mode-by-mode

Response Code

Bayesian samplers

Likelihood evaluation

• MultiNest (Bambi implementation) [Feroz&al 2009]

• Parallel-tempering MCMC with differential evolution [Baker]

• Pre-LDC FD LISA response C code, implementing [Marsat&Baker arXiv/1806.10734]

• Same as pyFDresponse in LDC, used here at leading order

Likelihood cost
Single mode h22: 1-3ms

5 modes hlm: 15ms

Waveforms
• Non-spinning waveforms with higher modes: EOBNRv2HM

• Reduced order model
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SMBH analysis setting

Sources
• Plausible SMBH sources at z=4
• Masses
• Vary orientation

EvaluationsSNR
Multinest:
PTMCMC:

I II
22 857 645
HM 945 666

120 · 106
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M = 2 · 106 M�, q = 2
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SMBH 22-mode PE: normal case

injection
ptmcmc 22
multinest 22
Fisher Sky position

Distance-inclination
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SMBH 22-mode PE: degenerate case

injection
ptmcmc 22
multinest 22
Fisher Sky position

Distance-inclination
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Understanding degeneracies

A projection effect for the marginal posterior
Sky, full likelihood 22-mode

Sky, 22-mode, ignoring LISA motion 
and pinning masses and time

The role of higher harmonics

h+ � ih⇥ =
X

�2Y`m(◆,')h`m
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• Distance/inclination degeneracy broken
• Phase independently measured

injection
ptmcmc 22
multinest 22
analytic 
degeneracy
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SMBH HM PE: normal case

injection
ptmcmc 22
ptmcmc HM

Sky position

Distance-inclination
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SMBH HM PE: degenerate case

injection
ptmcmc 22
ptmcmc HM

Sky position

Distance-inclination
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SMBH PE: accumulation of information with time

Method
• Represent a cut in time-to-merger by a cut in frequency, becomes inaccurate at merger
• Use PTMCMC sampler with higher modes

For this system, 
8-maxima sky 
degeneracy only  
disappears at 
merger

LISA-frame sky 
position:

SNR-based time cuts:

SNR DeltaT

10 40h

42 2.5h

167 7min
666 -
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SOBH analysis setting

Sources

• Plausible SOBH sources at low z
• Masses

EvaluationsSNR
Multinest:
PTMCMC:M = 41 M�, q = 1.05
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SOBH PE: not-completely-Gaussian case II
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SOBH PE: highlights

Mostly Gaussian posteriors, but…

Highlights and limitations

• Mostly Gaussian posteriors, the two 
samplers agree very well

• Very accurate extraction of masses 
(but will be affected by spin)

• Good sky localization, even for these 
low SNRs

• We assumed we solved the search problem
• Narrow priors used in masses
• Low-SNR zero-noise analysis less reliable
• Single-source assumption ignores the 

population of other SOBHs
• Including spins will introduce degeneracies 

with the masses
• To be extended to narrow-band signals

Distance-inclination Sky position

Case 1 Case II Case 1 Case II
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Understanding degeneracies in the likelihood

The face-on / face-off limit

• Two branches: close to face-on or face-off

• Effective amplitude and phase degenerate in 
distance/inclination and in phase/polarization

Explicit solution for the degeneracy

For example for sin4
◆

2
⌧ 1
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Then line degeneracy for both
              and (DL, ◆)
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Solution : ⇢ =

s����
1 + ir

1� ir

����

sin�⇤
L =

⇢� 1

⇢+ 1

�⇤
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1

4
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1 + ir
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k⇡

2
.
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Reproduce          of injection if condition on 
sky position is met:

sa, se
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+ approximate symmetry
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r =
sinja

sinje

=
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a
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Exploring the analytic simplified extrinsic likelihood

injection
ptmcmc
multinest

• Very extended degeneracies 
• Multinest only captures a small 

region of the degenerate likelihood
• Extra symmetry
• Qualitatively explains what multinest 

is missing in the actual analysis

lnL = �1

2
⇤
⇣��sa � sinja

��2 +
��se � sinje

��2
⌘
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