
Applications of vertex operator constructions
and character theory to branching problems

of affine Kac-Moody algebras

Alex J. Feingold, Quincy Loney and Christopher Mauriello

Department of Mathematical Sciences
State University of New York

Binghamton, New York 13902–6000, U.S.A.

– p.



Symmetries, Unification and the
Search for Quantum Gravity

A Conference on the Occasion of
Hermann Nicolai’s 60th Birthday

Organizers: Axel Kleinschmidt and Stefan Theisen

Max-Planck Institute for Gravitational Physics
Albert Einstein Institute

Potsdam, Germany, September 6-8, 2012

– p.



Introduction

Branching rule problems: fundamental in Lie algebra
representation theory. Given k ⊂ g and g-module, V ,
determine the k-module structure of V .

– p.



Introduction

Branching rule problems: fundamental in Lie algebra
representation theory. Given k ⊂ g and g-module, V ,
determine the k-module structure of V .

Example 1: g is the simple Lie algebra over C of type D4,
dim(g) = 28, V = g the irreducible adjoint representation, σ
an order 3 Dynkin diagram triality automorphism.

– p.



Introduction

Branching rule problems: fundamental in Lie algebra
representation theory. Given k ⊂ g and g-module, V ,
determine the k-module structure of V .

Example 1: g is the simple Lie algebra over C of type D4,
dim(g) = 28, V = g the irreducible adjoint representation, σ
an order 3 Dynkin diagram triality automorphism.

Fixed points k = gσ form a subalgebra of type G2,
dim(k) = 14, and g = k ⊕ W7 ⊕ W7, where W7 is the
7-dimensional irrep of G2.
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Example 2: g is of type E6, dim(g) = 78, τ is the order 2
Dynkin diagram automorphism, the fixed point subalgebra
k = gτ with dim(k) = 52 is of type F4, and V = g = k ⊕ W26,
where W26 is the 26-dimensional irrep of F4.
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where W26 is the 26-dimensional irrep of F4.

Computer programs do such computations when g is finite
dimensional simple. More challenging to solve the
branching rule problem for an infinite dimensional module V̂
of the infinite dimensional affine Kac-Moody Lie algebras
k̂ ⊂ ĝ.
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Example 2: g is of type E6, dim(g) = 78, τ is the order 2
Dynkin diagram automorphism, the fixed point subalgebra
k = gτ with dim(k) = 52 is of type F4, and V = g = k ⊕ W26,
where W26 is the 26-dimensional irrep of F4.

Computer programs do such computations when g is finite
dimensional simple. More challenging to solve the
branching rule problem for an infinite dimensional module V̂
of the infinite dimensional affine Kac-Moody Lie algebras
k̂ ⊂ ĝ.

Main tool: Goddard-Kent-Olive coset construction of
Virasoro operators which commute with k̂ and give the
space of k̂ highest weight vectors in V̂ the structure of a
Virasoro module.
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We present here the results of two such projects:

(1) The dissertation research of Quincy Loney on branching

of the four level-1 irreps of ĝ of type D
(1)
4 w.r.t. its subalgebra

k̂ of type G
(1)
2 , using the fermionic spinor construction,
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of the four level-1 irreps of ĝ of type D
(1)
4 w.r.t. its subalgebra

k̂ of type G
(1)
2 , using the fermionic spinor construction,

(2) The dissertation research of Christopher Mauriello on

branching of the three level-1 irreps of ĝ of type E
(1)
6 w.r.t.

its subalgebra k̂ of type F
(1)
4 , using the bosonic lattice

construction.
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Affine Algebra Background

For g finite dimensional simple of type Xℓ with normalized

Killing form 〈·, ·〉, the affinization of g of type X
(1)
ℓ is

ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd
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ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd

and writing x(m) = x⊗ tm for x ∈ g, m ∈ Z, the brackets are

[x(m), y(n)] = [x, y](m + n) + m〈x, y〉δm,−nc

[d, x(m)] = mx(m), [c, x(m)] = 0 = [c, d].

– p.



Affine Algebra Background

For g finite dimensional simple of type Xℓ with normalized

Killing form 〈·, ·〉, the affinization of g of type X
(1)
ℓ is

ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd

and writing x(m) = x⊗ tm for x ∈ g, m ∈ Z, the brackets are

[x(m), y(n)] = [x, y](m + n) + m〈x, y〉δm,−nc

[d, x(m)] = mx(m), [c, x(m)] = 0 = [c, d].

The central element c acts on an irreducible ĝ-module by a
scalar called the level of that module.

– p.



Loney Project Background

In 1991, Feingold, Frenkel and Ries gave a spinor
construction of the vertex operator para-algebra

V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 2 ⊕ V̂ 3,

whose summands are 4 level-1 irreducible representations

(irreps) of the affine Kac-Moody algebra D
(1)
4 .
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Loney Project Background

In 1991, Feingold, Frenkel and Ries gave a spinor
construction of the vertex operator para-algebra

V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 2 ⊕ V̂ 3,

whose summands are 4 level-1 irreducible representations

(irreps) of the affine Kac-Moody algebra D
(1)
4 .

The triality group S3 = 〈σ, τ | σ3 = 1 = τ2, τστ = σ−1〉 in
Aut(V̂ ) was constructed, preserving V̂ 0 and permuting V̂ i,
i = 1, 2, 3.
V̂ is 1

2Z-graded; V̂ i
n denotes the n-graded subspace of V̂ i.

Vertex operators Y (v, z) for v ∈ V̂ 0
1 represent D

(1)
4 on V̂ ,

while those for which σ(v) = v represent G
(1)
2 .
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V̂ decomposes into a direct sum of G
(1)
2 irreps by a two-step

process, first decomposing with respect to the intermediate

subalgebra B
(1)
3 represented by Y (v, z) for τ(v) = v.
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V̂ decomposes into a direct sum of G
(1)
2 irreps by a two-step

process, first decomposing with respect to the intermediate

subalgebra B
(1)
3 represented by Y (v, z) for τ(v) = v.

There are three vertex operators

Y (ωD4
, z), Y (ωB3

, z), Y (ωG2
, z),

each representing the Virasoro algebra given by the
Sugawara constructions from the three algebras.
These give two commuting coset Virasoro constructions,

Y (ωD4
− ωB3

, z) and Y (ωB3
− ωG2

, z),

with central charges 1/2 and 7/10, resp., the first

commuting with B
(1)
3 , the second commuting with G

(1)
2 .
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This gives the space of highest weight vectors for G
(1)
2 in V̂

as sums of tensor products of irreducible Virasoro modules
L(1/2, h1) ⊗ L(7/10, h2).
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The dissertation research of Quincy Loney explicitly
constructs these coset Virasoro operators, and uses them

to find the decomposition of V̂ with respect to G
(1)
2 by finding

12 highest weight vectors w.r.t. V ir1/2 × V ir7/10 × G
(1)
2 .
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This gives the space of highest weight vectors for G
(1)
2 in V̂

as sums of tensor products of irreducible Virasoro modules
L(1/2, h1) ⊗ L(7/10, h2).

The dissertation research of Quincy Loney explicitly
constructs these coset Virasoro operators, and uses them

to find the decomposition of V̂ with respect to G
(1)
2 by finding

12 highest weight vectors w.r.t. V ir1/2 × V ir7/10 × G
(1)
2 .

This work also provides a spinor construction of the 7/10

Virasoro modules inside V̂ , and of a vertex operator algebra

naturally associated with the basic representation of G
(1)
2 .
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Mauriello Project Background

The dissertation research of Christopher Mauriello uses the
bosonic lattice construction of the vertex operator
para-algebra

V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 6,

whose summands are the 3 level-1 irreps of E
(1)
6 .
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Mauriello Project Background

The dissertation research of Christopher Mauriello uses the
bosonic lattice construction of the vertex operator
para-algebra

V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 6,

whose summands are the 3 level-1 irreps of E
(1)
6 .

The vertex operators Y (ωE6
− ωF4

, z) provide a coset
Virasoro representation with central charge 4/5, giving the
decomposition of each V̂ i as a sum of tensor products
L(4/5, h)⊗W (Ωj), where W (Ωj), j = 0, 4, are the two level-1

F
(1)
4 -modules.
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Finite Spinor Constructions

The spinor construction of four irreps of Dℓ starts with
A ∼= C

2ℓ equipped with a nondegenerate symmetric bilinear
form, 〈·, ·〉, and a polarization of A = A+ ⊕ A− into isotropic
subspaces, A± ∼= C

ℓ.
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subspaces, A± ∼= C

ℓ.
The Clifford algebra Cliffℓ(A) is the 22ℓ-dimensional
associative algebra with unit 1 generated by A with relations
ab + ba = 〈a, b〉1, ∀a, b ∈ A.
Define the “normal ordered" elements, : ab : = 1

2(ab − ba),
and the subspace g spanned by them. Then the
commutator

[: ab :, : cd :] = 〈a, d〉 : bc : −〈a, c〉 : bd : +〈b, c〉 : ad : −〈b, d〉 : ac :

shows that g is a Lie algebra inside Cliffℓ(A). It is not hard
to show that it is isomorphic to so(2ℓ, C) of type Dℓ.
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Furthermore, the commutator

[: ab :, c] = 〈b, c〉a − 〈a, c〉b

shows that A is a g-module, the natural representation.
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Furthermore, the commutator

[: ab :, c] = 〈b, c〉a − 〈a, c〉b

shows that A is a g-module, the natural representation.
To obtain two more g-modules, construct the left Clifford
module CMℓ(A) as the quotient of Cliffℓ(A) by the left
ideal, I+, generated by A+.
Denote the coset 1 + I+ by vac and note that A+ · vac = 0
so, in fact,

CMℓ(A) = Cliffℓ(A) · vac =
∧

(A−) · vac

is an irreducible left Cliffℓ(A)-module of dimension 2ℓ.
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Under the action of g we have the decomposition into two
g-modules

CMℓ(A) = CMℓ(A)0 ⊕ CMℓ(A)1 ,

where the decomposition is according to the parity of the
number of “creation operators” applied to vac,

CMℓ(A)i =
∧

i(A−) · vac

each of dimension 2ℓ−1, the “spinor" irreps of g.
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Under the action of g we have the decomposition into two
g-modules

CMℓ(A) = CMℓ(A)0 ⊕ CMℓ(A)1 ,

where the decomposition is according to the parity of the
number of “creation operators” applied to vac,

CMℓ(A)i =
∧

i(A−) · vac

each of dimension 2ℓ−1, the “spinor" irreps of g.

All of this generalizes to the affine algebra ĝ of type D
(1)
ℓ ,

providing four level 1 irreps.
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Affine Spinor Constructions

Let Z = Z + 1
2 or Z = Z and let

A(Z) =
⊕

m∈Z

A ⊗ tm

spanned by the elements a(m) = a ⊗ tm, a ∈ A, m ∈ Z.
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Affine Spinor Constructions

Let Z = Z + 1
2 or Z = Z and let

A(Z) =
⊕

m∈Z

A ⊗ tm

spanned by the elements a(m) = a ⊗ tm, a ∈ A, m ∈ Z.
Equip A(Z) with the nondegenerate symmetric bilinear form

〈a(m), b(n)〉 = 〈a, b〉δm,−n

and polarize A(Z) = A(Z)+ ⊕A(Z)− so that a(±m) ∈ A(Z)±

when m > 0 for all a ∈ A, but a(0) ∈ A(Z)± for a ∈ A±.
Cliffℓ(A(Z)) is the associative algebra with unit 1
generated by A(Z) with relations

a(m)b(n) + b(n)a(m) = 〈a(m), b(n)〉1.

– p. 14



Let I(Z)+ be the left ideal of Cliffℓ(A(Z)) generated by
A(Z)+ and define the left Cliffℓ(A(Z))-module

CMℓ(A(Z)) = Cliffℓ(A(Z))/I(Z)+.
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Let I(Z)+ be the left ideal of Cliffℓ(A(Z)) generated by
A(Z)+ and define the left Cliffℓ(A(Z))-module

CMℓ(A(Z)) = Cliffℓ(A(Z))/I(Z)+.

Denote the coset 1 + I(Z)+ by vac(Z) and note that
A(Z)+ · vac(Z) = 0 so, in fact,

CMℓ(A(Z)) = Cliffℓ(A(Z)) · vac(Z) =
∧

(A(Z)−) · vac(Z)

is an irreducible left Cliffℓ(A(Z))-module.
For convenience, let vac = vac(Z + 1

2) and vac′ = vac(Z).
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Let
CMℓ(A(Z))0 =

∧

even(A(Z)−) · vac(Z)

CMℓ(A(Z))1 =
∧

odd(A(Z)−) · vac(Z).
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CMℓ(A(Z))1 =
∧

odd(A(Z)−) · vac(Z).

In order to represent ĝ we use generating functions of
operators
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Let
CMℓ(A(Z))0 =

∧

even(A(Z)−) · vac(Z)

CMℓ(A(Z))1 =
∧

odd(A(Z)−) · vac(Z).

In order to represent ĝ we use generating functions of
operators

a(w) =
∑

m∈Z

a(m)w−m−1/2.

Define the “fermionic normal ordering”

: a(m)b(n) : =















a(m)b(n) for m < n

1/2
(

a(m)b(n) − b(n)a(m)
)

for m = n

−b(n)a(m) for m > n.
– p. 16



Then the coefficients of the generating functions

: a(w)b(w) : =
∑

k∈Z

(

∑

m∈Z

: a(k − m)b(m) :

)

w−k−1.

represent ĝ on CMℓ(A(Z))i, i = 0, 1, and Z = Z, Z + 1
2 ,

giving the four irreducible level 1 representations.
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which is 1
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represent ĝ on CMℓ(A(Z))i, i = 0, 1, and Z = Z, Z + 1
2 ,

giving the four irreducible level 1 representations.
These operators are just the tip of a large iceberg, the
vertex operator superalgebra formed by CMℓ(A(Z + 1

2)),
which is 1

2Z-graded, and for each vector v in it we have a
generating function of operators Y (v, w). For example,

Y (a(−1/2)vac, w) = a(w), and
Y (a(−1/2)b(−1/2)vac, w) = : a(w)b(w) : .

– p. 17
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Triality When n = 4

When ℓ = 4 a special S3 symmetry occurs, called “triality”,
which plays a vital role. Let

V 1 = A, V 2 = CM4(A)0, V 3 = CM4(A)1,

C = V 1 ⊕ V 2 ⊕ V 3,

V̂ 0 = CM4(A(Z + 1
2))0, V̂ 2 = CM4(A(Z))0,

V̂ 1 = CM4(A(Z + 1
2))1, V̂ 3 = CM4(A(Z))1,

V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 2 ⊕ V̂ 3.

C has a commutative, nonassociative operation, ◦, so that
the ◦ action of V 1 on V 2 ⊕ V 3 is the Clifford module action.
This “Chevalley algebra”, has an automorphism σ of order
3, cyclically permuting V 1, V 2, V 3.
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The symmetry σ and the bilinear form on C allows each V k

to generate a Clifford algebra Cliff
(k)
4 , and lets us identify

V k′

⊕ V k′′

as its module CM
(k)
4 , where (k, k′, k′′) is a cyclic

permutation of (1, 2, 3).
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to generate a Clifford algebra Cliff
(k)
4 , and lets us identify

V k′

⊕ V k′′

as its module CM
(k)
4 , where (k, k′, k′′) is a cyclic

permutation of (1, 2, 3).

But then the three constructions of g of type D4 given by
: ab : for a, b ∈ V k can be shown to coincide as operators on
C, related by the Lie algebra automorphism
σ(: ab :) = : (σa)(σb) :.

– p. 19



The symmetry σ and the bilinear form on C allows each V k

to generate a Clifford algebra Cliff
(k)
4 , and lets us identify

V k′

⊕ V k′′

as its module CM
(k)
4 , where (k, k′, k′′) is a cyclic

permutation of (1, 2, 3).

But then the three constructions of g of type D4 given by
: ab : for a, b ∈ V k can be shown to coincide as operators on
C, related by the Lie algebra automorphism
σ(: ab :) = : (σa)(σb) :.

The eigenspace decomposition of g under σ then yields a
14-dimensional Lie subalgebra of fixed points, g0, and two
7-dimensional subspaces, g1 and g2 which are irreducible
g0-modules. In fact, g0 is of type G2.

– p. 19



Spinor Construction of G
(1)
2

We may lift σ to σ̂ : V̂ → V̂ so that σ̂(V̂ 0) = V̂ 0 and σ̂

permutes V̂ 1, V̂ 2 and V̂ 3 cyclically. For v ∈ V̂ 0 we have

σ̂Y (v, z)σ̂−1 = Y (σ̂(v), z).

– p. 20



Spinor Construction of G
(1)
2

We may lift σ to σ̂ : V̂ → V̂ so that σ̂(V̂ 0) = V̂ 0 and σ̂

permutes V̂ 1, V̂ 2 and V̂ 3 cyclically. For v ∈ V̂ 0 we have

σ̂Y (v, z)σ̂−1 = Y (σ̂(v), z).

For v ∈ V̂ 0
1 fixed by σ̂, the coefficients of the vertex operator

Y (v, z) represent the affine algebra ĝ0 of type G
(1)
2 on V̂ .

The subspace of all fixed points of σ̂ in V̂ 0 is a sub-VOA of

V̂ 0 whose relationship with the basic level 1 module of G
(1)
2

we may study.

– p. 20



Spinor Construction of G
(1)
2

We may lift σ to σ̂ : V̂ → V̂ so that σ̂(V̂ 0) = V̂ 0 and σ̂

permutes V̂ 1, V̂ 2 and V̂ 3 cyclically. For v ∈ V̂ 0 we have

σ̂Y (v, z)σ̂−1 = Y (σ̂(v), z).

For v ∈ V̂ 0
1 fixed by σ̂, the coefficients of the vertex operator

Y (v, z) represent the affine algebra ĝ0 of type G
(1)
2 on V̂ .

The subspace of all fixed points of σ̂ in V̂ 0 is a sub-VOA of

V̂ 0 whose relationship with the basic level 1 module of G
(1)
2

we may study.

The main point is to find the decomposition of each V̂ i into

a direct sum of G
(1)
2 -modules.

– p. 20



Representations of Virasoro Algebras

In V̂ 0
2 there is a special element ωD4

such that the
coefficients of

Y (ωD4
, z) =

∑

m∈Z

Lmz−m−2

represent the Virasoro algebra on V̂ ,
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Representations of Virasoro Algebras

In V̂ 0
2 there is a special element ωD4

such that the
coefficients of

Y (ωD4
, z) =

∑

m∈Z

Lmz−m−2

represent the Virasoro algebra on V̂ ,

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm,−nCD4

where CD4
= 4 is the central charge, and for any x(k) in

D
(1)
4 , we have [Lm, x(k)] = −kx(k + m).
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Representations of Virasoro Algebras

In V̂ 0
2 there is a special element ωD4

such that the
coefficients of

Y (ωD4
, z) =

∑

m∈Z

Lmz−m−2

represent the Virasoro algebra on V̂ ,

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm,−nCD4

where CD4
= 4 is the central charge, and for any x(k) in

D
(1)
4 , we have [Lm, x(k)] = −kx(k + m).

Let bases of A+ and A− be {a1, a2, a3, a4} and
{a∗1, a

∗
2, a

∗
3, a

∗
4}, respectively, such that
〈ai, a

∗
j〉 = δi,j , 〈ai, aj〉 = 0 = 〈a∗i , a

∗
j〉

. – p. 21



Use the following notations for elements in V̂ 0
2 , where

i⊛ = a⊛

i and each appearance of ⊛ may be ∗ or a blank:

i⊛j⊛ = a⊛

i (−3/2)a⊛

j (−1/2)vac,

ii∗jj∗ = ai(−1/2)a∗i (−1/2)aj(−1/2)a∗j(−1/2)vac,

1⊛2⊛3⊛4⊛ = a⊛

1 (−1/2)a⊛

2 (−1/2)a⊛

3 (−1/2)a⊛

4 (−1/2)vac,

J = 11∗22∗ + 11∗33∗ − 22∗33∗

+1∗234 + 12∗3∗4∗ − 1∗234∗ − 12∗3∗4.
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We can then write

ωD4
=

1

2

4
∑

i=1

(ii∗ + i∗i)
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We can then write

ωD4
=

1

2

4
∑

i=1

(ii∗ + i∗i)

ωB3
= ωD4

−
1

4
(44∗ + 4∗4 + 44 + 4∗4∗)
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We can then write

ωD4
=

1

2

4
∑

i=1

(ii∗ + i∗i)

ωB3
= ωD4

−
1

4
(44∗ + 4∗4 + 44 + 4∗4∗)

ωG2
= ωB3

−

[

1
10

∑3
i=1(ii

∗ + i∗i)

+ 1
20 (44∗ + 4∗4 − 44 − 4∗4∗) − 1

5 J

]
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Then the coefficients of the corresponding vertex operators

Y (ωB3
, z) =

∑

m∈Z
LB3

m z−m−2

Y (ωG2
, z) =

∑

m∈Z
LG2

m z−m−2

represent the Virasoro algebra on V̂ with central charges

CB3
=

7

2
and CG2

=
14

5
, resp.
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Then the coefficients of the corresponding vertex operators

Y (ωB3
, z) =

∑

m∈Z
LB3

m z−m−2

Y (ωG2
, z) =

∑

m∈Z
LG2

m z−m−2

represent the Virasoro algebra on V̂ with central charges

CB3
=

7

2
and CG2

=
14

5
, resp.

These operators only satisfy bracket relations
[LTr

m , x(k)] = −kx(k + m) for x(k) where x is in the
corresponding subalgebra Tr = B3 or Tr = G2.
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Then the coset Virasoro construction (Goddard, Kent,
Olive) says that the differences

Y (ωD4
− ωB3

, z) =
∑

m∈Z
L

1/2
m z−m−2

Y (ωB3
− ωG2

, z) =
∑

m∈Z
L

7/10
m z−m−2

– p. 25



Then the coset Virasoro construction (Goddard, Kent,
Olive) says that the differences

Y (ωD4
− ωB3

, z) =
∑

m∈Z
L

1/2
m z−m−2

Y (ωB3
− ωG2

, z) =
∑

m∈Z
L

7/10
m z−m−2

represent the Virasoro algebra on V̂ with central charges

CD4
− CB3

=
1

2
and CB3

− CG2
=

7

10
, resp,
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Then the coset Virasoro construction (Goddard, Kent,
Olive) says that the differences

Y (ωD4
− ωB3

, z) =
∑

m∈Z
L

1/2
m z−m−2

Y (ωB3
− ωG2

, z) =
∑

m∈Z
L

7/10
m z−m−2

represent the Virasoro algebra on V̂ with central charges

CD4
− CB3

=
1

2
and CB3

− CG2
=

7

10
, resp,

and have the commutation relations

[L
1/2
m , L

7/10
n ] = 0, [L

1/2
m , B

(1)
3 ] = 0, [L

7/10
m , G

(1)
2 ] = 0.

– p. 25



This means that the Virasoro module, L(1/2, h1), generated

by the operators L
1/2
m , m < 0, applied to any highest weight

vector for D
(1)
4 , is a space of highest weight vectors for B

(1)
3 .
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This means that the Virasoro module, L(1/2, h1), generated

by the operators L
1/2
m , m < 0, applied to any highest weight

vector for D
(1)
4 , is a space of highest weight vectors for B

(1)
3 .

The Virasoro modules, L(7/10, h2), generated by the

operators L
7/10
n , n < 0, applied to any of the vectors in

L(1/2, h1), form a space of highest weight vectors for G
(1)
2 .
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This means that the Virasoro module, L(1/2, h1), generated

by the operators L
1/2
m , m < 0, applied to any highest weight

vector for D
(1)
4 , is a space of highest weight vectors for B

(1)
3 .

The Virasoro modules, L(7/10, h2), generated by the

operators L
7/10
n , n < 0, applied to any of the vectors in

L(1/2, h1), form a space of highest weight vectors for G
(1)
2 .

This shows that the decomposition of the D
(1)
4 -modules with

respect to G
(1)
2 are sums of tensors of the form

L(1/2, h1) ⊗ L(7/10, h2) ⊗ W (Ωi)

for some irreducible level-1 G
(1)
2 -module W (Ωi).
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Loney’s Main Theorem

Theorem: V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 1 ⊕ V̂ 3 decomposes w.r.t. G
(1)
2

into twelve V ir1/2 × V ir7/10 × G
(1)
2 -modules as follows:

V̂ =
(

L(1
2 , 0) ⊕ L(1

2 , 1
2)

)

⊗
(

L( 7
10 , 0) ⊕ L( 7

10 , 3
2)

)

⊗ W (Ω0)

⊕
(

L(1
2 , 0) ⊕ L(1

2 , 1
2)

)

⊗
(

L( 7
10 , 1

10) ⊕ L( 7
10 , 3

5)
)

⊗ W (Ω2)

⊕
(

L(1
2 , 1

16) ⊗ L( 7
10 , 3

80) ⊕ L(1
2 , 1

16) ⊗ L( 7
10 , 3

80)
)

⊗ W (Ω2)

⊕
(

L(1
2 , 1

16) ⊗ L( 7
10 , 7

16) ⊕ L(1
2 , 1

16) ⊗ L( 7
10 , 7

16)
)

⊗ W (Ω0).
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Loney’s Main Theorem

Theorem: V̂ = V̂ 0 ⊕ V̂ 1 ⊕ V̂ 1 ⊕ V̂ 3 decomposes w.r.t. G
(1)
2

into twelve V ir1/2 × V ir7/10 × G
(1)
2 -modules as follows:

V̂ =
(

L(1
2 , 0) ⊕ L(1

2 , 1
2)

)

⊗
(

L( 7
10 , 0) ⊕ L( 7

10 , 3
2)

)

⊗ W (Ω0)

⊕
(

L(1
2 , 0) ⊕ L(1

2 , 1
2)

)

⊗
(

L( 7
10 , 1

10) ⊕ L( 7
10 , 3

5)
)

⊗ W (Ω2)

⊕
(

L(1
2 , 1

16) ⊗ L( 7
10 , 3

80) ⊕ L(1
2 , 1

16) ⊗ L( 7
10 , 3

80)
)

⊗ W (Ω2)

⊕
(

L(1
2 , 1

16) ⊗ L( 7
10 , 7

16) ⊕ L(1
2 , 1

16) ⊗ L( 7
10 , 7

16)
)

⊗ W (Ω0).

Each summand is determined by φ(V̂ i
n, h1/2, h7/10, Ωj) a

HWV w.r.t. both coset Virasoro algebras and G
(1)
2 , which

has Lc
0 eigenvalue hc and G

(1)
2 weight Ωj. The explicit form

of these highest weight vectors is given below.
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Highest Weight Vectors

The following are the highest weight vectors
φ(V̂ i

n, h1/2, h7/10, Ωj) corresponding to the summands in the

branching rules for the level-1 D
(1)
4 -modules:

φ(V̂ 0
0 , 0, 0, Ω0) = 1 = vac

φ(V̂ 0
1 , 1

2
, 1
10

, Ω2) = 1(− 1
2
)4(− 1

2
)1 + 1(− 1

2
)4∗(− 1

2
)1

φ(V̂ 0
1 , 0, 3

5
, Ω2) = 2

“

2(− 1
2
)3(− 1

2
)1

”

− 1(− 1
2
)4(− 1

2
)1 + 1(− 1

2
)4∗(− 1

2
)1

φ(V̂ 0
2 , 1

2
, 3
2
, Ω0) = 11∗44∗ − 22∗44∗ − 33∗44∗ + 1∗234 + 1∗234∗ + 12∗3∗4 + 12∗3∗4∗

φ(V̂ 1
1/2

, 1
2
, 0, Ω0) = 4(− 1

2
)1 + 4∗(− 1

2
)1

φ(V̂ 1
1/2

, 0, 1
10

, Ω2) = 1(− 1
2
)1

φ(V̂ 1
3/2

, 1
2
, 3
5
, Ω2) = 234 + 234∗ − 144∗

φ(V̂ 1
3/2

, 0, 3
2
, Ω0) = 11∗4 − 11∗4∗ − 22∗4 + 22∗4∗ − 33∗4 + 33∗4∗ + 2

“

1∗23 + 12∗3∗
”

φ(V̂ 2
1/2

, 1
16

, 3
80

, Ω2) = 1
′ = vac′

φ(V̂ 2
1/2

, 1
16

, 7
16

, Ω0) = 1∗(0)4∗(0)1′
− 2∗(0)3∗(0)1′

φ(V̂ 3
1/2

, 1
16

, 3
80

, Ω2) = 4∗(0)1′

φ(V̂ 3
1/2

, 1
16

, 7
16

, Ω0) = 1∗(0)1′ + 2∗(0)3∗(0)4∗(0)1′
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Explicit Coset Virasoro Operators

Theorem: The following vertex operators provide two coset
representations of the Virasoro algebra on the
Neveu-Schwarz module, CM4(Z + 1

2) = V̂ 0 ⊕ V̂ 1, with
central charges 1

2 and 7
10 , respectively.

For all k ∈ Z, we have

L
1/2
k = −1

4

∑

r∈Z+
1
2

(

r + 1
2

)

(

: 4(r)4(k − r) : + : 4∗(r)4∗(k − r) :

+ : 4(r)4∗(k − r) : + : 4∗(r)4(k − r) :
)
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and for r1, r2, r3, r4 ∈ Z + 1
2 , we have L

7/10
k =

− 1
10

4
∑

i=1

∑

r∈Z+
1
2

(r + 1
2)

(

: i∗(r)i(k − r) : + : i(r)i∗(k − r) :
)

+ 1
20

∑

r∈Z+
1
2

(r + 1
2)

(

: 4(r)4(k − r) : + : 4∗(r)4∗(k − r) :

+ : 4∗(r)4(k − r) : + : 4(r)4∗(k − r) :
)

−1
5

∑

r1+···+r4=k

(

:1(r1)1
∗(r2)2(r3)2

∗(r4) : + :1(r1)1
∗(r2)3(r3)3

∗(r4) :

− : 2(r1)2
∗(r2)3(r3)3

∗(r4) :

+ : 1∗(r1)2(r2)3(r3)4(r4) : + : 1(r1)2
∗(r2)3

∗(r3)4
∗(r4) :

− : 1∗(r1)2(r2)3(r3)4
∗(r4) : − : 1(r1)2

∗(r2)3
∗(r3)4(r4) :

)

.
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Theorem: The following vertex operators provide two coset
representations of the Virasoro algebra on the Ramond
module, CM4(Z) = V̂ 2 ⊕ V̂ 3, with central charges 1

2 and 7
10

respectively.

For all k ∈ Z, we have

L
1/2
k = 1

16δk,0I

−1
4

∑

r∈Z

(

r + 1
2

)

(

: 4(r)4(k − r) : + : 4∗(r)4∗(k − r) :

+ : 4(r)4∗(k − r) : + : 4∗(r)4(k − r) :
)
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and for r1, r2, r3, r4 ∈ Z, we have L
7/10
k =

7
80δk,0I − 1

10

4
∑

i=1

∑

r∈Z

(r + 1
2)

(

: i∗(r)i(k − r) : + : i(r)i∗(k − r) :
)

+ 1
20

∑

r∈Z

(r + 1
2)

(

:4(r)4(k − r) : + :4∗(r)4∗(k − r):

+ : 4∗(r)4(k − r) : + : 4(r)4∗(k − r) :
)

−1
5

∑

r1+···+r4=k

(

:1(r1)1
∗(r2)2(r3)2

∗(r4) : + :1(r1)1
∗(r2)3(r3)3

∗(r4):

− : 2(r1)2
∗(r2)3(r3)3

∗(r4) :

+ : 1∗(r1)2(r2)3(r3)4(r4) : + : 1(r1)2
∗(r2)3

∗(r3)4
∗(r4) :

− : 1∗(r1)2(r2)3(r3)4
∗(r4) : − : 1(r1)2

∗(r2)3
∗(r3)4(r4) :

)

.
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Character Theory

For a g-module V λ with weights Πλ, the character

ch(V λ) =
∑

µ∈Πλ dim(V λ
µ )eµ ∈ Z[h∗] satisfies

ch(V λ ⊕ V µ) = ch(V λ) + ch(V µ) and
ch(V λ ⊗ V µ) = ch(V λ) · ch(V µ).
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Character Theory

For a g-module V λ with weights Πλ, the character

ch(V λ) =
∑

µ∈Πλ dim(V λ
µ )eµ ∈ Z[h∗] satisfies

ch(V λ ⊕ V µ) = ch(V λ) + ch(V µ) and
ch(V λ ⊗ V µ) = ch(V λ) · ch(V µ).

For a ĝ-module, the graded dimension

gr(V Λ) = e−Λ
∑

µ∈ΠΛ

dim(V Λ
µ )eµ

captures the information about the infinite number of
weight spaces V Λ

µ in a formal power series of ℓ + 1

variables, ui = e−αi, 0 ≤ i ≤ ℓ.

– p. 33



The spinor construction of V̂ gives a product form for its
graded dimension:

gr(V̂ 0 ⊕ V̂ 1) =
4

∏

i=1

∏

0<n∈Z+
1
2

(1 + eǫiqn)(1 + e−ǫiqn)

gr(V̂ 2 ⊕ V̂ 3) =

(

4
∏

i=1

(1 + e−ǫi)

)

4
∏

i=1

∏

0<n∈Z

(1 + eǫiqn)(1 + e−ǫiqn)
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The spinor construction of V̂ gives a product form for its
graded dimension:

gr(V̂ 0 ⊕ V̂ 1) =
4

∏

i=1

∏

0<n∈Z+
1
2

(1 + eǫiqn)(1 + e−ǫiqn)

gr(V̂ 2 ⊕ V̂ 3) =

(

4
∏

i=1

(1 + e−ǫi)

)

4
∏

i=1

∏

0<n∈Z

(1 + eǫiqn)(1 + e−ǫiqn)

where eǫiqn corresponds to the Clifford generator ai(−n)

and e−ǫiqn corresponds to a∗i (−n).

– p. 34



Use the notations: vi = eǫi, ui = e−αi, 1 ≤ i ≤ 4,
u0 = e−α0 = eθ−δ where θ = α1 + 2α2 + α3 + α4 = ǫ1 + ǫ2 is
the highest root of D4.

– p. 35



Use the notations: vi = eǫi, ui = e−αi, 1 ≤ i ≤ 4,
u0 = e−α0 = eθ−δ where θ = α1 + 2α2 + α3 + α4 = ǫ1 + ǫ2 is
the highest root of D4. For the principal specialization of the
graded dimension, set each ui = u for 0 ≤ i ≤ 4. Thus
q = e−δ = u0e

−θ = u0u1u
2
2u3u4 = u6 and we get
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Use the notations: vi = eǫi, ui = e−αi, 1 ≤ i ≤ 4,
u0 = e−α0 = eθ−δ where θ = α1 + 2α2 + α3 + α4 = ǫ1 + ǫ2 is
the highest root of D4. For the principal specialization of the
graded dimension, set each ui = u for 0 ≤ i ≤ 4. Thus
q = e−δ = u0e

−θ = u0u1u
2
2u3u4 = u6 and we get

grpr(V̂
0 ⊕ V̂ 1) =

∏

0≤m∈Z

4
∏

i=1

(1 + ui−4u6m+3)(1 + u4−iq6m+3)

= 2
∏

1≤n∈Z

(1 + un)(1 + u3n) = 2φ(u2)φ(u6)
φ(u)φ(u3)

where
φ(u) =

∏

1≤n∈Z

(1 − un).

– p. 35



Similarly, for the Ramond modules, we get the same result:

grpr(V̂
2 ⊕ V̂ 3)

=

(

4
∏

i=1

(1 + u4−i)

)

4
∏

i=1

∏

1≤n∈Z

(1 + ui−4u6n)(1 + u4−iu6n)

= 2
∏

1≤n∈Z

(1 + un)(1 + u3n) = 2φ(u2)φ(u6)
φ(u)φ(u3) .
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Similarly, for the Ramond modules, we get the same result:

grpr(V̂
2 ⊕ V̂ 3)

=

(

4
∏

i=1

(1 + u4−i)

)

4
∏

i=1

∏

1≤n∈Z

(1 + ui−4u6n)(1 + u4−iu6n)

= 2
∏

1≤n∈Z

(1 + un)(1 + u3n) = 2φ(u2)φ(u6)
φ(u)φ(u3) .

But triality symmetry gives V̂ 1 ∼= V̂ 2 ∼= V̂ 3 which implies
grpr(V̂

1) = grpr(V̂
2) = grpr(V̂

3) and therefore,
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Similarly, for the Ramond modules, we get the same result:

grpr(V̂
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)

4
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1≤n∈Z

(1 + ui−4u6n)(1 + u4−iu6n)

= 2
∏

1≤n∈Z

(1 + un)(1 + u3n) = 2φ(u2)φ(u6)
φ(u)φ(u3) .

But triality symmetry gives V̂ 1 ∼= V̂ 2 ∼= V̂ 3 which implies
grpr(V̂

1) = grpr(V̂
2) = grpr(V̂

3) and therefore,

grpr(V̂
0) = grpr(V̂

1) = grpr(V̂
2) = grpr(V̂

3) =
φ(u2)φ(u6)

φ(u)φ(u3)
.
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Now we need the principal graded dimensions of the two

level-1 G
(1)
2 -modules W (Ω0) and W (Ω2).
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Now we need the principal graded dimensions of the two

level-1 G
(1)
2 -modules W (Ω0) and W (Ω2).

Theorem [Mandia]:

grpr(W (Ω0)) = F(u)a(u3) and grpr(W (Ω2)) = F(u)b(u3)

where
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Now we need the principal graded dimensions of the two

level-1 G
(1)
2 -modules W (Ω0) and W (Ω2).

Theorem [Mandia]:

grpr(W (Ω0)) = F(u)a(u3) and grpr(W (Ω2)) = F(u)b(u3)

where

a(q) =
∏

n≥1

1
(1−q5n−2)(1−q5n−3) = 1

φ(q)

∑

k∈Z

(−1)kqk(5k+3)/2

b(q) =
∏

n≥1

1
(1−q5n−1)(1−q5n−4) = 1

φ(q)

∑

k∈Z

(−1)kqk(5k+1)/2

F(u) = φ(u2)φ(u3)
φ(u)φ(u6) =

∏

n≥1

1
(1−u6n−5)(1−u6n−1) .
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Theorem [Berndt, et al] Among the forty identities found by
Ramanujan to be satisfied by the two Rogers-Ramanujan
series a(q) and b(q), one needed for this project was

– p. 38



Theorem [Berndt, et al] Among the forty identities found by
Ramanujan to be satisfied by the two Rogers-Ramanujan
series a(q) and b(q), one needed for this project was

a(q)b(−q) + a(−q)b(q) = 2
φ(q4)2

φ(q2)2
= 2

∏

n≥1

(1 + q2n)2
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Theorem [Berndt, et al] Among the forty identities found by
Ramanujan to be satisfied by the two Rogers-Ramanujan
series a(q) and b(q), one needed for this project was

a(q)b(−q) + a(−q)b(q) = 2
φ(q4)2

φ(q2)2
= 2

∏

n≥1

(1 + q2n)2

Using this identity, the characters of Virasoro modules

shown below, and the graded dimensions of the level-1 D
(1)
4

and G
(1)
2 modules, along with the twelve explicit HWVs,

gives the equality in the above branching rule
decomposition of V̂ .
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The characters of the minimal model Virasoro modules we
need are well-known (Feigin-Fuchs). For c = 1

2 :

χ1,1
3,4(q) = q(− 1

48 )

φ(q) ·
∑

k∈Z

q12k2

(qk − q7k+1)

χ1,3
3,4(q) = q( 1

2−
1
48 )

φ(q) ·
∑

k∈Z

q12k2

(q−5k − q13k+3)

χ1,2
3,4(q) = q( 1

16−
1
48 )

φ(q) ·
∑

k∈Z

q12k2

(q−2k − q10k+2)
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and for c = 7
10 :

χ1,1
4,5(q) = q(− 7

240 )

φ(q) ·
∑

k∈Z

q20k2

(qk − q9k+1)

χ1,2
4,5(q) = q( 1

10−
7

240 )

φ(q) ·
∑

k∈Z

q20k2

(q3k − q13k+2)

χ1,3
4,5(q) = q( 3

5−
7

240 )

φ(q) ·
∑

k∈Z

q20k2

(q7k − q17k+3)

χ1,4
4,5(q) = q( 3

2−
7

240 )

φ(q) ·
∑

k∈Z

q20k2

(q11k − q21k+4)

χ2,1
4,5(q) = q( 7

16−
7

240 )

φ(q) ·
∑

k∈Z

q20k2

(q6k − q14k+2)

χ2,2
4,5(q) = q( 3

80−
7

240 )

φ(q) ·
∑

k∈Z

q20k2

(q2k − q18k+4).
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Mauriello’s Main Theorem

Theorem: The decomposition of level-1 irreducible

E
(1)
6 -modules V̂ i, i = 0, 1, 6, into V ir4/5 × F

(1)
4 -modules is:

V̂ 0 =
(

L(4
5 , 0) ⊕ L(4

5 , 3)
)

⊗ W (Ω0) ⊕
(

L(4
5 , 2

5) ⊕ L(4
5 , 7

5)
)

⊗ W (Ω4)

V̂ 1 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4)

V̂ 6 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4).
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Mauriello’s Main Theorem

Theorem: The decomposition of level-1 irreducible

E
(1)
6 -modules V̂ i, i = 0, 1, 6, into V ir4/5 × F

(1)
4 -modules is:

V̂ 0 =
(

L(4
5 , 0) ⊕ L(4

5 , 3)
)

⊗ W (Ω0) ⊕
(

L(4
5 , 2

5) ⊕ L(4
5 , 7

5)
)

⊗ W (Ω4)

V̂ 1 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4)

V̂ 6 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4).

Each summand is determined by a HWV φ(V̂ i
n, h4/5, Ωj)

w.r.t. V ir4/5 × F
(1)
4 located in V̂ i

n with L
4/5
0 eigenvalue h4/5

and F
(1)
4 weight Ωj.
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Mauriello’s Main Theorem

Theorem: The decomposition of level-1 irreducible

E
(1)
6 -modules V̂ i, i = 0, 1, 6, into V ir4/5 × F

(1)
4 -modules is:

V̂ 0 =
(

L(4
5 , 0) ⊕ L(4

5 , 3)
)

⊗ W (Ω0) ⊕
(

L(4
5 , 2

5) ⊕ L(4
5 , 7

5)
)

⊗ W (Ω4)

V̂ 1 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4)

V̂ 6 = L(4
5 , 2

3) ⊗ W (Ω0) ⊕ L(4
5 , 1

15) ⊗ W (Ω4).

Each summand is determined by a HWV φ(V̂ i
n, h4/5, Ωj)

w.r.t. V ir4/5 × F
(1)
4 located in V̂ i

n with L
4/5
0 eigenvalue h4/5

and F
(1)
4 weight Ωj.

The explicit HWVs found are listed on the next two slides.
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Mauriello’s Heighest Weight Vectors

Theorem: Let αi and λi, 1 ≤ i ≤ 6, be the simple roots and fundamental weights

of E6, resp. Then the highest weight vectors w.r.t. V ir4/5
× F

(1)
4 are:
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× F

(1)
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φ(V̂ 0
0 , 0, Ω0) = 1 ⊗ e0
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Mauriello’s Heighest Weight Vectors

Theorem: Let αi and λi, 1 ≤ i ≤ 6, be the simple roots and fundamental weights

of E6, resp. Then the highest weight vectors w.r.t. V ir4/5
× F

(1)
4 are:

φ(V̂ 0
0 , 0, Ω0) = 1 ⊗ e0

φ(V̂ 0
3 , 3, Ω0) = 1

6

`

(−λ1+λ6)
3(−3) + (λ3−λ5)

3(−3) + (λ1−λ3+λ5−λ6)
3(−3)

´

⊗ e0

+ 1
2
((λ3 − λ5)(−1) ⊗ eα1−α6 + (λ3 − λ5)(−1) ⊗ e−α1+α6)

+ 1
2
((−λ1 + λ6)(−1) ⊗ eα3−α5 + (−λ1 + λ6)(−1) ⊗ e−α3+α5)

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ eα1+α3−α5−α6

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ e−α1−α3+α5+α6
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Mauriello’s Heighest Weight Vectors

Theorem: Let αi and λi, 1 ≤ i ≤ 6, be the simple roots and fundamental weights

of E6, resp. Then the highest weight vectors w.r.t. V ir4/5
× F

(1)
4 are:

φ(V̂ 0
0 , 0, Ω0) = 1 ⊗ e0

φ(V̂ 0
3 , 3, Ω0) = 1

6

`

(−λ1+λ6)
3(−3) + (λ3−λ5)

3(−3) + (λ1−λ3+λ5−λ6)
3(−3)

´

⊗ e0

+ 1
2
((λ3 − λ5)(−1) ⊗ eα1−α6 + (λ3 − λ5)(−1) ⊗ e−α1+α6)

+ 1
2
((−λ1 + λ6)(−1) ⊗ eα3−α5 + (−λ1 + λ6)(−1) ⊗ e−α3+α5)

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ eα1+α3−α5−α6

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ e−α1−α3+α5+α6

φ(V̂ 0
1 , 2

5
, Ω4) = 1 ⊗ eα1+α2+2α3+2α4+α5+α6 − 1 ⊗ eα1+α2+α3+2α4+2α5+α6
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Mauriello’s Heighest Weight Vectors

Theorem: Let αi and λi, 1 ≤ i ≤ 6, be the simple roots and fundamental weights

of E6, resp. Then the highest weight vectors w.r.t. V ir4/5
× F

(1)
4 are:

φ(V̂ 0
0 , 0, Ω0) = 1 ⊗ e0

φ(V̂ 0
3 , 3, Ω0) = 1

6

`

(−λ1+λ6)
3(−3) + (λ3−λ5)

3(−3) + (λ1−λ3+λ5−λ6)
3(−3)

´

⊗ e0

+ 1
2
((λ3 − λ5)(−1) ⊗ eα1−α6 + (λ3 − λ5)(−1) ⊗ e−α1+α6)

+ 1
2
((−λ1 + λ6)(−1) ⊗ eα3−α5 + (−λ1 + λ6)(−1) ⊗ e−α3+α5)

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ eα1+α3−α5−α6

+ 1
2
(−λ1 + λ3 − λ5 + λ6)(−1) ⊗ e−α1−α3+α5+α6

φ(V̂ 0
1 , 2

5
, Ω4) = 1 ⊗ eα1+α2+2α3+2α4+α5+α6 − 1 ⊗ eα1+α2+α3+2α4+2α5+α6

φ(V̂ 0
2 , 7

5
, Ω4) = (−2α1(−1)−α3(−1)+α5(−1)+2α6(−1)) ⊗ eα1+α2+2α3+2α4+α5+α6

+(2α1(−1) + α3(−1) − α5(−1) − 2α6(−1)) ⊗ eα1+α2+α3+2α4+2α5+α6

+3 ⊗ e2α1+α2+2α3+2α4+α5 + 3 ⊗ eα2+α3+2α4+2α5+2α6
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φ(V̂ 1
2/3,

2

3
, Ω0) = 1 ⊗ e−λ1+λ6 + 1 ⊗ eλ3−λ5 − 1 ⊗ eλ1−λ3+λ5−λ6
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1

15
, Ω4) = 1 ⊗ eλ1
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1
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, Ω4) = 1 ⊗ eλ1

φ(V̂ 6
2/3,

2

3
, Ω0) = 1 ⊗ eλ1−λ6 + 1 ⊗ e−λ3+λ5 − 1 ⊗ e−λ1+λ3−λ5+λ6
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φ(V̂ 1
2/3,

2

3
, Ω0) = 1 ⊗ e−λ1+λ6 + 1 ⊗ eλ3−λ5 − 1 ⊗ eλ1−λ3+λ5−λ6

φ(V̂ 1
2/3,

1

15
, Ω4) = 1 ⊗ eλ1

φ(V̂ 6
2/3,

2

3
, Ω0) = 1 ⊗ eλ1−λ6 + 1 ⊗ e−λ3+λ5 − 1 ⊗ e−λ1+λ3−λ5+λ6

φ(V̂ 6
2/3,

1

15
, Ω4) = 1 ⊗ eλ6
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The proof of the main theorem uses another Ramanujan
identity,

t2a(t9)a(t) + b(t9)b(t) =
φ(t3)

φ(t)φ(t9)
,
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The proof of the main theorem uses another Ramanujan
identity,

t2a(t9)a(t) + b(t9)b(t) =
φ(t3)

φ(t)φ(t9)
,

the principal graded dimensions of each E
(1)
6 -module, V̂ i,

i = 0, 1, 6, and of the two F
(1)
4 -modules, W (Ω0) and W (Ω4),

as well as the characters of six V ir4/5-modules. The result
for V̂ 0 seems to require a new identity, which is still being
investigated.
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