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It is a a great honour to speak at this 60th birthday celebration for

Hermann Nicolai. His role in the formulation of SUGRA theories is

well known and has had an enormous influence on theoretical physics.

From the onset however, it seemed clear that if extended (ungauged)

SUGRA theories were to make contact with real physics, it was by

by non-perturbative effects, since otherwise, they are just theories

of massless particles. In gravity theories the most important non-

perturbative effects are connected with black holes, and in a SUSY

theory, the most reliable calculations involve BPS states. It was nat-

ural therefore to investigate supersymmetric or extreme black holes.

This has now become a vast subject, particularly with the incorpora-

tion of String Theory in the picture.



In this talk I want to review, and revisit, a small aspect of this topic :

slow motion on the moduli spaces of extreme black holes, a subject

which has many parallels and connections with with the slow motion

on the moduli spaces of Yang-Mills monopoles. The subject is quite

old, being originally developed in the 1980’s and 1990’s. However as

as I began to think about it, I became aware that, in a certain sense,

its origins and connections go back even further to the 1830’s, and

to the work of some of the greatest physicsts/mathematicians of all

time. We shall see that SUGRA fits some of their boldest speculations

as a hand fits a glove.

Since Hermann has often complemented me on my modest knowledge

of history, and assuming that this was indeed a sincere form of flattery

I hope he will enjoy the tale I have to tell. After all, it vindicates, a

famous warning:



Those who cannot remember the past are condemned to re-

peat it.1

1George Santayana, The Life of Reason, Volume 1, 1905 US (Spanish-born)
philosopher (1863 - 1952)



To acquaint myself with the history, I have consulted

• J.D. Jackson : Classical Electrodynamics 2nd Ed.

• E.T. Whittaker: History of Theories of the Aether and Electricity

• O. Darrigol: Electrodynamics from Ampére to Einstein



The Darwin Lagrangian

In 1920 2 Charles Darwin (grandson of the Charles Darwin) wrote
down an effective classical Lagrangian, valid to quadratic order in
velocities, for n electromagnetically charged particles in which the
light degree of freedom, i.e the Maxwell field, has been integrated
out. The general form is

L =
1

2

∑

mav
2
a +

∑

1≤a<b≤n

Lab

mar̈a =
∑

b 6=a

Fab

Fab =
∂Lab

∂ra
− d

dt

∂Lab

∂ṙa
.

2C.G. Darwin M.A. (1920): The dynamical motions of charged particles , Philo-
sophical Magazine Series 6, 39:233, 537-551



In Darwin’s case

Lab = −qaqb

rab

{

1 − 1

2
va · vb − (̂rab · va)(̂rab · vb)

}

Fab = qa

(

Eb + va × Bb

)

Eb = qb
r̂ab

r2ab

{

1 +
1

2
v2

a − 3

2
(vb · r̂ab)

2
}

− qb

2rab

{

ab − r̂ab(̂rab · ab)

}

,

Bb = qb
vb × r̂ab

r2ab

FDarwin
ab = qaqb

r̂ab

r2ab

{

1 +
1

2
v2

a − va · vb −
3

2
(vb · r̂ab)

2
}

− qaqb

2rab

{

ab − r̂ab(̂rab · ab)

}

,

+
qaqb

r2ab

vb(va · r̂ab)



Darwin’s Lagrangian exhibits some puzzling features which have been

the subject of much discussion for many years The force FDarwin
ab is

conservative but acceleration dependent . It is not central, and does

not satisfy Newton’s third law and hence the system is not Galilei in-

variant. In fact, after adding a (velocity)4 term from special relativity

the system is Poincaré invariant to order 1
c2

3.

3S. Coleman and J. H. Van Vleck, Origin of ’Hidden Momentum Forces’ on Mag-
nets, Phys. Rev. 171 (1968) 1370.



The acceleration dependence of the “force” may be removed by defin-

ing the canonical momenta pa by

pa =
∂L

∂va
= mava + qaAa

= mava +
1

2

∑

b 6=a

qaqb

rab

(

vb + r̂ab(vb · r̂ab)

)

where Aa is the approximate vector potential in Coulomb Gauge, due

to all other particles,



The equation of motion now becomes

ṗa =
∂L

∂ra

=
∑

b 6=a

qaqb

r2ab

r̂ab

+
∑

b 6=a

qaqb

r2ab

1

2

(

va(̂rab · vb) + vb(̂rab · va)
)

−
∑

b 6=a

qaqb

r2ab

r̂ab

(

vb · (1 + 3r̂abr̂ab) · vb

)



The kinetic part of Darwin’s Lagrangian is quadratic in velocities and

thus defines a curved metric on the configuration space of n particles

in Rn. Passing to the Hamiltonian, which is quadratic in momenta and

making the replacement pa = h
2πi

∂
∂ra

gives the Breit-Darwin Hamilto-

nian 4, a non-relativistic, non-Galilean invariant Schrödinger equation

on this configuration space. If ma = m ,∀a

H ≈
∑

1≤a≤n

(

m+
p2

a

2m

)

+
∑

1≤a≤b≤n

qaqb

2rab

(

1−pa · pb − (̂rab · pa)(̂rab · pb)

2m

)

+. . .

4G. Breit, The effect of retardation on the interaction of two electron, Phys. Rev.

34 (1929) 553



The Force between current elements

Averaging over all charge carriers, dropping acceleration terms and

assuming over-all neutrality we find Grassmann’s Formula for the force

between two current elements

< d2FGrassmann
ab > = iaib

1

r2ab

(dra × (drb × r̂ab)

= −iaib
1

r2ab

(

(dra · rb)̂rab − (dra · r̂ab)drb

)

The usual way of deriving Grassmann’s Formula is to use the Biot-

Savart law. Grassmann’s Formula is not central and does not satisfy

Newton’s third law. However integrated around two current loops it

satisfies both.



This gave to much discussion in nineteenth century. In fact Ampére

had originally proposed

< d2F
Ampere
ab >= −iaib

rab

r3ab

(

3(̂rab · dra)(̂rab · drb) − 2(dra · drb)

)

which is both central and satisfies Newton’s third law. Integrated

around two current loops Ampére’s Formula and Grassmann’s For-

mula gives equivalent results.

< d2F
Ampere
ab > − < d2FGrassmann

ab >= drb ·
∂

∂rb

(

1

2
iaib

rab(rab · dra)

r3ab

)



Weber’s Lagrangian

Weber aimed to derive Ampére’s Formula from a Force Law coming

from a Lagrangian which was conservative, central, satisfies Newton’s

third Law and Galilean invariant

Lab = −qaqa

rab

(

1 +
1

2
(vab · r̂ab)

2
)

= −qaqa

rab

(

1 +
1

2
ṙ2ab

)



FWeber
ab = qaqb

rab

r3ab

(

1 − 1

2
ṙ2ab + rabr̈ab

)

= qaqb
rab

r3ab

(

1 − 3

2
(ṙab · r̂ab)

2 + (ṙab)
2 + r̂ab · r̈ab

)

= qaqb
rab

r3ab

(1 + v2
a + v2

b − 2va · vb −
3

2
(̂rab · va)

2 − 3

2
(̂rab · vb)

2

+3 (̂rab · va)(̂rab · vb) + r̂ab · r̈ab

)

Averaging over all charge carriers, dropping acceleration terms and

assuming over-all charge neutrality we find Ampere’s Formula for the

force between two current elements

< d2F
Ampere
ab >= −iaib

rab

r3ab

(

3(̂rab · dra)(̂rab · drb) − 2(dra · drb)

)



Others, including Gauss, proposed other Lagrangians which were not
central but giving equivalent results when integrated around two cur-
rent loops.

Clausius’s Lagrangian

LClausius
ab = −qaqa

rab

(

1 +
1

2
va · vb

)

FClausius
ab =

qaqa

r2ab

(

(1 − va · vb)̂rab − ṙabvb + rabab

)

Riemann’s Lagrangian

LRiemann
ab = −qaqa

rab

(

1 +
1

2
(va − vb)

2
)

FRiemann
ab =

qaqa

r2ab

(

(1 +
1

2
v2

ab)̂rab + ṙabvab − rabaab

)



Clausius’s suggestion is not central and it does not satisfy Newton’s

Third law.

However Riemann’s suggestion while not central it does satisfy New-

ton’s third Law and is Galilean invariant.



Weber-Tisserand-Riemann-Levy Gravity

In the late nineteenth century Tisserand 5 and Levy 6 attempted to

account for the anomalous precession of the perihelion of Mercury by

replacing qaqb by −Gmamb and using a combination of Galilei invariant

Weber and Riemann terms. These theories were not very successful

and discarded after Einstein’s 1915 paper on General Relativity.

5F. Tisserand, Sur le mouvement des planètes autour du Soleil d’apres la loi
électrodynamique de Weber Comptes Rendus de l’Aacd de Sci de Paris 110 (1872)
760-763, F. Tisserand, Sur les mouvements des planètes en supposant l’attrction
représentée par l’une des lois électrodynamique de Gauss ou de Weber Comptes
Rendus de l’Aacd de Sci de Paris 110 (1872) 313-315

6M. Lévy, Sur l’application des lois électrodynamiques au mouvment des planètes
Comptes Rendus de l’Aacd de Sci de Paris 110 (1872) 541-549



Similar models have been invoked to implement Mach’s Principle and
so-called Relational models of gravity 7 .However Droste, Einstein,
Infeld and Hoffmann (EIH) and Fichtenholtz have shown that Ein-
stein’s theory leads to the analogue of Darwin’s Lagrangian of the
form

L =
∑

1≤a≤n

1

2
mav

2
a

+
∑

1≤a<b≤n

Gmamb

rab

{

1

+
3

2
(v2

a + v2
b ) −

7

2
va · vb

− 1

2
(̂rab · va)(̂rab · vb)

}

7A. K. T. Assis, Weber’s Law and Mach’s Principle, in Mach’s Principle: From
Newton’s Bucket to Quantum Gravity Einstein Studies 6(1995) 159-171



The Droste-Fichtenholtz Lagrangian is neither central, relational nor

Galilei invariant.

Despite this, it has recently been invoked 8 in an attempt to to use

it to connect a precise form of Mach’s principle with the mass-energy

density of the universe: it should be twice the critical value.

8H. Essen, ‘Mechanics, cosmology and Mach’s principle arXiv:1208.3096
[physics.class-ph].



Non-Abelian Monopoles

In Manton 1985 9 calculated the long range forces between two BPS

dyons in SU(2) Yang-Mills theory using the same methods as Darwin

and included the effect of massless scalar exchange. His aim was to

calculate the asymptotic metric on the 4-dimensional moduli space

which he showed to be that of Taub-NUT with negative mass. The

asymptotic metric on the n dimensional moduli space of n SU(2) BPS

monopoles was written down later. 10

9N. S. Manton, Monopole Interactions at Long Range,” Phys. Lett. B 154 (1985)
397 [Erratum-ibid. 157B (1985) 475].

10G. W. Gibbons and N. S. Manton, The Moduli space metric for well separated
BPS monopoles, Phys. Lett. B 356 (1995) 32



In 1986 11 Gibbons and Ruback did the same for charged black holes
in Einstein Maxwell theory and in Shiraishi extended this when scalars
are present.

L = −me
σφ
m

√

−gµν
dxµ

dλ

dxν

dλ
+ qAµ

dxµ

dλ

If

dτ =

√

−gµν
dxµ

dλ

dxν

dλ
dλ ,

then

m
d2xµ

dτ2
+ mΓρ

µ
ν
dxρ

dτ

dxν

dτ
= qgµρFρν

dxν

dτ
− σ

(

gµν +
dxµ

dτ

dxν

dτ

)

∂νφ

11G. W. Gibbons and P. J. Ruback,The Motion Of Extreme Reissner-nordstrom
Black Holes In The Low Velocity Limit,” Phys. Rev. Lett. 57 (1986) 1492.



which is consistent with

gµν
dxµ

dτ

dxν

dτ
= −1 .

L = −me
σφ
m

√

−gµν
dxµ

dλ

dxν

dλ
+ qAµ

dxµ

dλ



Anti-Gravitating solutions have been given by many people, most

completely 12

L =
1

16π

√
−g

(

R − e−2αφgµρgνσFµνFρσ − 2gµν∂µφ∂νφ

)

ds2 = −H
− 2

1+a2dt2 + H
2

1+a2dx2 ,

F = ±
√

(1 + a2)d
(dt

H

)

,

e−2aφ = H
2a2

1+a2 .

where H is a harmonic function on R3 with n mass points

Gma : σa : qa :: 1 : a : ±
√

1 + a2

12K. Shiraishi, Multicentered solution for maximally charged dilaton black holes in
arbitrary dimensions,” J. Math. Phys. 34 (1993) 1480



SUSY and Anti-Gravity

L =
∑

1≤a≤n

1

2
mav

2
a

+
∑

1≤a<b≤n

1

rab

{

(Gmamb + σaσb − qaqb)

+
1

2
(3Gmamb − σaσb)(v

2
a + v2

b )

+
1

2
(qqqm + σaσb − 7Gmamb)va · vb

+
1

2
(qaqb − σaσb − Gmamb)(̂rab · va)(̂rab · vb)

}



If Scherk’s anti-gravity condition 13 Gmamb + σaσb − qaqb = 0 holds

then

L =
1

2M

(

∑

1≤a≤n

mava

)2
+

1

2

∑

≤a<b≤n

(Gmamb

M
+

3Gmamb − σaσb

rab

)

(va − vb)
2

If 3Gmamb = σaσb then

L =
1

2M

(

∑

1≤a≤n

mava

)2
+

1

2

∑

≤a<b≤n

(Gmamb

M
(va − vb)

2

13J. Scherk, Antigravity: A Crazy Idea?, Phys. Lett. B 88 (1979) 265.



We see that if the Force Balance Condition holds we recover Rie-

mann’s Galilei invariant Kinetic term.

If G = 0 we recover the results of Manton and Gibbons and Manton

for SU(2) Yang-Mills monopoles. In his case, the the kinetic energy

can become negative, a sure sign that the asymptotic approxima-

tion breaks down at short distance. In fact the Taub-NUT metric is

replaced by the Atiyah-Hitchin metric.

It is interesting to note that Hermann Ludwig Ferdinand von Helmholtz

had raised this objection to the Lagrangians of Weber, Riemann and

Clausius 14 . To satsify Helmholtz, we need

3Gmamb ≥ σaσb

The marginal case corresponds to Kaluza-Klein monopoles.
14M. Helmholtz ,On the theory of electrodynamics, Phil Mag 44 (1872) 530-537



Following the work of Gibbons and Ruback, Eardley and Ferrell15 gave

the exact metric on the the two maximally charged Einstein Maxwell

black hole moduli space This was followed up by Shiraishi 16 17

15R.C.Ferrell and D.M. Eardley, Slow motion scattering and coalescence of maxi-
mally charged black holes, Phys.Rev. Lett. 59 (1987) 1617.

16K. Shiraishi, Moduli space metric for maximally charged dilaton black holes, Nucl.
Phys. B 402 (1993) 399.

17K. Shiraishi, ‘Classical and quantum scattering of maximally charged dilaton black
holes,” Int. J. Mod. Phys. D 2 (1993) 59.



Exact Moduli Space Metrics

ds2 =
∑

1≤a≤n

madr2a

+
3 − a2

4π(1 + a2)
×

∫

d3r

{

H
2(1−a2)

1+a2 (r)

∑

1≤a<b≤n

(r − ra) · (r − rb)|dra − drb|2µaµa

|r − ra|3|r − rb|3
,

}

where the mass ma of a’th particle is given by

ma =
1

1 + a2
µa ,



This is Galilei invariant and the relative moduli space metric for two

bodies is

ds2rel = γ(r) dr · dr

γ(r) = 1 − (m1 + m2)
2

m2m2
− (3 − a2)M

r

+
m1 + m2

m1

(

1 +
(1 + a2)m1

r

)
3−a2

1+a2 +
m1 + m2

m2

(

1 +
(1 + a2)m2

r

)
3−a2

1+a2

If 3−a2

1+a2 is a non-negative integer, i.e. a2 = 3, 1, 1
3, 0. we have no-

body, two-body or two and three-body forces or two, three and four-

body forces.

In particular, the cases a2 = 3 and a2 = 1 corresponds exactly to the

to the asymptotic metric and are flat or of Riemann form respectively.



As observed in 18 In 4 spacetime dimensions there is a family of reg-

ular black hole solutions depending upon four independent harmonic

functions (H1, H2, H3, H4). These black-hole solutions can be lifted

to solutions of eleven-dimensional supergravity which have the in-

terpretation of intersecting branes preserving 1/8 of the spacetime

supersymmetry Each harmonic function is associated with a brane

involved in the intersection.

18G. W. Gibbons, G. Papadopoulos and K. S. Stelle, ‘HKT and OKT geometries on
soliton black hole moduli spaces, Nucl. Phys. B 508 (1997) 623 [hep-th/9706207].



• (i) a = 0 ≡ (H, H, H, H) ↔ 4.

• (ii) a = 1√
3
≡ (1, H, H, H) ↔ 4

• (iii) a = 1 ≡ (1,1, H, H) ↔ 8.

• (iv) a =
√

3 ≡ (1,1,1, H) ↔ 16.

The geometry of these moduli spaces is determined by SUSY quantum

mechanics.



The Exact Yang-Mills Moduli spaces

In the case of Yang-Mills in the BPS limit, the moduli space is known

to be a 4n dimensional Hyper-Kähler manifold which which splits as

the product of the COM space S1 × R3 and a 4(n − 1) dimensional

HyperKähler manifold. SO(3) action. For SU(2), n = 2 this was

constructed by Atiyah and Hitchin 19It has been identified by Sen

with the lift to M-theory of an orientifold plane.

19M. F. Atiyah and N. J. Hitchin,‘Low-Energy Scattering of Nonabelian Monopoles,”
Phys. Lett. A 107 (1985) 21.



Fundamental Monopoles of Distinct Type

In the case of SU(n+1) broken to U(1)n (i.e. for n so-called Distinct

Fundamental Monopoles), the moduli space has a tri-holomorphic

U(1)n action and an SO(3)) action. The exact metric was identified

by Lee-Weinberg and Yi 20.and the relative space is a generalization

of Taub-NUT (with positve masses) depending on 1
2n(n−1) harmonic

functions 1
|ra−rb| on (R3)n. Setting the U(1)n charges to zero, gives

the relative Shiraishi metric for a2 = 1.

It coincides with the relative asymptotic metric of n SU(2) monopoles

execpt for the sign of the mass terms.

20K. -M. Lee, E. J. Weinberg and P. Yi, The Moduli space of many BPS monopoles
for arbitrary gauge groups,’ Phys. Rev. D 54, 1633 (1996) [hep-th/9602167]



Homothetic Solutions and Central Configurations

Newton’s equations for n gravitating point masses

mar̈a = −
∑

b 6=a

Gmamb(ra − rb)

|ra − rb|3

admit homothetic solutions ra(t) = S(t)xa, ẋa = 0 provided the scale

factor S(t) satisfies Raychaudhuri’s equation for dust

S̈

S
= − λ

S3



provided the xa form a Central Configuration21

−λmaxa =
∑

b 6=a

Gmamb(xa − xb)

|xa − xb|3

21R.A. Battye, G.W. Gibbons and P.M. Sutcliffe, Central Configurations in Three
Dimensions Proc Roy Soc A459 (2003)



Similar homothetic solutions exist in the anti-gravitating case . For

example 22 in the Shiraishi/Lee-Weinberg-Yi case the scale factor

S(t) satisfies

S̈

S
= −λ

(Ṡ2

S3
− S̈

S2

)

(1)

λ > 0. The case λ < 0 corresonds to the Manton SU(2) case Such

homothetic solutions are not possible if Gmamb + σaσb − qaqb 6= 0.

22R.A. Battye, G.W. Gibbons, P. Rychenkova, and P.M. Sutcliffe, Polyhedral scat-
tering of fundamantal monopoles J Math Phys 44 (2003) 3532-3542



Testing the Moduli Space Approximation

Our story is not quite finished:

Since 2005 reliable numerical simulations of black hole collisions has

become possible. Recently there has been numerical work by colliding

charged black holes 23 . In this way it should be possible to test the

accuracy of the moduli space geodesic approximation.

23M. Zilhao, V. Cardoso, C. Herdeiro, L. Lehner and U. Sperhake,‘Collisions of
charged black holes Phys. Rev. D 85 (2012) 124062 [arXiv:1205.1063 [gr-qc]].



Dear Hermann,

I have admired you deeply intellectual apparoach to physics and life

in general, and for very many talents, mathematical, physical and

musicai since our first encounter and and our (sadly only one ) col-

laboration 24 on a topic which still remains topical today.

I hope I have convinced you even if one is condemed to repeat history,

it can be be fun to learn about it after the fact.

HAPPY BIRTHDAY
24G. W. Gibbons and H. Nicolai, ‘One Loop Effects On The Round Seven Sphere

Phys. Lett. B 143 (1984) 108.


