On Cartan Geometries and the Formulation of a Gravitational Gauge Principle.

Gabriel Catren

SPHERE (UMR 7219) - Université Paris Diderot/CNRS

Introduction

Introduction

-	i 2 i	
	Introd	uction
	1111100	uction

- General Relativity vs.
 Yang-Mills Theory
- Bridging the gap between **GR** and **Y-M**
- Historical landmarks

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

Cartan geometries ‹››› gravitation as a gauge theory?

• Gauge theories of gravity: Utiyama (1956), Sciama, Kibble, Trautman, Hehl, Ne'eman, Isham, Macdowell & Mansouri, Stelle & West, etc.

• The theory of Cartan connections seems to provide the adequate geometric framework for accomplishing this task (c.f. Wise, Randono).

• Main bibliography:

.**Mathematical**: E. Cartan, R.W. Sharpe, S. Kobayashi, P.W. Michor, and S. Sternberg.

.**Physical**: K.S. Stelle & P.C. West, *Spontaneously broken de Sitter symmetry and the gravitational holonomy group*, Phys. Rev. D, 21, 6, 1980.

General Relativity vs. Yang-Mills Theory

Introduction

- Introduction
- General Relativity vs.
 Yang-Mills Theory
- Bridging the gap between **GR** and **Y-M**
- Historical landmarks

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• General relativity:

 $[g] = \frac{g}{Diff(M)} \rightsquigarrow$ Unique metric & torsionless connection (Levi-Civita connection)

• Yang-Mills theory:

$$[\omega_G] = \frac{\omega_G}{Aut_V(P_G)}$$

where $P_G \rightarrow M$ is a *G*-principal bundle with *G* a Lie group and ω_G an Ehresmann conn.

Whereas a gauge field is represented by an Ehresmann connection on the internal spaces of a *G*-principal bundle over space-time,...

...the gravitational field is represented by a metric on the space-time itself.

Bridging the gap between GR and Y-M

Introduction Introduction General Relativity vs. Yang-Mills Theory • Bridging the gap between **GR** and Y-M Historical landmarks Gauging Gravity Cartan's Program Symmetry breaking Cartan connection Metric Cartan Curvature Development Conclusion

• "Metric" Einstein-Hilbert formulation:

.metric g.

• "Tetrad-connection" Palatini formulation:

.Ehresmann conn. ω for the local Lorentz group (called *spin conn.*),

.tetrads, *vierbeine*, or moving frames $\theta \sim \sqrt{g}$.

• Cartan formulation:

 $\omega + \theta$ is a connection (!)... for the local Poincaré group?

... but not an Ehresmann conn., but rather a Cartan connection.

• The difference between **Y-M** theory & **GR** is reduced to the difference between Ehresmann and Cartan connections.

Historical landmarks

Introduction	
	٦.
muouucio	ι.

Introduction

- General Relativity vs.
 Yang-Mills Theory
- Bridging the gap between GR and Y-M

Historical landmarks

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• In the article

Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), (Annales scientifiques de l'E.N.S, 3^e série, tome 40, pp. 325-412, 1923)

... E. Cartan introduced the *Cartan connections* and proposed a generalization of **GR** to geom. with non-zero torsion.

• In the article

Les connexions infinitésimales dans un espace fibré différentiable

(Seminaire N. Bourbaki, 1948-1951, exp. n°24, pp. 153-168, 1950),

... C. Ehresmann formalized the notion of conn. by means of the theory of fiber bundles...

... and showed that Cartan conn. are a particular case of a more grl. notion, namely the notion of Ehresmann conn.

Cartan's conception was overshadowed by the notion of Ehresmann connection.

Motivations for "gauging" gravity

Introduction

Gauging Gravity

- Motivations for "gauging" gravity
- Gauge Principle in Yang-Mills Theory
- On Fiber Bundles
- On locality & interactions
- Different roles played by symmetry groups
- Towards a Gauge Principle for Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

.Since we know how to quantize **Y-M** theory, the reduction of the gap between **Y-M** and **GR** might be useful for quantizing gravity (c.f. *LQG*).

.It might be helpful for unifying gravity with the other **Y-M** interactions.

• Conceptual motivations:

• Pragmatic motivations:

Y-M theory can be (partially) obtained from an astonishing heuristic argument, namely the *gauge principle* (GP):

Symmetry *Arrow Locality Arrow Interactions*

Gauge Principle in Yang-Mills Theory

Introduction

Gauging Gravity

 Motivations for "gauging" gravity

Gauge Principle in Yang-Mills Theory

- On Fiber Bundles
- On locality & interactions
- Different roles played by symmetry groups
- Towards a Gauge Principle for Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

$$\psi(x) \sim e^{i\alpha}\psi(x) \xrightarrow{ \text{ Ehresmann connection}} \psi(x) \sim e^{i\alpha(x)}\psi(x)$$

In order to construct a locally invariant theory it is necessary to introduce physical interactions in the form of Ehresmann connections.

• "Kretschmann" objection:

A mere epistemic requirement regarding the permissible coordinate transformations seems to imply non-trivial new physics.

• Solution:

Local gauge invariance is the epistemic consequence of the ontological commitment of the theory regarding the fund. geom. structure that it presupposes: *fiber bundles*.

On Fiber Bundles

• Common conception:

Introduction

Gauging Gravity

- Motivations for "gauging" gravity
- Gauge Principle in Yang-Mills Theory

• On Fiber Bundles

- On locality & interactions
- Different roles played by symmetry groups
- Towards a Gauge Principle for Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

Fiber bundles = globally twisted generalizations of the Cartesian product of two spaces.

• However, even locally a *G*-principal bundle $P_G \xrightarrow{\pi} M$ is not a product space $U_i \times G$, with $U_i \subset M$...

... since $\pi^{-1}(x) \neq G$, but is rather a *G*-torsor or a principal homog. space ,...

... i.e. a set on which G acts in a *free* and *transitive* manner.

• $\pi^{-1}(x)$ is isomorphic to *G* in a non-canonical way since it does not have a privileged origin.

- Each fiber can be identified with G only by fixing a local section $\sigma: U_i \to P_G$:
 - $\psi: U_i \times G \xrightarrow{\simeq} \pi^{-1}(U_i) \qquad \text{(local trivialization of } P_G)$ $\psi(x,g) \mapsto \sigma(x)g.$

Internal states in different fibers cannot be *intrinsically* compared.

On locality & interactions

Introduction

- Gauging Gravity
- Motivations for "gauging" gravity
- Gauge Principle in Yang-Mills Theory
- On Fiber Bundles

On locality & interactions

- Different roles played by symmetry groups
- Towards a Gauge Principle for Gravity
- Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

- The requirement of local gauge invariance is just the "epistemic" counterpart of the fact...
 - ... that internal states are not endowed with an intrinsic "qualitative suchness".

• In **Y-M** theory, *physical interactions* in the form of Ehresmann conn. are necessary to overcome...

... (in a path-dependent or curved way)...

... the disconnection introduced by the spatio-temporal *localization* of matter fields.

A connection reconnects what space-time disconnects.

Different roles played by symmetry groups

Introduction

Gauging	Gravity

- Motivations for "gauging" gravity
- Gauge Principle in Yang-Mills Theory

It is not the same to say...

- On Fiber Bundles
- On locality & interactions
- Different roles played by symmetry groups
- Towards a Gauge Principle for Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

... that the observables of the theory must be invariant under a symmetry group...

... than saying that the very degrees of freedom of the theory must be introduced in order to guarantee the invariance of the theory under a symmetry group.

• While the **Y-M** gauge fields are introduced in order to guarantee the invariance of the theory under $Aut_V(P_G)$...

... it is not clear to what extent the invariance under Diff(M) plays such a "constructive" role in **RG**.

Towards a Gauge Principle for Gravity

Introduction

Gauging Gravity

- Motivations for "gauging" gravity
- Gauge Principle in Yang-Mills Theory
- On Fiber Bundles
- On locality & interactions
- Different roles played by symmetry groups

Towards a Gauge Principle for Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• Is it possible to reformulate GR as a theory that describes a dynamical conn. on a fibration over M?

• And, what is the kind of locality guaranteed by such a gravitational connection?

• First evident answer:

Spacetime is endowed with a *natural bundle*, namely the *tangent bundle* TM...

... and the Levi-Civita conn. is a law for \parallel -transporting vectors in TM.

Cartan's criticism

Introduction

Gauging Gravity

Cartan's Program

Cartan's criticism

- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

Tangent local model of vacuum (LMV) = Minkowski vector space.• Cartan viewpoint: the Levi-Civita notion of connection has two flaws:• Mink. S-T is a homog. space, i.e. there is a group $\Pi(3,1) = \mathbb{R}^4 \rtimes SO^{\uparrow}(3,1)$ Poincaré group

that acts transitively on M.

• Levi-Civita viewpoint:

. However, the Levi-Civita conn. only takes into account the rotational part $SO^{\uparrow}(3,1)$ of $\Pi(3,1),...$

... neglecting in this way the symmetry associated to the fact that flat **S-T** does not have a privileged origin.

If the topology of M is not that of Mink. S-T, i.e. if Mink. S-T is not the ground state of the theory...

... why should we use it Mink. S-T as a LMV?

Generalized local models of vacuum

Introduction

- Gauging Gravity
- Cartan's Program
- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

- Cartan bypasses these two flaws by using more general LMV.
 - ♠ Cartan starts with an *affine fiber bundle* (rather than a vector bundle)...
 - ... in which the local structural group is the whole affine group of the LMV...
 - ... incorporating the fact that the ground state lacks a privileged origin.
- Rather than using Mink. **S-T**, Cartan uses as **LMV** a homog. space adapted to the topology of **S-T**,...
 - ...models that are given by the so-called *Klein geometries*.
- All in all

Tangent Minkowski vector space ~> Tangent affine Klein geometry.

Klein Geometries

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum

Klein Geometries

- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• An *homog. space* (M, G) is a connected space M endowed with a *transitive action* of a Lie group G.

• Given $x_0 \in M$, the surjective map:

 $\begin{array}{rcccc} \pi_{x_0} : G & \to & M \\ & g & \mapsto & g \cdot x_0. \end{array}$

induces a bijection

 $G/H_0 \to M$,

where $H_0 = \pi_{x_0}^{-1}(x_0) \subset G$ is the isotropy group of x_0 .

• Whereas H_0 leaves x_0 invariant, G/H_0 generates translations in M.

• The pair (G, H) with G/H a connected homog. space is called a *Klein geometry*.

• A KG (G, H) induces a canonical *H*-fibration $G \rightarrow G/H$, where *G* is called the *principal group* ("*Haugtgruppe*") of the geometry.

On Cartan Geometries and the Formulation of a Gravitational Gauge Principle. - Gabriel Catren - Workshop Reflections on Space, Time and their Quantum Nature, AEI, Golm 26-28 November, 2012 - p. 14/44

Locals models of gravitational vacuum

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• The relevant examples of **KG** (G, H) in the framework of gravitational theories are given by the vacuum solutions of the Einstein's equations with a cosmological constant Λ :

.Minkowski space-time ($\Lambda = 0$):

 $(\mathbb{R}^4 \rtimes SO^{\uparrow}(3,1), SO^{\uparrow}(3,1)),$

.Anti-de Sitter space-time ($\Lambda < 0$):

 $(SO^{\uparrow}(3,2), SO^{\uparrow}(3,1)),$

```
.de Sitter space-time (\Lambda < 0):
```

 $(SO^{\uparrow}(4,1), SO^{\uparrow}(3,1)).$

• Note: in order to obtain a Klein geometry KG (G, H) from a homogeneous space, we have to choose an origin in the latter.

Limitations of Klein's Erlangen Program

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• Klein's marriage between *geometry* and *group theory* only works for homog. (i.e. symmetric) spaces:

"At first look, the notion of group seems alien to the geometry of Riemannian spaces, as they do not possess the homogeneity of any space with a principal group."

E. Cartan, La théorie des groupes et les recherches récentes de géométrie différentielle.

• This limitation of Klein's Erlangen program can be bypassed by using the Klein symmetric spaces as local tangent models:

"In spite of this, even though a Riemannian space has no absolute homogeneity, it does, however, possess a kind of infinitesimal homogeneity; in the immediate neighborhood it can be assimilated to a Kleinian space."

E. Cartan, Ibid.

• This generalization of Klein's program requires to go beyond the stance according to which the infin. models of a curved geom. must be given by Euclidean space.

Riemann + Klein = Cartan

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)
- Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• *Riemannian Geometry* is locally modeled on *Euclidean Geometry* but globally deformed by curvature.

- Klein Geometries provide more general symmetric spaces that Euclidean Geometry.
- Cartan's twofold generalization:

Cartan Geometries are locally modeled on Klein Geometries but globally deformed by curvature

• In particular, a Riemannian geometry on M is a torsion-free Cartan geometry on M modeled on Euclidean space.

Summary (I)

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan

• Summary (I)

• Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• We shall start with a **Y-M** geometry (i.e., with a theory with purely *internal* affine symmetries):

where ω_G is an Ehresmann connection and G is the **Poincaré**, de Sitter or anti-de Sitter affine group that acts transitively on the vacuum solution of the theory.

• We shall then "externalize" some of the internal symmetries in order to induce geom. structures on M itself.

• We shall consider a KG (G, H) with dim(G/H) = dim(M) where

G = Poincaré, de Sitter or anti-de Sitter affine group.

.H =Lorentz group.

G/H =*group of translations* of the vacuum solution.

Summary (II)

Introduction

Gauging Gravity

Cartan's Program

- Cartan's criticism
- Generalized local models of vacuum
- Klein Geometries
- Locals models of gravitational vacuum
- Limitations of Klein's Erlangen
 Program
- Riemann + Klein = Cartan
- Summary (I)

• Summary (II)

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• Since G is now an affine group,...

... the fibers do not have a privileged point of attch. to M as it is the case for tg. *vector* bundles.

• In order to *attach* the fibers to M, i.e. to **solder** the internal geometry to the geometry of M,...

... we have to "break" the Poincaré symmetry down to the Lorentz group H by selecting a point of attch. in each fiber.

• This amounts to reduce the Ehresmann-connected *G*-bundle P_G to a Cartan-connected *H*-bundle P_H :

Ehresmann connections

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Ehresmann connections

- Associated bundle in homogeneous spaces
- Reduced H-bundle
- Reduction in a nutshell
- ullet Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations
- Canonical G-extension of an H-bundle

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• An *Ehresmann conn.* on $P_G \to M$ is a *horizontal equivariant distribution* H defined by means of a G-eq. and g-valued 1-form ω_G on P_G such that

$$H_p = \operatorname{Ker} (\omega_G)_p \subset T_p P_G.$$

• The conn. form ω_G satisfies:

 $R_h^*\omega_G = Ad_{(h-1)}\omega_G$, where Ad is the adj. repr. of G on \mathfrak{g} .

 $\omega_G(\xi^{\sharp}) = \xi$ ("vertical parallelism") where

$$\sharp : \mathfrak{g} \to V_p P_G$$

$$\xi \mapsto \xi^{\sharp}(f(p)) = \frac{d}{d\lambda} (f(p \cdot exp(\lambda\xi)))_{|\lambda=0}.$$

Important: ω_G has values in the Lie algebra g of the structural group G.

Associated bundle in homogeneous spaces

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Ehresmann connections

 Associated bundle in homogeneous spaces

- Reduced *H*-bundle
- Reduction in a nutshell
- ullet Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations
- Canonical G-extension of an H-bundle

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• It might be possible to reduce (non-canonically) P_G to an *H*-bundle $P_H \rightarrow M$.

• To do so, we have to consider the associated G-bundle in homog. spaces

 $P_G \times_G G/H \to M.$

• This bundle is obtained by attaching to each x a LMV $\simeq G/H$.

• It can be shown that

 $P_G \times_G G/H \cong P_G/H.$

Reduced *H*-bundle

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

- Ehresmann connections
- Associated bundle in homogeneous spaces
- Reduced H-bundle
- Reduction in a nutshell
- Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations
- Canonical G-extension of an H-bundle

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• The reduction of P_G to P_H can be defined either by a global section

 $\sigma: M \to P_G \times_G G/H \cong P_G/H$

or, equivalently, by an equivariant function

 $\varphi: P_G \to G/H, \qquad \qquad \varphi(pg) = g^{-1} \varphi_{\sigma}(p).$

• The reduced *H*-bundle $P_H \rightarrow M$ is given either by

$$P_H = \varphi_{\sigma}^{-1}([e])$$

or by the pullback of P_G along the section σ :

Reduction in a nutshell

Introduction Gauging Gravity Cartan's Program Symmetry breaking Ehresmann connections Associated bundle in homogeneous spaces \bullet Reduced H-bundle Reduction in a nutshell ullet Attaching the LMV to M Symmetry breaking or partial gauge fixing? • *H*-reductions as *partial* trivializations Canonical G-extension of an $P_H = \varphi_{\sigma}^{-1}([e]) = \sigma^* P_G^{\zeta}$ H-bundle Cartan connection Metric Cartan Curvature Development Conclusion

• All in all, there is one-to-one correspondence between

Reduced *H*-subbundles P_H of P_G

⚠

Global sections $\sigma: M \to P_G/H$

or

Equivariant functions $\varphi : P_G \to G/H$

Attaching the LMV to \boldsymbol{M}

Introduction

Gauging Gravity

Cartan's Program

- Symmetry breaking
- Ehresmann connections
- Associated bundle in homogeneous spaces
- Reduced H-bundle
- Reduction in a nutshell
 Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations
- Canonical G-extension of an H-bundle

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

- The reduction amounts to select a *point of attachment* $\sigma(x)$ in each LMV $\simeq G/H$ at each x.
- By doing so, we shall identify
 - .each $\sigma(x)$ with x,
 - .each $T_x M$ to the vertical tangent space to $\sigma(x)$.
- In this way, the **LMV** attached to x will be tangent to M at $\sigma(x)$.
- By selecting a point of att. for each x, we "break" the translational symm. of the **LMV**.
- $H = SO^{\uparrow}(3, 1)$ encodes the "unbroken" rotational symmetry.

Symmetry breaking or partial gauge fixing?

Introduction	 Since the LM
Gauging Gravity	parameterizes
Cartan's Program	
Cartairs riogram	
Symmetry breaking	
Ehresmann connections	the field is
Associated bundle in	the field σ is
homogeneous spaces	
• Reduced H -bundle	
Reduction in a nutshell	
• Attaching the LMV to M	
 Symmetry breaking or partial 	and the redu
gauge fixing?	and the redu
• H -reductions as partial	
trivializations	
 Canonical G-extension of an H-bundle 	
n-bundle	
Cartan connection	• However, the
Metric	
Cartan Curvature	
Development	
Conclusion	

Since the **LMV** $\simeq G/H$ in which σ is valued are analogous to the manifold that arameterizes the \neq degenerated vacua in a theory with symmetry breaking....

.. the field σ is sometimes called a **Goldstone field**...

. and the reduction process is understood as a symmetry breaking (c.f. Stelle & West).

• However, the reduction $P_H \hookrightarrow P_G$ defined by σ might also be understood as a...

... gauge fixing of the G/H-translational local invariance...

... that is, as a *partial* gauge fixing of the *G*-invariance.

H-reductions as partial trivializations

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

- Ehresmann connections
- Associated bundle in homogeneous spaces
- Reduced H-bundle
- Reduction in a nutshell
- Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations
- Canonical G-extension of an H-bundle

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• In particular, a reduction of P_G to a $\{id_G\}$ -principal bundle is given either by a section

$$s: M \to P_G \times_G (G/\{id_G\}) \cong P_G/\{id_G\} = P_G$$

or by a G-equivariant function

$$\varphi: P_G \to G/\{id_G\} = G,$$

where the reduced
$$\{id_G\}$$
-bundle is

$$P_{\{id_G\}} = s^* P_G = \varphi^{-1}(id_G).$$

• Hence, a complete reduction with $H = \{id_G\}$ is a trivialization $s : M \to P_G$ of P_G .

• Instead of selecting a unique frame for each x as the trivialization s does...

... a *H*-reduction can be considered a sort of *partial trivialization* of P_G that selects a non-trivial *H*-set of frames for each *x*.

Canonical G-extension of an H-bundle

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

- Ehresmann connections
- Associated bundle in homogeneous spaces
- Reduced H-bundle
- Reduction in a nutshell
- ullet Attaching the LMV to M
- Symmetry breaking or partial gauge fixing?
- *H*-reductions as *partial* trivializations

```
• Canonical G-extension of an H-bundle
```

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• Whereas the reduction of the G-bundle P_G depends on the existence of a global section

 $\sigma: M \to P_G/H \cong P_G \times_G G/H$

... a *H*-bundle $P_H \rightarrow M$ can be *canonically* extended to the associated *G*-bundle

 $P_H \times_H G \to M,$

```
where the G-action if given by
```

 $[(p,g)] \cdot g' = [(p,gg')]$

... and where the inclusion is given by

 $\iota: P_H \quad \hookrightarrow \quad P_H \times_H G$ $p \quad \mapsto \quad [(p, e)].$

While the reduction of P_G to P_H is not canonical,

 P_H can always be extended to a G-bundle $P_H \times_H G$.

Induced Cartan connection on P_H

Introduction

Gauging Gravity

Cartan's Program

```
Symmetry breaking
```

Cartan connection

- Induced Cartan connection on
 P_H
- Reductive decomposition of

 \mathfrak{g}

- Coordinate & geometric soldering form
- ullet Soldering the LMV to M

Metric

Cartan Curvature

Development

Conclusion

• Let's suppose that
$$\omega_G$$
 satisfies

 $Ker(\omega_G) \cap \iota_* TP_H = 0,$

where $\iota: P_H \hookrightarrow P_G$...

... or, equivalently, that ω_G has no null vectors when restricted to P_H :

$$Ker(A \doteq \iota^*(\omega_G)) = 0.$$

• The 1-form $A: TP_H \rightarrow \mathfrak{g}$ defines a **Cartan connection** if

for each $p \in P_H$, A induces a linear iso. $T_p P_H \cong \mathfrak{g}$ ("absolute parallelism")

$$(R_h^*A)_p = Ad_{(h-1)}A_p$$
 for all $p \in P_H$ and $h \in H$.

$$A(\xi^{\sharp}) = \xi$$
 for any $\xi \in \mathfrak{g}$ where $\sharp : \mathfrak{g} \to V_p P_G$.

• The 1-form A cannot be an Ehresmann conn. on P_H since it is not valued in \mathfrak{h} .

Reductive decomposition of g

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Induced Cartan connection on P_H

```
Reductive decomposition of
```

a

• Coordinate & geometric soldering form

ullet Soldering the LMV to M

Metric

Cartan Curvature

Development

Conclusion

• Let's suppose that the **KG** (G, H) is **reductive**, i.e. that there exists a Ad(H)-module decomposition

 $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}, \qquad Ad(H) \cdot \mathfrak{m} \subset \mathfrak{m}$

(in what follows $\mathfrak{m} \doteq \mathfrak{g}/\mathfrak{h}$).

• By composing with the projections, this decomp. of g induces a decomp. of A:

 $A = \omega_H + \theta.$

where the so-called spin connection

$$\omega_H:TP_H\xrightarrow{A}\mathfrak{g}\xrightarrow{\pi\mathfrak{h}}\mathfrak{h}$$

is an Ehresmann conn. on P_H and the so-called **soldering form**

$$\theta: TP_H \xrightarrow{A} \mathfrak{g} \xrightarrow{\pi_{\mathfrak{g}}/\mathfrak{h}} \mathfrak{g}/\mathfrak{h}$$

is a
$$\mathfrak{g}/\mathfrak{h}$$
-valued 1-form on P_H that is

.*H*-eq.: $R_h^*\theta = h^{-1}\theta$

horizontal: $\theta(\eta) = 0$ for vertical vectors $\eta \in VP_H$

Coordinate & geometric soldering form

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

```
Cartan connection
```

```
    Induced Cartan connection on
    P<sub>H</sub>
```

```
• Reductive decomposition of
```

```
g
```

 Coordinate & geometric soldering form

ullet Soldering the LMV to M

Metric

Cartan Curvature

Development

Conclusion

• While σ attaches the **LMV** to $x \in M$ at $\sigma(x)$, the $\mathfrak{g}/\mathfrak{h}$ -part θ of $A = \omega_H + \theta$ identifies each $T_x M$ to the vertical tg. space to the **LMV** at $\sigma(x)$.

• This is a consequence of Ker(A) = 0, since

$$A(v_h) = \omega_H(v_h) + \theta(v_h) = \theta(v_h) \neq 0 \in \mathfrak{g}/\mathfrak{h},$$

where v_h is a horizontal vector.

• Given the coordinate soldering form

 $\theta: TP_H \to \mathfrak{g}/\mathfrak{h},$

the isomorphism

$$\Omega^{q}_{hor}(P_{H},\mathfrak{g}/\mathfrak{h})^{H}\simeq\Omega^{q}(M,P_{H}\times_{H}\mathfrak{g}/\mathfrak{h}),$$

induces a geometric soldering form

 $\tilde{\theta}: TM \to P_H \times_H \mathfrak{g}/\mathfrak{h}$

• The bundle $P_H \times_H \mathfrak{g}/\mathfrak{h}$ can be identified with the bundle of vertical tg. vectors to $P_G \times_G G/H$ along $\sigma : M \to P_G \times_G G/H$:

 $P_H \times_H \mathfrak{g}/\mathfrak{h} \simeq V_\sigma (P_G \times_G G/H).$

Soldering the LMV to \boldsymbol{M}

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

- Induced Cartan connection on
 P_H
- Reductive decomposition of
- g
- Coordinate & geometric soldering form

ullet Soldering the LMV to M

Metric

Cartan Curvature

Development

Conclusion

• The geometric soldering form

$$\tilde{\theta}: TM \to P_H \times_H \mathfrak{g}/\mathfrak{h}$$

identifies each vector v in $T_x M$ with a geometric vector $\tilde{\theta}(v)$ in $P_H \times_H \mathfrak{g}/\mathfrak{h},...$

... that is with a vertical vector tangent to $P_G \times_G G/H$ at $\sigma(x)$.

• The tg. space $T_x M$ is thus **soldered** to the tg. space to the homog. fiber $\simeq G/H$ of $P_G \times_G G/H$ at $\sigma(x)$.

The LMV are soldered to TM along the section σ .

• The coordinate soldering form

 $\theta_p: T_p P_H \to \mathfrak{g}/\mathfrak{h}$

defines the $\mathfrak{g}/\mathfrak{h}$ -valued coordinates of $\tilde{\theta}(v)$ in the frame p.

Reducing the frame bundle

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Reducing the frame bundle

Recovering the metric

Soldering vs. canonical form

Cartan Curvature

Development

Conclusion

• The existence of a soldering form θ on P_H implies that P_H is isomorphic to a $GL(\mathfrak{g}/\mathfrak{h})$ -structure,...

... that is to a subbundle of the $GL(\mathfrak{g}/\mathfrak{h})$ -principal bundle LM of linear frames on M.

• Indeed, θ defines an application

 $\begin{aligned} f^{\theta} : P_H & \hookrightarrow & LM \\ p & \mapsto & f^{\theta}(p) : \mathfrak{g}/\mathfrak{h} \to T_{\pi(p)}M \end{aligned}$

that identifies each element p in P_H with a frame $f^{\theta}(p) \in LM$ over $\pi(p) \in M$.

• Since $f^{\theta}: P_H \to LM$ is an *H*-morphism, $f^{\theta}(P_H)$ is a *H*-subbundle of *LM*.

• Such a reduction of LM amounts to define a Lorentzian metric on M.

Recovering the metric

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Reducing the frame bundle

Recovering the metric

Soldering vs. canonical form

Cartan Curvature

Development

Conclusion

• The metric g^{θ} on M can be explicitly defined in terms of the Ad(H)-invariant scalar product $\langle \cdot, \cdot \rangle$ of $\mathfrak{g}/\mathfrak{h}$ by means of the expression

$$g^{\theta}(v,w) = \left\langle \tilde{\theta}_{p}(v), \tilde{\theta}_{p}(w) \right\rangle$$

where $\tilde{\theta}_p(x): T_x M \to \mathfrak{g}/\mathfrak{h}$.

• The *H*-invariance of $\langle \cdot, \cdot \rangle$ implies that $g^{\theta}(v, w)$ does not depend on the frame p over x.

The translational part θ of the Cartan connection A...

... by inducing an isomorphism between P_H and a SO(3,1)-subbundle of LM...

... induces a Lorentzian metric g^{θ} on M.

Soldering vs. canonical form

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

• Reducing the frame bundle

Recovering the metric

Soldering vs. canonical form

Cartan Curvature

Development

Conclusion

• The soldering form $\theta \in \Omega^1(P_H, \mathfrak{g}/\mathfrak{h})$ is the pullback by f^{θ} of the *canonical form*

$$\theta_c: T(LM) \to \mathfrak{g}/\mathfrak{h}$$

on LM given by:

$$\begin{array}{rcl} \theta_c: T_{e(x)}(LM) & \to & \mathfrak{g}/\mathfrak{h} \\ & \tilde{v} & \mapsto & e(x)^{-1}(\pi_*(\tilde{v})). \end{array}$$

where

 $e(x): \mathfrak{g}/\mathfrak{h} \to T_x M$

is a frame on $T_x M$.

• Contrary to the canonical form θ_c on LM, the soldering form θ on P_H is not canonical...

... since it comes from the restriction of the arbitrary Ehresmann conn. ω_G on P_G to P_H .

• This is consistent with the fact that θ defines a degree of freedom of the theory.

Curvature of the Cartan connection

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Curvature of the Cartan

connection

On Cartan flatness

 (Maurer-)Cartan flat connection

Development

Conclusion

• The *Cartan curvature* $F \in \Omega^2(P_H, \mathfrak{g})$ of a Cartan geom. (P_H, A) is given by

$$F = dA + \frac{1}{2}[A, A] = F_{\mathfrak{h}} + F_{\mathfrak{g}/\mathfrak{h}}.$$

• The *curvature* $R \in \Omega^2(P_H, \mathfrak{h})$ of a Cartan geom. (P_H, A) is given by

$$R \doteq d\omega_H + \frac{1}{2}[\omega_H, \omega_H] = F_{\mathfrak{h}} - \frac{1}{2}[\theta, \theta]_{\mathfrak{h}}.$$

• The *torsion* $T \in \Omega^2(P_H, \mathfrak{g}/\mathfrak{h})$ of a Cartan geom. (P_H, A) is given by

$$T \doteq d\theta + \frac{1}{2}([\omega_H, \theta] + [\theta, \omega_H]) = F_{\mathfrak{g}/\mathfrak{h}} - \frac{1}{2}[\theta, \theta]_{\mathfrak{g}/\mathfrak{h}}.$$

On Cartan flatness

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

 Curvature of the Cartan connection

On Cartan flatness

 (Maurer-)Cartan flat connection

Development

Conclusion

• In general., *Cartan flatness* does not imply R = 0 and T = 0:

$$F = 0 \Leftrightarrow \begin{cases} R = -\frac{1}{2} [\theta, \theta]_{\mathfrak{h}} \\ T = -\frac{1}{2} [\theta, \theta]_{\mathfrak{g/h}} \end{cases}$$

• The standard for Cartan flatness F = 0 is given by the "curved" **LMV** $\simeq (G, H)$.

• The so-called symmetric models satisfy

 $[\mathfrak{g}/\mathfrak{h},\mathfrak{g}/\mathfrak{h}]\subseteq\mathfrak{h},$

which implies

$$T = F_{\mathfrak{g}/\mathfrak{h}} \rightsquigarrow F = (R + \frac{1}{2}[\theta, \theta]_{\mathfrak{h}}) + T.$$

• T naturally appears as the "translational" component of F.

(Maurer-)Cartan flat connection

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

 Curvature of the Cartan connection

On Cartan flatness

● (Maurer-)Cartan flat

connection Development

Conclusion

• Let's consider the canonical H-fibration $G \to G/H$ of the **KG** (G, H).

• The *Maurer-Cartan form* A_G of G is given by

$$\begin{array}{rcl} A_G(g):T_gG&\to&\mathfrak{g}\\ \xi&\mapsto&(L_{q-1})_*\xi, \end{array}$$

where $L_{g^{-1}}: G \to G$ is the left translation defined by $L_{g^{-1}}(a) = g^{-1}a$ and it satisfies

 $R_g^* A_G = Ad(g)A_G$ $dA_G + \frac{1}{2}[A_G, A_G] = 0$

Maurer-Cartan form = Flat Cartan connection on $G \rightarrow G/H$.

*H***-parallel transports**

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

 $\bullet H$ -parallel transports

Development

Infinitesimal developments

Conclusion

• ω_H defines parallel transports in the associated bundle

 $P_H \times_H \mathfrak{g}/\mathfrak{h} \simeq V_\sigma (P_G \times_G G/H),$

that is parallel transports of vectors tg. to the LMV along the section

 $\sigma: M \to P_G \times_G G/H.$

• Since the geom. soldering form $\tilde{\theta}$ defines an identification

 $TM \xrightarrow{\simeq} P_H \times_H \mathfrak{g}/\mathfrak{h},$

the Ehresmann conn. ω_H transports vectors tg. to M.

• The ω_H -parallel transports coincide with the levi-Civita parallel transports.

• Now, $A = \omega_H + \theta$ does not only \parallel -transport "internal" states (tg. vectors in this case) as in **Y-M** theory (by means of ω_H)...

... but also the spatiotemporal locations themselves (by means of θ).

Development

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

• *H*-parallel transports

Development

Infinitesimal developments

Conclusion

• Let $\gamma : [0,1] \to M$ be a curve on M and $\tilde{\gamma} : [0,1] \to P_H$ any lift of γ .

• Since $P_H \subset P_G$, the curve $\tilde{\gamma}$ is in P_G .

• If we use ω_G for \parallel -transporting $\tilde{\gamma}(t)$ to $\pi^{-1}(x_0)$ along γ for all $t \in [0, 1]$, we obtain a curve $\hat{\gamma}$ in $\pi^{-1}(x_0)$.

• By using the projection

$$P_G \xrightarrow{\varrho} P_G / H \simeq P_G \times_G G / H,$$

we can define a curve $\gamma^* = \rho(\hat{\gamma})$ in the fiber of $P_G \times_G G/H$ over x_0 called the *development of* γ *over* x_0 .

- In this way, any curve $\gamma : [0, 1] \to M$ can be "*printed*" on the LMV over x_0 .
- It can be shown that:

 γ^* only depends on γ and is independent from the choice of $\tilde{\gamma}$.

.The devel. of a closed curve might fail to close by an amount given by T.

The torsion measures the non-commutativity of the translational parallel transports.

Infinitesimal developments

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

• H-parallel transports

Development

Infinitesimal developments

Conclusion

• Since the development is obtained by projecting a $\|$ -transport defined by ω_G onto $G/H,\ldots$

... the only relevant part of ω_G is the $\mathfrak{g}/\mathfrak{h}$ -valued part, namely θ .

• Given an infin. displacement $v \in T_x M$, the *geometric soldering form*

 $\tilde{\theta}: TM \to P_H \times_H \mathfrak{g}/\mathfrak{h} \simeq V_{\sigma}(P_G \times_G G/H)$

defines an infin. displacement in the LMV on x_0 at the point of attachment $\sigma(x)$.

• This means that the point of attachment at x + v will be developed in the fiber above x into the point $\sigma(x) + \tilde{\theta}(v)$.

• In other terms, the translational part θ of A defines the γ -dependent image of any $x \in M$ in the LMV at x_0 .

Translational locality: this identification is dynamically defined by the translational component of the Cartan gauge field *A*.

Conclusion (I)

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

• Conclusion (I)

Conclusions (II)

Further Research...

The End

• The theory of Cartan geometries allows us to put together ω_H and θ into a unique Cartan connection

 $A \begin{cases} \omega_H \text{ Gauges the local Lorentz symmetry} \\ \theta \begin{cases} \text{Gauges the local translational symmetry} \\ \text{Induces a metric } g^{\theta} \text{ on } M \end{cases}$

... that gauges the *local affine gauge invariance* defined by the affine group G that acts transitively on the vacuum solution of the theory.

• This can be done by reducing a Y-M geometry

 $(P_G \to M, \omega_G)$

by means of a partial gauge fixing

 $\sigma: M \to P_G \times_G G/H$

that breaks the translational invariance of the **LMV** $\simeq G/H$.

Conclusions (II)

Introduction	• In G
Gauging Gravity	smalle
Cartan's Program	
Symmetry breaking	
Cartan connection	
Metric	 If we gravita
Cartan Curvature	gravita
Development	
Conclusion	
Conclusion (I)	
● Conclusions (II)	 Since
Further Research	the Po
The End	

• In GR (where T = 0), the consideration of a local *affine* symmetry instead of the smaller local Lorentz symmetry has no effects.

If we relax the condition T = 0, then ω_H and θ are indep. geom. structures and the avitational field must be described by the whole $A = \omega_H + \theta$.

• Since the **LMV** is not necessarily Minkowski **S-T**, the affine group G is not necessarily the Poincaré group.

Further Research...

Introduction

Gauging Gravity

Cartan's Program

Symmetry breaking

Cartan connection

Metric

Cartan Curvature

Development

Conclusion

Conclusion (I)

Conclusions (II)Further Research..

The End

• Clarify the relationship between the *local translational invariance* gauged by θ and the *invariance under diffeomorphisms* of M...

... being these symmetries related by the soldering

 $\tilde{\theta}: M \to V_{\sigma}(P_G \times_G G/H)$

which identifies the external infinitesimal translations in M with the internal translations in the internal **LMV**.

• Clarify the nature of the reduction process: *dynamical symmetry breaking* or *partial gauge fixing*?

• Analyze the different actions S that can be constructed from the Cartan connection A.

The End

Introduction	
Gauging Gravity	
Cartan's Program	
Symmetry breaking	
Cartan connection	Thanks for your attention !!!
Metric	
Cartan Curvature	
Development	

Conclusion

Conclusion (I)

Conclusions (II)

• Further Research...

● The End