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3D classical gravity

Write the pair A = (e
i ,ωi

) of 3-bein and spin connection as an

e3 = R3>�su2-valued connection. Ad-invariant inner product

on e3 ⇒

SChern−Simons =

�

Σ×R
A∧̇(dA+

1

3
[A ∧ A]) = SCartan−Weyl

i.e. view gravity as a TFT.

⇒ solutions of gravity with point sources at punctures i

determined as holonomies in group E3

⇒ (extended) phase space E
2genus(Σ)
3 ×

�
Ci

with a certain Poisson bracket. Here Ci are conjugacy classes

encoding mass and spin at i [Fock & Rosly ’92, Meusburger &

Schroers CQG’03,...]

No positions at this stage (since up to diffeos), but e3 or

(classical) quantum group H = U(e3) = U(su2)�<C (R3
) acts

canonically on a ‘model spacetime algebra’ A = C (R3
).

⇒ Theory described by topology of     and `local model’ quantum 
group of motions                       acting on           as quantum 
flat space, 

Σ

U(su2)!<C(SU2) U(su2)
[xi, xj ] = 2ıλεi,j,kxk

Uq(su2)!<Cq(SU2)

Uq(su2)
With cosmological constant its instead
acting on              with                   , where q ∼ e

−
1

mplc lc =
√

−Λ

op

EMERGENCE OF WAVE EQNS FROM QS
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Lessons from 3D

(H1 !" H2, H
∗

2 )



Classical model
H = U(su2)!<C(R3), A = C(R3)

mP = ∞, lc = ∞

Spin model
H = U(su2)!<C(SU2), A = U(su2)

mP < ∞, lc = ∞

Particle on hyperboloid H
3

H = U(su2)!"U(h3), A = C(H3)
mP = ∞, lc < ∞

Bicrossproduct model
H = U(su2)!!C(H3), A = U(h3)

mP < ∞, lc = ∞

3D QG w/ cosmological constant
mP < ∞, lc < ∞

H = Uq(su2)!!Cq(H
3)

A = Uq(h3)
H = Uq(su2)!"Uq(h3)

A = Cq(H
3)

H = Uq(su2)!"Cq(SU2)op

A = Uq(su2)

∼= if q "= 1
∼= if q "= 1

q → 1

q → 1

q → 1 q → 1

λ → 0 λ → 0semidual

semidual

semidual

semidual

semidual

H = Uq(su2)⊗Uq(su2)cop

A = Cq(SU2)op

Particle on SU2

H = U(su2)⊗U(su2)cop, A = C(SU2)
mP = ∞, lc < ∞

Different limits of 3D Quantum Gravity (w. B. Schroers)
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Quantum Born Reciprocity [S.M. & Schroers, ’08]

Let H = H1��H2 be a quantum group factorising into ‘quantum

rotations’ H1 and ‘quantum momentum’ H2.

Semidualisation theorem [cf. SM ’88]

1 H1��H2 acts canonically on H
∗
2 ‘quantum spacetime’.

2 There is a new quantum group H
∗
2��H1 (the ‘semidual’).

It acts canonically on H2.

3 The Heisenberg-Weyl algebra H
∗
2>�(H1��H2) of the first

model is the same as as the Heisenberg-Weyl algebra

(H
∗
2��H1)�<H2 of the second.

i.e. the combined rotations-momentum-position algebra is

invariant under position ↔ momentum.

4 Applied to 3D quantum gravity we also swap mp ↔ lc .

Related spin foam duality for 6j symbols was found [Freidel,

Noui & Roche JMP’07]
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Let H = H1��H2 be a quantum group factorising into ‘quantum

rotations’ H1 and ‘quantum momentum’ H2.

Semidualisation theorem [cf. SM ’88]

1 H1��H2 acts canonically on H
∗
2 ‘quantum spacetime’.

2 There is a new quantum group H
∗
2��H1 (the ‘semidual’).

It acts canonically on H2.

3 The Heisenberg-Weyl algebra H
∗
2>�(H1��H2) of the first
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Noui & Roche JMP’07]

Semidualization - quantum Born reciprocity  (SM 1988)



H = U(so(1, 3))!!C[R!<R
3]

[pi , N j ] = − ı
2
δi

j

(
1 − e−2λp0

λ
+ λ "p2

)

+ ıλpi p j ,

Bicrossproduct model spacetime (SM+H. Ruegg ’94) 

!Ni = Ni ⊗ 1 + e−λp0 ⊗ Ni + λεi j
k p j ⊗ Mk,

!pi = pi ⊗ 1 + e−λp0 ⊗ pi

||p||2λ = !p2eλp0 − 2
λ2

(cosh(λp0) − 1)

as | ∂p0

∂pi | = eλp0

the speed of light
!T ∼ λ!p0

L
c

∼ 10−44 s × 100 MeV × 1010 y ∼ 1 ms,

Variable Speed Light

Differential arrival time of gamma-ray bursts (SM+GAC‘2000)

[xi, t] = λxi, [xi, xj ] = 0

xi, t

space, time not 
simultaneously measurable

Wave operator on plane 
waves e

i!x·!p
e
itp0

cf. Lukierski et al

A = U(R!<R
3)



3. Quantum anomaly for differential calculus

Ω
1 a((db)c)=(a(db))c `bimodule’

d : A → Ω
1 d(ab)=(da)b+a(db) `Leibniz rule’

{adb} = Ω
1

ker d = C.1 connectedness(optional)

In quantum group case we ask it to be translation invariant:

Space of 1-forms, i.e. `differentials dx’

E.g. A = C[x] ⇒ Ω1 = C[x]dx
df(x) =

f(x + λ) − f(x)

λ
dx

(dx)f(x) = f(x + λ)dx

Theorem (SM&E Beggs, 2004) For simple    there do not exist 
associative differential calculi of classical dimensions (a) on 
that are bicovariant (b) on          that are ad-covariant

Cq(G)

U(g)

g

=> extra cotangent dimensions. General feature of NCG!



 Eg in bicrossproduct model  
poincare covariance has an anomaly, forces extra direction 

cf Sitarz

NEWTONIAN GRAVITY ON QUANTUM SPACETIME

SHAHN MAJID

Abstract. The bicrossproduct model λ-Minkowski (or ‘κ-Minkowski’) quan-

tum spacetime has an anomaly for the action of the Poincaré quantum group

which was resolved by an extra cotangent direction θ� not visible classically.

We show that gauging a coefficient of θ� introduces gravity into the model. Ef-

fects include an induced constant term in the potential energy and a weakening

of gravity as the test particle mass increases.

1. Introduction

Quantum or noncommutative geometry’[4] has been proposed for many years as a
generalisation of geometry suitable to model quantum gravity corrections to clas-
sical geometry. Coming out of quantum Born reciprocity, the author proposed[11]
quantum groups as toys model with both quantum and curved phase-space. Since
then many proposals have emerged for one part of that, namely flat quantum space-
times with quantum Poincare group[5, 12, 9, 16] and have led to predictions such as
a variable speed of light testable by time of flight data from gamma-ray bursts[2].
There are also models [6, 20] of a different character. The dual side of this is curved
momentum space and was proposed by the author as a new effect called ‘cogravity’
and was related in simple cases to flat quantum spacetime by quantum Fourier
transform[13], an approach that has recently attracted some attention[1]. It is also
now well understood in 2+1 quantum gravity how noncommutative spacetime can
arise in a certain weak gravity approximation[10, 18, 7, 8] and the emergence of flat
spacetimes and/or curved momentum space can be seen quite explicitly.

In this note we propose how gravity can be included in such flat quantum space-
time models. We recall that in physics a quantum anomaly is where a classical
symmetry is not preserved on quantisation. In [3] we proved a no-go theorem that
many classes of familiar noncommutative spaces likewise do not admit differential
calculi of classical dimensions and which are fully covariant under expected group
or quantum group symmetries. We have called this a quantum anomaly for the
differential structure and have proposed it as an algebraic origin of evolution[14].
The theorem does not specifically apply to the Poincaré quantum group on the
Majid-Ruegg bicrossproduct model quantum spacetime [16]

(1.1) [xi, xj ] = 0, [xi, t] = ıλxi

Date: Revised December 2011.
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Key words and phrases. noncommutative geometry, quantum spacetime, variable speed of
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but in 2+1 this arises as a limit of the quantum group Cq(SU2) as this is stretched

flat [17] and there the theorem does apply. It appears that one similarly has an

anomaly in all dimensions. We will use a conventional parameter such that λ → 0

is the classical limit rather than the original κ = 1/λ.

Quantum anomalies for differential structure can typically be fixed by extra cotan-

gent directions. Thus the smallest known calculus in the 3+1 version of (1.1) is

5-dimensional and in our conventions it has the form cf[19]

[dxi, xj ] = ıλδijθ
�, [θ�, xi] = 0, [θ�, t] = ıλθ�

(1.2) [dxi, t] = 0, [xi, dt] = ıλdxi, [dt, t] = βıλθ� − ıλdt.

except that we have inserted a dimensionful constant β in front of θ� for later use.
The form of d can be deduced from these relations and on normal ordered functions

ψ(x, t) =
�

n ψn(x)tn we have

(1.3) dψ =
∂

∂xi
ψ(x, t)dxi + ∂0ψ(t)dt+

ıλ

2
�β=constψ(t)θ�

where

(1.4) �β=constψ(t) =
∂2

∂x2

i

ψ(t+ ıλ) + 2∆β=const
0

ψ(t)

∂0f(t) =
f(t)− f(t− ıλ)

ıλ
, ∆β=const

0
f(t) =

β

2

�
f(t+ ıλ) + f(t− ıλ)− 2f(t)

(ıλ)2

�
.

Here �β=const
recovers the wave operator used on plane waves in [2] to obtain the

famous variable effective speed of light prediction for this model. The way that

the Laplacian arises here as the ‘partial derivative’ associated to the anomalous

direction θ� is part of a ‘wave operator’ approach to noncommutative geometry

implemented in [15]. It is tied up with a deep principle of noncommutative geometry

that a sufficiently noncommutative geometry is inner in the sense of a 1-form θ that

generates d by commutator and that need have no classical analogue, see [14]. In

the present case θ = dt − βθ� and in 2+1 this is a degeneration of θ for the 4D

calculus[21] on Cq(SU2).

Here β = −1/c2 where c is the classical speed of light but it turns out[15] that we

still have a differential calculus for any function β. We will see that gauging this

coefficient of the extra direction by allowing it to vary from point to point introduces

Newtonian gravity in the nonrelativistic limit, with β the gravitational potential.

Thus even though we work in flat spacetime its anomaly for the quantum Poincaré

group forces an extra degree of freedom which can be viewed as the origin of gravity.

We will look particularly at the 1/r potential for a point source at the origin. This

was promised as justification for the ‘minimally coupled’ noncommutative black

hole in[15] of which the present paper is a self-contained off-shoot. The material

was originally a section within the preprint version of [15] but has been removed

from the published version.
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[dt, t] = ıλθ′ − ıλdt
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+
ıλ

2
(!ψ(x, t))θ′

Anomaly => extra dimension => Laplacian as conjugate

same      as before 
in VSL prediction 

⇒ !

θ
′

If          sufficiently noncommutative then expect d inner:   Ω(A)

[a, θ] = λda, ∀a ∈ A∃θ ∈ Ω1(A)

Ω
1

= Ω̄
1
⊕ A.θ da = d̄a +

λ

2
(∆a)θSuppose

∆ : A → A
  

Philosophy: Laplacian or wave operator arises out of the 
construction of the calculus   

`non-classical equation’

classical



Fact:  we can change to                               where     is any 
function on space, still gives calculus and Laplacian becomes:
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NEWTONIAN GRAVITY ON QUANTUM SPACETIME 3

2. Interpretation of varying β

When β is not constant the formula (2.1) continues to define the wave operator �
as

(2.1) dψ =
∂

∂xi
ψ(x, t)dxi + ∂0ψ(t)dt+

ıλ

2
�ψ(t)θ�

I.e. we take a point of view on the origin of the wave equation as coming out of the
quantum anomaly[14, 15]. One finds that it has the form

(2.2) �ψ = ∆̄ψ(t+ ıλ) + 2∆0ψ, ∆̄ =
∂2

∂x2
i

− 1

2β

∂β

∂xi

∂

∂xi

where

(2.3) ∆0ψ(t) =
νψ(t+ ıλ) + µψ(t− ıλ(βµ − 1))− (ν + µ)ψ(t+ ıλ(1− β

ν+µ ))

(ıλ)2

is still a ‘finite difference’ but varying over space according to solutions µ, ν of the
first order differential equations

xi
∂µ

∂xi
+ 2µ = β, xi

∂ν

∂xi
+ ν = µ.

The calculus remains locally inner with θ = dt− (µ+ ν)θ� and one still has

lim
ıλ→0

2∆0 = β
∂2

∂t2

so that the classical limit of � is the Laplace-Beltrami operator for a metric of the
static form

(2.4) g =
1

β
dt⊗ dt+ dxi ⊗ dxi.

These facts are a specialization of more general results in [15] or any Riemannian
3-manifold admitting a conformal Killing vector field, including the 3-geometry
needed for the Schwarzschild black hole.

3. Polar coordinates in the flat spacetime bicrossproduct model

We let r2 = x2 so that r is the radius from the origin. One has rdr = xdx + ıλθ�

and using this there is a closed algebra of dr, θ�, dt and functions of r, t with [15]

[dr, f(r)] = ıλf �(r)θ�, [θ�, f(r)] = 0, [dr, f(t)] = 0

[f(r), t] = ıλrf �(r), [f(r), dt] = ıλdf(r), rf(t) = f(t+ıλ)r, θ�f(t) = f(t+ıλ)θ�

and relations

[dt, f(t)] + ıλdf(t) = (ν + µ)

�
f(t+ ıλ)− f(t+ ıλ(1− β

ν + µ
))

�

for any functions f . Here

df(t) = ∂0f(t)dt+ ıλ∆0f(t), df(r) = f �(r)dr +
ıλ

2
f ��(r)θ�

from the above.
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2. Interpretation of varying β

When β is not constant the formula (2.1) continues to define the wave operator �
as

(2.1) dψ =
∂

∂xi
ψ(x, t)dxi + ∂0ψ(t)dt+

ıλ

2
�ψ(t)θ�

I.e. we take a point of view on the origin of the wave equation as coming out of the
quantum anomaly[14, 15]. One finds that it has the form

(2.2) �ψ = ∆̄ψ(t+ ıλ) + 2∆0ψ, ∆̄ =
∂2

∂x2
i

− 1

2β

∂β

∂xi

∂

∂xi

where

(2.3) ∆0ψ(t) =
νψ(t+ ıλ) + µψ(t− ıλ(βµ − 1))− (ν + µ)ψ(t+ ıλ(1− β

ν+µ ))

(ıλ)2

is still a ‘finite difference’ but varying over space according to solutions µ, ν of the
first order differential equations

xi
∂µ

∂xi
+ 2µ = β, xi

∂ν

∂xi
+ ν = µ.

The calculus remains locally inner with θ = dt− (µ+ ν)θ� and one still has

lim
ıλ→0

2∆0 = β
∂2

∂t2

so that the classical limit of � is the Laplace-Beltrami operator for a metric of the
static form

(2.4) g =
1

β
dt⊗ dt+ dxi ⊗ dxi.

These facts are a specialization of more general results in [15] or any Riemannian
3-manifold admitting a conformal Killing vector field, including the 3-geometry
needed for the Schwarzschild black hole.
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=> newtonian gravity arises out of a freedom for the quantum 
differential calculus on flat quantum spacetime
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What is the physical meaning of this new degree of 
freedom known as the the differential structure?
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as in Newtonian gravity. This is a standard derivation which we include for com-

pleteness only.

Next we consider how the associated spacetime Laplace-Beltrami wave operator

changes. Classically this is

�̄ψ =

�
β
∂2

∂t2
+

∂2

∂x2
i

− 1

2β

∂β

∂xi

∂

∂xi

�
ψ ≈ β

∂2

∂t2
ψ + ∆̄flatψ

where we can discard − 1

2
β−1∂β ≈ ∂Φ/c2 as long as the fields ψ are slowly varying

in space. We do not make the same assumption about slow variation in t and indeed

we now consider fields of the form

ψ = Ψe−ıtmc2

�

where Ψ is slowly varying in both space and time, and where mc2 is the rest mass

of our test particle moving in the above geometry. In this case the spacetime wave

equation �̄ψ =
m2c2

�2 ψ becomes

1

c2
(1− 2Φ

c2
)

�
m2c4

�2 Ψ+ 2ı
mc2

� Ψ̇+ Ψ̈

�
+ ∆̄flatΨ =

m2c2

�2 Ψ

in which we can drop the Ψ̈ term in comparison to the others. We cancel leading

terms, to obtain

ı� ∂

∂t
Ψ = − �2

2m
∆̄flatΨ+mΦΨ

at our level of approximation, which is indeed the correct quantum mechanical de-

scription of a test particle of mass m moving in a gravitational potential Φ (created

by a matter density ρ). One can then take the classical limit of the theory to

recover the classical Newtonian force of gravity. This is a different route to the

one usually taken of geodesic deviation equation reducing to Newtonian motion of

classical particles. It gives the interpretation of the parameter β in the metric.

5. Effects in the quantum case

We have looked above at the classical wave operator and its nonrelativistic limit. We

now do the same for the quantum wave operator of Section 2. We are particularly

interested in Φ = −GM
r where G is Newtons constant and M is a gravitational

mass concentrated at the origin and let γ =
2GM
c2 . Then from Section 3 we have

β = − 1

c2
(1 +

γ

r
), µ = − 1

c2
(
1

2
+

γ

r
), ν = − 1

c2
(
1

2
− γ

r
ln(

γ

r
))

∆0f(t) = ∆β=−1/c2

0
f(t)− γ

c2r
∆hybrid

0
f(t+ ıλ), ∆hybrid

0
=

1

ıλ

�
∂

∂t
− ∂0

�

We see that the effect in ∆0 of the potential γ/r in β is an additional term which

is a hybrid double derivative expressed as the difference of the classical and finite

derivatives.

As result, and also accounting for the term in ∆̄ from β−1∂β, we have on normal

ordered ψ(x, t) =
�

ψn(x)tn on the spacetime,

�ψ(t) = �β=−1/c2ψ(t)− 1

2

γ

r3(1 + γ
r )

xi
∂

∂xi
ψ(t+ ıλ)− 2γ

c2r
∆hybrid

0
ψ(t+ ıλ)

4 SHAHN MAJID

The remaining commutation relations for the bicrossproduct model in polar coor-

dinates are[15]

[dxi, f(r)] = ıλ
xi

r
f �
(r)θ�, [dr, xi] = ıλ

xi

r
θ�, [dxi,

xj

r
] = ıλ

eij
r
θ�

xif(t) = f(t+ ıλ)xi, [dxi, f(t)] = 0, [dr,
xi

r
] = 0

from which one can see for example that

ωi = dxi−
xi

r
dr+ıλ

xi

r2
θ�, [ωi, r] = 0, xiωi = 0, [ωi, xj ] = ıλeijθ

�, [ωi, t] = 0.

Here the ωi are the projections of the dxi to spheres of constant radius. Together

with dt, dr they cover all directions in the cotangent bundle classically and the same

with θ� in the quantum case.

In the case of spherically symmetric β =
1

rn one can solve the above system for µ, ν
and obtain as follows[15]:

n = 1 : µ =
1

r
, ν =

ln(r)

r
, ∆0f(t) =

1

ıλr
(
∂

∂t
−∂0)f(t+ ıλ)

n = 2 : µ =
ln(r)

r2
, ν =

1 + ln(r)

r2
, ∆0f(t) =

1

ıλr2

�
∂0f(t+ 2ıλ)− ∂

∂t
f(t+ ıλ)

�

n �= 1, 2 : µ =
1

(2− n)rn
, ν =

1

(2− n)(1− n)rn

∆0f(t) =
1

rn

�
f(t+ ıλ) + (1− n)f(t− ıλ(1− n))− (2− n)f(t+ ıλn)

(ıλ)2(2− n)(1− n)

�

and

[dt, f(t)] + ıλ∂0f(t)dt =
1

rn

�
f(t+ (n− 1)ıλ)− f(t+ ıλ)

(n− 2)

�
θ�

where in the last expression the finite difference on the right is understood when

n = 2 as
∂f(t+ıλ)

∂t .

4. Reduction to Newtonian gravity

Although Newtonian gravity does not fit exactly into general relativity, it can be

modelled approximately as a metric of the form (2.4). It is elementary to compute

that for such metrics

Ricci00 = φ∆̄flatφ, ∆̄flat
=

∂2

∂x2

i

, φ =
√
−g00 =

�
−β−1.

We now suppose that

β = − 1

c2
(1− 2Φ

c2
)

where c is the speed of light and for some spatially varying function Φ (the gravi-

tational potential) with values << c2 (a weak field approximation). So φ ≈ c+ Φ
c

within our level of approximation and Ricci00 ≈ ∆̄flatΦ. Next, we consider an

approximately static matter distribution with density ρ which means stress en-

ergy tensor dominated by T00 ≈ ρc4. Einstein’s equations (in trace reversed

form) read Ricci00 =
8πG
c4 (T00 − 1

2
Tg00) where T = Tµ

µ ≈ −ρc2 is the trace and

g00 = −φ2 ≈ −c2. Hence Einstein’s equation in our approximation becomes

∆̄flatΦ = 4πGρ

where      is the newtonian potential. Can solve 
this in the quantum spacetime case for pt source
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one usually taken of geodesic deviation equation reducing to Newtonian motion of

classical particles. It gives the interpretation of the parameter β in the metric.

5. Effects in the quantum case

We have looked above at the classical wave operator and its nonrelativistic limit. We

now do the same for the quantum wave operator of Section 2. We are particularly

interested in Φ = −GM
r where G is Newtons constant and M is a gravitational

mass concentrated at the origin and let γ =
2GM
c2 . Then from Section 3 we have
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+
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We see that the effect in ∆0 of the potential γ/r in β is an additional term which

is a hybrid double derivative expressed as the difference of the classical and finite

derivatives.

As result, and also accounting for the term in ∆̄ from β−1∂β, we have on normal

ordered ψ(x, t) =
�

ψn(x)tn on the spacetime,

�ψ(t) = �β=−1/c2ψ(t)− 1
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γ

r3(1 + γ
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xi
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ψ(t+ ıλ)− 2γ

c2r
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0
ψ(t+ ıλ)

where
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as the flat bicrossproduct spacetime wave operator (1.4) with correction due to the
Newtonian γ/r potential.

In order to take a quantum mechanical limit as we did before in the classical case,
we note that for any functions f(t), g(t)

∆β=const
0

(fg) = (∆β=const
0

f)g(t+ ıλ) + f(t− ıλ)∆β=const
0

g + (∂0f)∂0g(t+ ıλ)

∆hybrid
0

(fg) = (∆hybrid
0

f)g + f(t− ıλ)∆hybrid
0

g + (∂0f)
∂

∂t
g.

The first is a standard identity for the finite double difference and the second
proven in just the same way from the definitions. We also have to take a view on
the noncommutative Klein-Gordon equation in the bicrossproduct model and we
take this to be

�ψ = m2c2ψ.

In the flat space case this is justified[2] by invariance under the bicrossproduct
quantum Poincare group and we are making the minimum assumption that it still
applies but for the wave operator quantizing the new metric (2.4).

Now let normal ordered ψ be of the form ψ = Ψ(x, t)e−ımc2

� t with Ψ slowly varying
with respect to t and for brevity let

m̃ = mc2/�, ζ = em̃λ.

Then the noncommutative Klein-Gordon equation becomes

ζ∆̄Ψ(t+ ıλ)− 1
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�
ζ2∆β=1
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ζ + ζ−1 − 2

(ıλ)2
Ψ(t− ıλ) + 2

ζ − 1
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∂0Ψ
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− γ

c2r

�
ζ2∆hybrid

0
Ψ(t+ ıλ) +

1

ıλ
(−ım̃− 1− ζ−1

ıλ
)Ψ− 2ım̃ζ∂0Ψ(t+ ıλ)

�
=

m̃2

c2
Ψ.

We assume that Ψ is slowly varying in the usual sense |Ψ̈| << m̃|Ψ̇| of the New-
tonian limit and λ|Ψ̈| << |Ψ̇| and we assume the same for our finite difference
and hybrid double time derivatives. By definition, dropping these two terms is the
Newtonian limit.

We now suppose for the sake of discussion that λ is of order the Planck time on the
grounds that the noncommutativity is a quantum gravity effect. Mainly in order
to simplify the equation we assume that Ψ is also slowly varying compared to this
time scale, so λ|Ψ̈| << |Ψ̇| and also λ|∆̄Ψ| << |∆̄Ψ|. The first means that we
can approximate ∂0Ψ ≈ Ψ̇ while the second means that we can ignore the t + ıλ
shift in ∆̄Ψ. We also write Ψ(t − ıλ) = Ψ − ıλ∂0Ψ. We also ignore the correction
− 1

2
β−1∂β to the Laplacian as we did this in the classical analysis of the Newtonian

limit. Then our equation becomes

c2ζ∆̄flatΨ =

�
ζ − ζ−1

ıλ
− γζ
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Ψ̇+
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m̃2 +

ζ + ζ−1 − 2
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− γ

rıλ
(ım̃+

1− ζ−1
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)

�
Ψ.

Finally, making once again our weak field assumption that γ
r << 1 we drop the γ

r Ψ̇
term to arrive after rearrangement at

ı� sinh(m̃λ)

m̃λ

∂

∂t
Ψ = −�2em̃λ

2m
∆̄flatΨ+

�
mc2(1−

sinh( m̃λ
2
)

m̃λ
2

)− GMm

r
(
m̃λ+ e−m̃λ − 1

m̃2λ2

2

)

�
Ψ
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as in Newtonian gravity. This is a standard derivation which we include for com-

pleteness only.

Next we consider how the associated spacetime Laplace-Beltrami wave operator

changes. Classically this is

�̄ψ =

�
β
∂2

∂t2
+

∂2

∂x2
i

− 1

2β

∂β

∂xi

∂

∂xi

�
ψ ≈ β

∂2

∂t2
ψ + ∆̄flatψ

where we can discard − 1

2
β−1∂β ≈ ∂Φ/c2 as long as the fields ψ are slowly varying

in space. We do not make the same assumption about slow variation in t and indeed

we now consider fields of the form

ψ = Ψe−ıtmc2

�

where Ψ is slowly varying in both space and time, and where mc2 is the rest mass

of our test particle moving in the above geometry. In this case the spacetime wave

equation �̄ψ =
m2c2

�2 ψ becomes

1

c2
(1− 2Φ

c2
)

�
m2c4

�2 Ψ+ 2ı
mc2

� Ψ̇+ Ψ̈

�
+ ∆̄flatΨ =

m2c2

�2 Ψ

in which we can drop the Ψ̈ term in comparison to the others. We cancel leading

terms, to obtain

ı� ∂

∂t
Ψ = − �2

2m
∆̄flatΨ+mΦΨ

at our level of approximation, which is indeed the correct quantum mechanical de-

scription of a test particle of mass m moving in a gravitational potential Φ (created

by a matter density ρ). One can then take the classical limit of the theory to

recover the classical Newtonian force of gravity. This is a different route to the

one usually taken of geodesic deviation equation reducing to Newtonian motion of

classical particles. It gives the interpretation of the parameter β in the metric.

5. Effects in the quantum case

We have looked above at the classical wave operator and its nonrelativistic limit. We

now do the same for the quantum wave operator of Section 2. We are particularly

interested in Φ = −GM
r where G is Newtons constant and M is a gravitational

mass concentrated at the origin and let γ =
2GM
c2 . Then from Section 3 we have

β = − 1

c2
(1 +

γ

r
), µ = − 1

c2
(
1

2
+

γ

r
), ν = − 1

c2
(
1

2
− γ

r
ln(

γ

r
))

∆0f(t) = ∆β=−1/c2

0
f(t)− γ

c2r
∆hybrid

0
f(t+ ıλ), ∆hybrid

0
=

1

ıλ

�
∂

∂t
− ∂0

�

We see that the effect in ∆0 of the potential γ/r in β is an additional term which

is a hybrid double derivative expressed as the difference of the classical and finite

derivatives.

As result, and also accounting for the term in ∆̄ from β−1∂β, we have on normal

ordered ψ(x, t) =
�

ψn(x)tn on the spacetime,

�ψ(t) = �β=−1/c2ψ(t)− 1

2

γ

r3(1 + γ
r )

xi
∂

∂xi
ψ(t+ ıλ)− 2γ

c2r
∆hybrid

0
ψ(t+ ıλ)which we write as
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Figure 1. Effective masses and constant energy in the model
against m̃λ = m/mp where mp is the Planck mass.

We have made assumptions on Ψ and the field strength analogous to those that
provide the Newtonian gravity limit (as explained in Section 4), hence the above
should be viewed as, by definition, the exact noncommutative version of Newtonian
gravity or of any other inverse square force in Newtonian mechanics (on interpreting
γ suitably). This is important because otherwise the approximations made in the
derivation would typically far exceed any effects from λ. Working in this Newtonian
gravity limit, the only assumption on λ was with regard to Ψ also slowly varying
on that timescale, resulting in the finite-difference aspect of the noncommutative
geometry being washed out in the approximation. This was not essential (and ∂0
could be used instead) but aids comparison with the usual Schroedinger picture of
an inverse square force. Indeed, writing our equation in the form

ı� ∂

∂t
Ψ = − �2

2mI
∆̄flatΨ+ (V0 −

GMmG

r
)Ψ

we see thus that the principal effects are:

(1) An effective inertial mass

mI = m
sinh(m̃λ)

m̃λ
e−m̃λ = m(1− m̃λ+ o((m̃λ)2))

(2) An effective passive gravitational mass

mG = m

�
m̃λ+ e−m̃λ − 1
m̃λ
2

sinh(m̃λ)

�
= m(1− m̃λ

3
+ o((m̃λ)2))

(3) A constant term in the potential

V0 = mc2
m̃λ

sinh(m̃λ)

�
1−

sinh( m̃λ
2
)

m̃λ
2

�
= −mc2

24
(m̃λ)2 + o((m̃λ)4)).
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suggests how vacuum energy might arise as a quantum 
geometry correction!
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and suggests that macroscopic massive quantum states may 
behave differently approaching and above planck mass!
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(2) An effective passive gravitational mass

mG = m

�
m̃λp + e−m̃λp − 1
m̃λp

2
sinh(m̃λp)

�

(3) A constant term in the potential

V0 = mc
2

m̃λp

sinh(m̃λp)

�
1−

sinh( m̃λp
2

)
m̃λp

2

�
= mc

2
O((m̃λp)

2).

Note that the first and last are features of our limiting process even for the flat
space bicrossproduct model, but not ones that we have seen discussed before. The
constant term does not have a classical significance but may be suggestive of some
form of zero-point energy. In this regard note that if we pretended that the universe
was made up of quantum mechanical particles of mass m = mp (the Planck mass)
then V0 ∼ mpc

2 per particle necessarily matches the observed vacuum energy (a
density of about 10−29g/cm3) in the standard cosmological model. We make only
the very general point that the cosmological constant may have an origin as a
noncommutative geometry correction and that this is perhaps a first indication. In
the model above V0 is in fact negative so this is in any case not the whole story.

In the limit m̃λp → 0 we have mI = mG = m so the principal effect of the
noncommutative spacetime appears to be that heavier masses as they approach the
Planck mass feel gravity less (the function defining mG is decreasing). On the other
hand the inertial mass also decreases and in fact the ratio mG/mI initially increases
(so a greater acceleration), peaking at around m̃λp ≈ 1.2 (and then decaying rapidly
to zero). Also note that although we are speaking in terms of Planck scale the
noncommutativity parameter λp might have a different interpretation and a much
more accessible value in another context. Of course we cannot expect to learn too
much about Planck scale physics from Newtonian gravity. Our main purpose has
been to give a tangible interpretation of β in the bicrossproduct calculus (5.1).

5.3. Minimally coupled Schwarzschild black hole. In contrast to Section 6,
here we give a slightly more ad-hoc but more computable approach to the black
hole, namely built on bicrossproduct spacetime with a particular choice

(5.2) β = − 1

c2(1− γ
r
)
.

where γ = 2GM/c2 will now be the Schwarzschild radius for a black hole of mass
M . The Newtonian gravity point source model above is the just first two terms of
the geometric expansion of this β. We construct the calculus and df to define the
wave operator � from Corollary 3.4, but this is not yet the black hole since ∆̄ =
∆̄flat − 1

2
β−1d̄β is not the spatial part of the black-hole wave operator. However,

there is nothing stopping is replacing ∆̄flat by the Laplace-Beltrami operator ∆̄LB

(4.4) for the specific 3-geometry in Proposition 4.3 that underlies the Schwarzschild
black hole. This is similar to working in flat space coordinates and a process of
‘minimal coupling’ where a covariant derivative is then put in by hand. Thus, we
compute within the spatially flat space bicrossproduct model, most importantly
∆0, but adjust the wave operator to

�BHψ(t) = 2∆0ψ(t) + ∆̄LBψ(t+ λ)− 1

2β
(d̄β, d̄ψ)(t+ λ)

4. Minimally coupled quantum black hole 

Schwarzschild radius             

∆̄R3 !→ ∆LB
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then decaying rapidly to zero). Also note that although we are speaking in terms of
Planck scale the noncommutativity parameter λp might have a different interpre-
tation and a much more accessible value in another context. Of course we cannot
expect to learn too much about Planck scale physics from Newtonian gravity. Our
main purpose has been to give a tangible interpretation of β in the bicrossproduct
calculus (5.1).
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the wave operator � from Corollary 3.4, but this is not yet the black hole since
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2
β−1d̄β∗ is not the spatial part of the black-hole wave operator.

However, there is nothing stopping us replacing ∆̄flat by the Laplace-Beltrami
operator ∆̄LB in (4.4) for the specific 3-geometry in Proposition 4.3 that underlies
the Schwarzschild black hole. This is similar to working in flat space coordinates
and a process of ‘minimal coupling’ where a covariant derivative is then put in by
hand. Thus, we compute within the spatially flat space bicrossproduct model, most
importantly ∆0, but adjust the wave operator to

�BHψ(t) = 2∆0ψ(t) + ∆̄LBψ(t+ λ)− 1

2β
(d̄β, d̄ψ)(t+ λ)

on normal ordered spacetime functions ψ =
�

n
ψntn. Explicitly,

(5.3) �BHψ(t) = 2∆0ψ(t) +

�
(
2

r
− γ

r2
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∂

∂r
+ (1− γ

r
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∂r2
+ eiei
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ψ(t+ λ)

is our ‘minimally coupled’ noncommutative black hole wave operator.

It remains to study ∆0 further. In order to effectively work with this we Fourier
transform, i.e. consider the effect on functions with time dependence ψ(t) = eıωt

where ω ∈ R and we let λ = ıλp.

Proposition 5.7. For the Schwarzschild β in (5.2) we have

∆0e
ıωt =

1

c2
D(ω, r)eıωt

where

D(ω, r) =
1

λ2
p

�
sinh(ωλp) + e−ωλp(1− γ

r
)

�
1− eωλp − γ

r
ln

�
eωλpr − γ

r − γ

���

has limits

lim
λp→0

D(ω, r) =
ω2

2(1− γ
r
)
, lim

r→∞
D(ω, r) =

cosh(ωλp)− 1

λ2
p

, lim
r→γ

D(ω, r) =
sinh(ωλp)

λ2
p

γ =
2GM

c2

We take as before flat quantum spacetime                     and [xi, t] = ıλpxi

We also `minimally couple‘                     for BH spatial metric 

!ψ(t) = 2∆0ψ(t) + ∆̄LBψ(t + ıλp) −
1

2β
(d̄β, d̄ψ)(t + ıλp)

Black hole quantum wave operator           

_
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For small ωλp we have zmax ≈
�

2

ωλp
. For example, if λp is Planck time and

ω = 1019 Hz (the upper end of the X-ray band) then

zmax ≈ 5× 1012

but if the photon has planck scale energy-momentum then this maximum redshift
comes down to order 1.

Also, it ultimately be possible to detect the variation of the redshift away from
the black hole event horizon. To assess this in the context of laser interferometry,
consider a laser source pointing away from the centre and consisting of a beam at
frequency ω superimposed with a harmonic at some multiple of nω (n of cycles of
one in one cycle of the other). This would have a distinctive interference pattern.
However, on arrival at a distant receiver the differential redshift would mean that
they could no longer be in a phase multiple. Expanding

2D(ω, r) =
ω2

(1− γ
r
)

�
1 +

2

3

ωλpγ

r(1− γ
r
)
+O((ωλp)

2)

�

we have

δ :=

�
D(nω, r)

D(ω, r)
− n ≈ 2(n− 1)

3

ωλpγ

r(1− γ
r
)
≈ 2(n− 1)

3

ω�λpγ

r
�

1− γ
r

where ω� is the red-shifted based frequency. We let ω�� be the redshifted harmonic
frequency. The deficit in distance per base cycle over which the harmonic completes
its n cycles is

c

ω� − n
c

ω�� =
cδ

ω�� ≈
2(n− 1)

3n

γlp
r
�

1− γ
r

where lp = cλp is the Planck length if λp is Planck time. For small γ
r
we have some

2γ/3r Planck lengths error per base cycle on arrival. Taking a similar figure for the
entire length L of the journey (for our back-of-envelope estimate) we need

L ∼ c2

ω2

3r

2γlp

in order to accumulate one full cycle of phase error. For a 0.1 nanometer (X-
ray) wavelength and γ

r
around 1 (say), we have some L ∼ 0.1 light years which

is well beyond current reach (even if we could get close to a black hole to set it
up). The figure would also be a lot worse using more available infra red lasers.
On the plus side it would not be necessary to accumulate a whole cycle of phase
error to determine that ω�� was not a multiple of ω� any more and in that sense
our preliminary estimate is conservative. One could imagine other methods using
suitably designed resonant cavities. Finally, we expect the frequency dependence
of the redshift to apply to other gravitational potentials, not just to black holes,
although clearly most of these would be have an effective γ

r
<< 1.

Returning to the theory, the limit r → γ in Proposition 5.7 and the limiting be-
haviour of the rest of the wave operator, means that the wave operator at the event
horizon in the standard Schwarzschild coordinates becomes

lim
r→γ+

�BHψ(t) =
ψ(t− λp)− ψ(t+ λp)

c2λ2
p

+ γ
∂

∂r
ψ(t+ λp) + eieiψ(t+ λ)
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then decaying rapidly to zero). Also note that although we are speaking in terms of
Planck scale the noncommutativity parameter λp might have a different interpre-
tation and a much more accessible value in another context. Of course we cannot
expect to learn too much about Planck scale physics from Newtonian gravity. Our
main purpose has been to give a tangible interpretation of β in the bicrossproduct
calculus (5.1).

5.3. Minimally coupled Schwarzschild black hole. In contrast to Section 6,
here we give a slightly more ad-hoc but more computable approach to the black
hole, namely built on bicrossproduct spacetime with the same τ = ρ and α = 1 as
before but a particular choice

(5.2) β = − 1

c2(1− γ
r
)
.

where γ = 2GM/c2 will now be the Schwarzschild radius for a black hole of mass
M . The Newtonian gravity point source model above is the just first two terms
of the geometric expansion of this β. We construct the calculus and df to define
the wave operator � from Corollary 3.4, but this is not yet the black hole since
∆̄ = ∆̄flat − 1

2
β−1d̄β∗ is not the spatial part of the black-hole wave operator.

However, there is nothing stopping us replacing ∆̄flat by the Laplace-Beltrami
operator ∆̄LB in (4.4) for the specific 3-geometry in Proposition 4.3 that underlies
the Schwarzschild black hole. This is similar to working in flat space coordinates
and a process of ‘minimal coupling’ where a covariant derivative is then put in by
hand. Thus, we compute within the spatially flat space bicrossproduct model, most
importantly ∆0, but adjust the wave operator to

�BHψ(t) = 2∆0ψ(t) + ∆̄LBψ(t+ λ)− 1

2β
(d̄β, d̄ψ)(t+ λ)

on normal ordered spacetime functions ψ =
�

n
ψntn. Explicitly,

(5.3) �BHψ(t) = 2∆0ψ(t) +

�
(
2

r
− γ

r2
)
∂
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+ (1− γ

r
)
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∂r2
+ eiei

�
ψ(t+ λ)

is our ‘minimally coupled’ noncommutative black hole wave operator.

It remains to study ∆0 further. In order to effectively work with this we Fourier
transform, i.e. consider the effect on functions with time dependence ψ(t) = eıωt

where ω ∈ R and we let λ = ıλp.

Proposition 5.7. For the Schwarzschild β in (5.2) we have

∆0e
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has limits

lim
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D(ω, r) =
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r
)
, lim

r→∞
D(ω, r) =

cosh(ωλp)− 1

λ2
p

, lim
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D(ω, r) =
sinh(ωλp)

λ2
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Figure 1. Numerical solutions of the noncommutative wave equa-
tion on normal ordered functions with frequency ω > 0 and γ = 1,
and comparison with the classical black hole at same boundary
conditions. (a) Shows the exterior region r > γ with waves ap-
pearing to have a finite frequency at the event horizon r = γ as
a new feature. (b) Shows the interior region r < γe−ωλp and the
new possibility of standing waves with a finite number of ‘cycles’.
The quantum solutions can be continued through from either side
into (c) an interregnum region γe−ωλp ≤ r ≤ γ where they ‘am-
plify’ and typically diverge. The left plot shows solutions driven
from the black hole interior and the right plot from the black hole
exterior. Shown are real and imaginary parts.
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by a process of ‘minimal coupling’ where a covariant derivative is then put in by hand.
Thus, we compute within the spatially flat space bicrossproduct model with the same
!0 as above but adjust the wave operator from (5.2) to

!B H ψ(t) = 2!0ψ(t) + !̄L Bψ(t + λ) − 1
2β

(d̄β, d̄ψ)(t + λ)

on normal ordered spacetime functions ψ = ∑
n ψntn . Explicitly,

!B H ψ(t) = 2!0ψ(t) +
(

(
2
r

− γ

r2 )
∂

∂r
+ (1 − γ

r
)

∂2

∂r2 + ei ei

)
ψ(t + λ) (5.4)

is our ‘minimally coupled’ noncommutative black hole wave operator.
It remains to study !0 further. In order to effectively work with this we Fourier trans-

form, i.e. consider the effect on functions with time dependence ψ(t) = eıωt , where
ω ∈ R and we let λ = ıλp.

Proposition 5.3. For the Schwarzschild β in (5.3) we have

!0eıωt = 1
c2 D(ω, r)eıωt ,

where

D(ω, r) = 1
λ2

p

(
sinh(ωλp) + e−ωλp (1 − γ

r
)

(
1 − eωλp − γ

r
ln

(
eωλpr − γ

r − γ

)))

has limits

lim
λp→0

D(ω, r) = ω2

2(1 − γ
r )

, lim
r→∞ D(ω, r) = cosh(ωλp) − 1

λ2
p

,

lim
r→γ

D(ω, r) = sinh(ωλp)

λ2
p

.

Proof. We do this by summing all the contributions in the geometric expansion of β in
the region r > γ and using Proposition 5.2 for each term. Thus, setting ζ = e−ωλp for
brevity,

−D(ω, r) = 1
2λ2 (ζ + ζ−1 − 2) +

ζγ

rλ
(ıω − (1 − ζ−1)

λ
) +

ζγ 2

r2λ
(
ζ − 1

λ
− ıω)

+
∞∑

m=3

1
rmλ2

(
ζm

m − 1
− ζm−1

m − 2
+

ζ

(m − 1)(m − 2)

)

= −ζ − ζ−1

2λ2 +
1
λ2 (1 − γ

r
)

(
ζ − 1 +

ıλζωγ

r
+

ζγ

r
ln

(
r − γ

r − ζγ

))

which we write as stated. The limits are then easily obtained. For completeness, let us
note that had we expanded the geometric series for β appropriate to r < γ we would
have β = 1

c2

∑∞
m=1(

r
γ )m and use Proposition 5.2 applied to −m, giving

D(ω, r) = 1
λ2

∞∑

m=1

(
r
γ

)m

(
ζ−(m+1)

m + 2
− ζ−m

m + 1
+

ζ

(m + 1)(m + 2)

)

,

which sums to the same expression as before. One can check that expanding the logarithm
appropriately to r small and r large recovers the two different series. %&

kappa-minkowski spacetime far from BHclassical



Effect 2:   Gravl time dilation/redshift is frequency dependent

suggests that a higher frequency will be less redshifted.
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harmonic at some multiple of nω. However, on arrival at a distant receiver they would
no longer be the same multiple. Expanding

2D(ω, r) = ω2

(1 − γ
r )

(
1 − 2

3
ωλpγ

r(1 − γ
r )

+ O((ωλp)
2)

)
,

we see that for small ωλp, the harmonic will have smaller redshift factor than the base
frequency and hence will appear to the distant observer as a little higher in frequency
than the nth harmonic. Let ω′ be the redshifted base frequency and ω′′ the redshifted
harmonic. The deficit in distance per base cycle over which the harmonic completes its
n cycles is

c
ω′ − n

c
ω′′ = c

ω′

(

1 −
√

D(nω, r)D(ω,∞)

D(nω,∞)D(ω, r)

)

≈ (n − 1)

3
cλpγ

r
√

1 − γ
r

or approximately nγ
3r Planck lengths λp error per base cycle on arrival. Taking a similar

figure for the entire length L of the journey (for our back-of-envelope estimate) we need

L ∼ c2

ω2

3r
nγ λp

in order to accumulate one full cycle of phase error. For a 0.1 nanometer (X-ray) wave-
length, γ

r around 0.1 (say), and n = 10, we have some L ∼ 0.1 light years which is
modest by astronomical standards even if well beyond current reach. The figure would
be worse using infra red lasers but on the other hand it may not at all be necessary to
accumulate a whole cycle of phase error to determine that ω′′ was not the same multiple
of ω′ and in that sense our preliminary estimate is very conservative. Also note that we
expect the frequency dependence of the redshift to apply to other gravitational potentials,
not just to black holes, although clearly most of these would have an effective γ

r << 1.

(b) Beckenstein-Hawking radiation. This requires a certain amount of machinery to
recompute from the noncommutative wave operator. However, at first sight the over-
all temperature to a distant observer should not change significantly for macroscopic
(non Planckian) black holes because the same factor in front of − 1

c2
∂2

∂t2 enters into the
computation of the acceleration and hence of the Unruh effect local temperature near
the horizon, which would also now be finite. The finiteness would appear to resolve the
so-called ‘temperature paradox’ whereby some authors have worried about the validity
of the infinite temperature required at the horizon due to the infinite redshift from the
horizon in the classical picture. On the other hand, due to the frequency dependence of
the redshift a black body spectrum at the horizon would no longer result in a black body
after redshift. The more energetic modes should have less redshift thereby compressing
the upper end of the distribution relative to the lower end.

(c) Wave operator at the horizon. The limit r → γ in Proposition 5.3 and the limiting
behaviour of the rest of the wave operator, means that the wave operator arbitrarily close
to the event horizon in the standard Schwarzschild coordinates becomes

lim
r→γ

!B H ψ(t) = ψ(t − ıλp) − ψ(t + ıλp)

c2λ2
p

+
1
γ

∂

∂r
ψ(t + ıλp) + ei eiψ(t + ıλp)

An emission + n’th harmonic at radius r won’t be a 
harmonic when received and this might be very 
sensitively detected. One cycle error accumulates 
after distance 

e.g. 0.1 nm (X ray),                                     light years
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after redshift. The more energetic modes should have less redshift thereby compressing
the upper end of the distribution relative to the lower end.

(c) Wave operator at the horizon. The limit r → γ in Proposition 5.3 and the limiting
behaviour of the rest of the wave operator, means that the wave operator arbitrarily close
to the event horizon in the standard Schwarzschild coordinates becomes

lim
r→γ

!B H ψ(t) = ψ(t − ıλp) − ψ(t + ıλp)

c2λ2
p

+
1
γ

∂

∂r
ψ(t + ıλp) + ei eiψ(t + ıλp)

γ

r
= 0.1 ⇒
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harmonic at some multiple of nω. However, on arrival at a distant receiver they would
no longer be the same multiple. Expanding

2D(ω, r) = ω2

(1 − γ
r )

(
1 − 2

3
ωλpγ

r(1 − γ
r )

+ O((ωλp)
2)

)
,

we see that for small ωλp, the harmonic will have smaller redshift factor than the base
frequency and hence will appear to the distant observer as a little higher in frequency
than the nth harmonic. Let ω′ be the redshifted base frequency and ω′′ the redshifted
harmonic. The deficit in distance per base cycle over which the harmonic completes its
n cycles is

c
ω′ − n

c
ω′′ = c

ω′

(

1 −
√

D(nω, r)D(ω,∞)

D(nω,∞)D(ω, r)

)

≈ (n − 1)

3
cλpγ

r
√

1 − γ
r

or approximately nγ
3r Planck lengths λp error per base cycle on arrival. Taking a similar

figure for the entire length L of the journey (for our back-of-envelope estimate) we need

L ∼ c2

ω2

3r
nγ λp

in order to accumulate one full cycle of phase error. For a 0.1 nanometer (X-ray) wave-
length, γ

r around 0.1 (say), and n = 10, we have some L ∼ 0.1 light years which is
modest by astronomical standards even if well beyond current reach. The figure would
be worse using infra red lasers but on the other hand it may not at all be necessary to
accumulate a whole cycle of phase error to determine that ω′′ was not the same multiple
of ω′ and in that sense our preliminary estimate is very conservative. Also note that we
expect the frequency dependence of the redshift to apply to other gravitational potentials,
not just to black holes, although clearly most of these would have an effective γ

r << 1.

(b) Beckenstein-Hawking radiation. This requires a certain amount of machinery to
recompute from the noncommutative wave operator. However, at first sight the over-
all temperature to a distant observer should not change significantly for macroscopic
(non Planckian) black holes because the same factor in front of − 1

c2
∂2

∂t2 enters into the
computation of the acceleration and hence of the Unruh effect local temperature near
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of the infinite temperature required at the horizon due to the infinite redshift from the
horizon in the classical picture. On the other hand, due to the frequency dependence of
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c2λ2
p

+
1
γ

∂

∂r
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Detect non-harmonicity by a resonant cavity?
Astrophysical harmonic emission? 
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on normal ordered functions. We see that the singular r − t sector of the classical wave
operator drops down to what is conceptually a kind of ‘first order’ differential operator as
we approach r = γ rather than blowing up in front of ∂2

∂t2 as it does classically. In a sense,
the noncommutative deformation has smoothed out the classical coordinate singularity,
at least as far as the wave operator is concerned. Moreover, as the left-hand side would be
zero for a massless solution, one could think of this equation as a boundary condition for
such solutions crossing the event horizon. Using the notation ∂̃0ψ(t) = ψ(t)−ψ(t−2λ)

2λ for
the finite difference (this is a version of ∂0 used elsewhere in the paper), and restricting
for concreteness to ψ a linear combination of the Y l

m spherical harmonics as regards
angular dependence, we can write the condition as

2ı
c

∂̃0ψ = λp

γ

∂

∂r
ψ − λp

γ 2 l(l + 1)ψ

at the horizon, where λp is the Planck length. Assuming bounded spatial derivatives
we see that in the classical limit where λp → 0 or for infinitely large black holes as
γ → ∞, we will have ψ̇ = 0 at the horizon. However, for a Planckian size black hole
where γ ∼ λp we see that 1

c ∂̃0ψ and ∂
∂r ψ are comparable at least when l = 0.

Note also that for usual black holes the r − t metric coefficients flip over in sign
at the event horizon so that r plays a role more like time inside the event horizon and
vice-versa. In our case the function D(ω, r) while continuous in its real part at r = γ
acquires an imaginary part in a thin frequency-dependent layer at the horizon. If ω > 0
then this has thickness γ (1−e−ωλp ) and is located just inside the classical event horizon,

ω > 0 : %D(ω, r) &= 0, ∀r ∈ γ [e−ωλp , 1]
due to the negative argument of the logarithm. One would need artificially to use ln | | to
avoid this ‘interregnum’ layer just below the classical event horizon. Below this layer,
we have D(ω, r) negative as classically. Also note that as r increases from below, the
coordinate singularity is still present at the lower boundary r = γ e−ωλp but is one degree
lower so that D(ω, r) ∼ log(r − γ e−ωλp ) near this boundary, compared to classically.

When ω < 0 the picture is much the same except that the interregnum is reflected
about the classical event horizon r = γ and now lies just above it,

ω < 0 : %D(ω, r) &= 0, ∀r ∈ γ [1, e−ωλp ].
Thus the boundary r = γ e−ωλp of the interregnum where D(ω, r) is logarithmic now
lies just outside the classical event horizon r = γ . Now D(ω, r) has a limit as r → γ
when approached from below. We see that there appears to be an asymmetry in the
treatment of positive and negative frequency modes.

(d) Singularity at the origin. Finally, we note that D(ω, r) is again regular for small r
with expansion

D(ω, r) = − (cosh(ωλp) − 1)(1 + 2eωλp )

3λ2
pγ

r + O((
r
γ

)2)

deforming the classical behaviour but not too drastically for small ωλp. However, for
the Planckian velocities that might apply at the singularity at the origin, the effects
appear to be similar to the well-known Planckian bounds at r = ∞. We recall that in
the flat bicrossproduct spacetime model, the exponentially growing cosh(ωλp)− 1 puts

Effect 5:  
singularity at 
origin?

(Has same exponential growth with frequency that leads to Planckian bound in spatial 
momentum in kappa-minkowski at large r)

Effect 6:  treats pos and neg frequencies differently



5. Quantization of 

Let           be a Riemannian manifold of dimension n and      a vector 
field

is a noncommutative version of             .  Let            be classical,    

τ

A = C(M)>!R

M × R

[f, t] = λτ(f)

 the Lie derivative,          a 2nd order operator and                        .α =
2

n

div(τ) − 1

Thm (SM 2012) For any function    and conformal Killing vector 
field    ,  extending            by         with relations 

β

τ

[θ′, t] = αλθ′, [f,dt] = λdf, [dt, t] = βλθ′ − λdt

L̄

gives a differential calculus

12 SHAHN MAJID

so the QYBE hold to this order iff the full Riemann curvature vanishes. The omitted

θ�⊗̂3 terms involve the Ricci curvature on the one hand and terms involving µ on

the other. The latter are, using metric compatibility,

+λ3
�
(d̄µ, (η, ζ)ω + (ω, η)ζ − (ω, ζ)η) + 2µ((ω, ∇̄ζη) + (ζ, ∇̄ωη))

�
θ�⊗̂3

This cannot vanish for all ω, η, ζ unless µ = 0. For example, set ω = η = ζ and η
such that ∇̄ηη = 0 at a point x ∈ M and with any chosen direction η(x). Then

the second term vanishes and we conclude that dµ = 0 at any point. We can then

take η such that 2(η, ∇̄ηη) = η(d(η, η)) �= 0 at any point to conclude that µ = 0

there. �

3. Wave operator on C(M)� R as quantisation of M × R

We are now going to use the machinery of the previous section to construct a

noncommutative spacetime deforming M × R, a differential calculus and a wave

operator � on it. As ‘coordinate algebra’ we let A = C(M)�R where we adjoin a

variable t for ‘time’, with relations

[f, t] = λτ(f)

where τ is a vector field on M . We have used the same deformation parameter as

before but without loss of generality as we could change the normalisation of τ . This
algebra has a noncommutative time variable as with the bicrossproduct spacetime

and is manifestly associative because any vector field τ generates an infinitesimal

action of R on the algebra C(M) and our algebra is the semidirect product by this.

At least when M is compact one can exponentiate the action as well as complete

to a C∗ algebra if one wishes, although we shall not do either of these steps here.

In order to apply the theory of Section 2 we let ∆̄LB be the Laplace-Beltrami

operator on (M, ḡ) and ζ a classical vector field on M , and define

(3.1) ∆̄f = ∆̄LBf + ζ(f), ∆̄ω = ∆̄LBf + ∇̄ζω

for all f ∈ C(M) and ω ∈ Ω̄1(M). One may check that the properties (2.1), (2.2),

(2.3), (2.4) continue to hold with

Ricci∆̄ = Ricci + ∇̄ζ − L̄ζ

as an operator on Ω1, where L̄ζ is the Lie derivative along ζ. We will later fix ζ in

terms of a functional parameter below, but for the moment it is unspecified. From

Section 2 we have an extended differential calculus (Ω1, d) and other structures

constructed from (M, ḡ, ζ). We let ζ∗ be the 1-form corresponding to ζ under the

metric.

Theorem 3.1. Let M be a Riemannian manifold equipped with a vector field ζ,
β ∈ C(M) and τ a conformal Killing vector field. Then the calculus (Ω1, d) on

M defined by ζ extends to first order differential calculus (Ω1(C(M) � R), d) with

further relations

[ω, t] = λ(L̄τ − id)ω − λ2
( n−2

4 )(d̄α,ω)θ� − λ2

2
(L̄τ ζ

∗,ω)θ�

[θ�, t] = αλθ�, [f, dt] = λdf, [dt, t] = βλθ� − λdt

for all ω ∈ Ω̄1(M), f ∈ C(M). Here n = dim(M) and α =
2

ndiv(τ)− 1.

(M, ḡ)

Ω1(C(M) ! R)

∀f ∈ C(M), ω ∈ Ω̄1(M)

M × R

∆̄

[f,ω] = λ(ω, d̄f)θ′, df = d̄f +
λ

2
(∆̄f)θ′

Ω̄1(M) dt, θ′

(Ω̄1
, d̄)

⇒ ! ḡ + β−1dt⊗̄dtquantises laplacian for metricζ = −

1

2
β−1

d̄β



Insights into differential geometry
Let             be a Riemannian manifold, inverse metric ( , ), levi-
civita connection     and Laplace-Beltrami operator 

(M, ḡ)
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holds for all f, g ∈ C(M) (and later a similar operator on 1-forms). One can take ∆̄
throughout to be the classical Laplace-Beltrami operator but we will need a little
more generality for our application in Section 3. The following construction appears
first to have been noted in [7] (in the Laplace-Beltrami case) and is also related to
stochastic calculus on a Riemannian manifold. In order to be self-contained and
to have it in the generality we need, we include a direct proof. We recall that in
noncommutative geometry a differential structure can be defined algebraically as a
bimodule Ω1 of ‘1-forms’ over the coordinate algebra and a map d from the latter
to Ω1 obeying the Leibniz rule. This is more general than classical differential
structure even when the algebra is commutative.

Lemma 2.1. Let M be a Riemannian manifold with notations as above. Then
Ω1 = Ω̄1 ⊕ C(M)θ� with θ� central and

f • ω = fω, ω • f = ωf + λ(ω, d̄f)θ�, df = d̄f +
λ

2
(∆̄f)θ�

for all ω ∈ Ω̄1, f ∈ C(M) makes (Ω1, •, d) a noncommutative first order differential
calculus over C(M). The bimodule structure enjoys commutation relations

[ω, f ] = λ(ω, d̄f)θ�, [θ�, f ] = 0

where the new product is understood.

Proof. We check that the algebra C(M) acts from each side. Thus

(ω • f) • g = (ωf) • g + λ(ω, d̄f)θ�g = ωfg + λ(ωf, d̄g)θ� + λ(ω, d̄f)gθ�

ω • (fg) = ωfg + λ(ω, d̄(fg))θ� = ωfg + λ(ω, (d̄f)g + f d̄g)θ�

using the Leibniz rule for d̄. The two expressions are equal by tensoriality of ( , )
allowing us to move f and g out. We have to verify that we have a bimodule

(f • ω) • g = (fω) • g = fωg + λ(fω, d̄g)θ�

f • (ω • g) = f • (ωg + λ(ω, d̄g)θ�) = fωg + λf(ω, d̄g)θ�

which are again equal by tensoriality. Finally, we verify that d is a derivation:

d(fg) = d̄(fg) +
λ

2
∆̄(fg)θ� = (d̄f)g + f d̄g +

λ

2
((∆̄f)g + f∆̄g)θ� + λ(d̄f, d̄g)θ�

= (d̄f)g + f d̄g +
λ

2
((∆̄f)θ�g + f∆̄gθ�) + λ(d̄f, d̄g) = df • g + f • dg

from the definitions. Note that the product on the free bimodule spanned by
central element θ� is that of C(M) and us not deformed in the construction. We
used a polarisation property of ∆̄ (which can easily be proven in local coordinates
in the case of the Laplace-Beltrami operator from symmetry of the metric tensor
used in defining the 2nd order differential operator). Note that one normally also
requires f ⊗ g → fdg to be surjective and this may require further conditions on
the Riemannian manifold. �

One can also set up the bimodule symmetrically with a λ/2 modification from either
side. Next we recall that a linear connection can be defined in noncommutative
geometry abstractly as a map ∇ : Ω1 → Ω1⊗̂Ω1 such that ∇(fω) = df⊗̂ω + f∇ω
for all f in our coordinate algebra and 1-forms ω. Here we use hats to stress that
the tensor product is with respect to the bimodule structure, but we will omit the

Corollary  Classical            has a noncommutative extension

Lemma There is a well-defined linear map

∆̄

Ω̄1(M)

φ : Ω̄1⊗̄Ω̄1 → Ω1⊗̂Ω1, φ(ω⊗̄η) = ω⊗̂η − λθ′⊗̂∇̄ωη, ∀ω, η ∈ Ω̄1

⊗̄ ⊗̂from the classical      over         to the new      wrt C(M) •

∇̄

f ∈ C(M), ω ∈ Ω̄1

Warning: this example is non-surjective `generalised calculus’



Propn take                ,                then

(some kind of `braided 2-category’ associated to any Riemannian manifold?)
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Let us note that σ does not map over from the flip map under φ, rather we can

write the above result as

(2.6)

σ(φ(ω⊗̄η)) = φ(η⊗̄ω) + λ(ω, η)∇θ� +
λ2

2
(Ricci∆̄ +KT

)(ω, η)θ� ⊗ θ�, ∀ω, η ∈ Ω̄1.

We now consider the space of 2-forms. Any (Ω1, d) on an algebra has a ‘maximal

prolongation’ obtained by the minimal requirements that d extends as a graded

derivation with d
2
= 0. This is typically too large except in almost-commutative

cases. In our case we take the maximal prolongation modulo the relations

(2.7) {ω, θ�} = θ�2 = 0, ∀ω ∈ Ω̄1

to be consistent with our assumptions leading to the corresponding classical be-

haviour of σ. It remains to find the relations in Ω2
explicitly and d on Ω1

. This

will be tied up with torsion and we recall that in terms of forms this can be written

as

(2.8) T∇(ω) := ∇∧ ω − dω, T∇ : Ω1 → Ω2.

This is usually discussed in the context of a metric compatible connection but we

take it as a definition, both in the classical case where it applies to ∇̄, and in the

‘quantum case’.

Proposition 2.5. The relations ∧image(id + σ) = 0 for σ in Proposition 2.4, i.e.

{ω, η} = λθ�(∇̄ωη + ∇̄ηω)− λ(ω, η)∇∧ θ�

hold for all ω, η in Ω1, provided ∇∧ θ� = dθ�. Moreover,

dω = ∇∧ ω

so that ∇ in Proposition 2.3 has zero torsion, provided ∆̄ is the Laplace-Beltrami
operator and K = Ricci.

Proof. We apply d to the relations in degree 1 under the assumption that d
2
= 0

to obtain

{θ�, df} = [dθ�, f ], {db, df}+ λ(d(d̄f, d̄b))θ� + λ(d̄b, d̄f)dθ� = 0.

We note in passing that the first equation means {θ�, aid̄bi} = ai[dθ�, bi]−λai(∆̄bi)θ�2

which will not depend only on ω = aidbi unless the right hand side is zero, which

in turn implies that

(2.9) [dθ�, f ] = 0, ∀f ∈ C(M)

and hence that θ�2 = 0. Hence (2.7) are the only reasonable assumptions for the

calculus to be ‘built on’ the classical one. In the second equation, assuming (2.7),

we can replace d by d̄. Then

{aid̄bi, d̄f}= ai{d̄bi, d̄f}+ [d̄f, ai]d̄bi

=−λai(d̄(d̄bi, d̄f))θ
� − λ(ω, d̄f)dθ� + λ(d̄ai, d̄f)d̄biθ

�

=−λ(d̄(ω, d̄f))θ� + λd̄(ai(d̄bi, d̄f)− (d̄ai, d̄f)d̄bi)θ
� − λ(ω, d̄f)dθ�

=−λ((id⊗̄id̄f)∇̄ω + (id⊗ iω)∇̄d̄f)θ� − λ(∇̄d̄fω − (id⊗̄id̄f)∇̄ω)θ� − λ(ω, d̄f)dθ�

=−λ∇̄ωd̄fθ
� − λ∇̄d̄fωθ

� − λ(ω, d̄f)dθ�

∇θ
′
= 0

σ
2

= id iff Ricci = 0

σ12σ23σ12 = σ23σ12σ23 iff (M, ḡ) is flat

Theorem
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(2.3) ∆̄((ω, η)) = (∆̄ω, η) + (ω, ∆̄η) + 2(∇̄ω, ∇̄η)

(2.4) [∆̄, d̄]f = Ricci∆̄(d̄f)

for all f ∈ C(M) and ω, η ∈ Ω̄1(M) and some tensorial operator which we have
denoted Ricci∆̄. Here the inverse metric is extended to tensor products in the
obvious way. One can take here ∆̄ the Laplace-Beltrami operarator for which the
three identities are easily proven in local coordinates and Ricci∆̄ is the usual Ricci
tensor. In this case the third identity is also clear if one notes that ∆̄−Ricci then
coincides with the Hodge Laplacian (as an example of a Weitzenbruck identity),
and this commutes with d̄. In keeping with our emphasis on wave operators in this
paper, one could regard this apparently less well known identity (2.4) as a definition
of Ricci in a manner that brings out its physical significance.

Lemma 2.3. For any classical tensor K : Ω̄1 → Ω̄1 the classical Levi-Civita con-
nection induces left connection on Ω1 with

∇ω = φ(∇̄ω) +
λ

2
θ�⊗̂(∆̄−K)ω, ∀ω ∈ Ω̄1 ⊂ Ω1.

Proof. Using Lemma 2.2 we have

∇(fω) = φ(∇̄(fω)) +
λ

2
θ�⊗̂(∆̄−K)(fω)

= φ(d̄f⊗̄ω + f∇̄ω) +
λ

2
θ�⊗̂((∆̄f)ω + f(∆̄−K)ω + 2∇̄d̄fω)

= f∇ω + d̄f⊗̂ω +
λ

2
θ�⊗̂(∆̄f)ω = f∇ω + df⊗̂ω

Note that explicitly,

∇ω = ∇̄1ω⊗̂∇̄2ω − λθ�⊗̂
�
∇̄∇̄1ω∇̄2ω − 1

2
(∆̄−K)ω

�

where ∇̄1ω ⊗ ∇̄2ω denotes a lift of ∇̄ from ⊗̄ to the vector space tensor product
⊗, and we project this down to ⊗̂. However, we shall endeavour to avoid such
expressions by working via the properties of φ. Note also that the value of ∇θ� is
left unspecified but we will be led to some natural choices for it later on. Then we
define ∇(fθ�) = df⊗̂θ� + f∇θ�.

Proposition 2.4. Suppose that [∇θ�, f ] = 0 for all functions f . Then

σ(ω⊗̂η) = η⊗̂ω+λ∇̄ωη⊗̂θ�−λθ�⊗̂∇̄ηω+λ(ω, η)∇θ�+
λ2

2
(Ricci∆̄+KT )(ω, η)θ�⊗̂θ�

σ(θ�⊗̂ω) = ω⊗̂θ�, σ(ω⊗̂θ�) = θ�⊗̂ω, σ(θ�⊗̂θ�) = θ�⊗̂θ�

for all ω, η ∈ Ω̄1 makes ∇ in Lemma 2.3 into a bimodule connection.

Proof. Note that we can write

(2.5) σ(ω⊗̂η) = φ(η⊗̄ω) + λ∇̄ωη⊗̂θ� + λ(ω, η)∇θ� +
λ2

2
(Ricci∆̄ +KT )(ω, η)θ�⊗̂θ�.
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where ∇̄1ω ⊗ ∇̄2ω denotes a lift of ∇̄ from ⊗̄ to the vector space tensor product
⊗, and we project this down to ⊗̂. However, we shall endeavour to avoid such
expressions by working via the properties of φ. Note also that the value of ∇θ� is
left unspecified but we will be led to some natural choices for it later on. Then we
define ∇(fθ�) = df⊗̂θ� + f∇θ�.

Proposition 2.4. Suppose that [∇θ�, f ] = 0 for all functions f . Then

σ(ω⊗̂η) = η⊗̂ω+λ∇̄ωη⊗̂θ�−λθ�⊗̂∇̄ηω+λ(ω, η)∇θ�+
λ2

2
(Ricci∆̄+KT )(ω, η)θ�⊗̂θ�

σ(θ�⊗̂ω) = ω⊗̂θ�, σ(ω⊗̂θ�) = θ�⊗̂ω, σ(θ�⊗̂θ�) = θ�⊗̂θ�

for all ω, η ∈ Ω̄1 makes ∇ in Lemma 2.3 into a bimodule connection.

Proof. Note that we can write

(2.5) σ(ω⊗̂η) = φ(η⊗̄ω) + λ∇̄ωη⊗̂θ� + λ(ω, η)∇θ� +
λ2

2
(Ricci∆̄ +KT )(ω, η)θ�⊗̂θ�.

for any                           and           central

is a bimodule connection:
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(2.3) ∆̄((ω, η)) = (∆̄ω, η) + (ω, ∆̄η) + 2(∇̄ω, ∇̄η)

(2.4) [∆̄, d̄]f = Ricci∆̄(d̄f)

for all f ∈ C(M) and ω, η ∈ Ω̄1(M) and some tensorial operator which we have
denoted Ricci∆̄. Here the inverse metric is extended to tensor products in the
obvious way. One can take here ∆̄ the Laplace-Beltrami operarator for which the
three identities are easily proven in local coordinates and Ricci∆̄ is the usual Ricci
tensor. In this case the third identity is also clear if one notes that ∆̄−Ricci then
coincides with the Hodge Laplacian (as an example of a Weitzenbruck identity),
and this commutes with d̄. In keeping with our emphasis on wave operators in this
paper, one could regard this apparently less well known identity (2.4) as a definition
of Ricci in a manner that brings out its physical significance.

Lemma 2.3. For any classical tensor K : Ω̄1 → Ω̄1 the classical Levi-Civita con-
nection induces left connection on Ω1 with

∇ω = φ(∇̄ω) +
λ

2
θ�⊗̂(∆̄−K)ω, ∀ω ∈ Ω̄1 ⊂ Ω1.

Proof. Using Lemma 2.2 we have

∇(fω) = φ(∇̄(fω)) +
λ

2
θ�⊗̂(∆̄−K)(fω)

= φ(d̄f⊗̄ω + f∇̄ω) +
λ

2
θ�⊗̂((∆̄f)ω + f(∆̄−K)ω + 2∇̄d̄fω)

= f∇ω + d̄f⊗̂ω +
λ

2
θ�⊗̂(∆̄f)ω = f∇ω + df⊗̂ω

Note that explicitly,

∇ω = ∇̄1ω⊗̂∇̄2ω − λθ�⊗̂
�
∇̄∇̄1ω∇̄2ω − 1

2
(∆̄−K)ω

�

where ∇̄1ω ⊗ ∇̄2ω denotes a lift of ∇̄ from ⊗̄ to the vector space tensor product
⊗, and we project this down to ⊗̂. However, we shall endeavour to avoid such
expressions by working via the properties of φ. Note also that the value of ∇θ� is
left unspecified but we will be led to some natural choices for it later on. Then we
define ∇(fθ�) = df⊗̂θ� + f∇θ�.

Proposition 2.4. Suppose that [∇θ�, f ] = 0 for all functions f . Then

σ(ω⊗̂η) = η⊗̂ω+λ∇̄ωη⊗̂θ�−λθ�⊗̂∇̄ηω+λ(ω, η)∇θ�+
λ2

2
(Ricci∆̄+KT )(ω, η)θ�⊗̂θ�

σ(θ�⊗̂ω) = ω⊗̂θ�, σ(ω⊗̂θ�) = θ�⊗̂ω, σ(θ�⊗̂θ�) = θ�⊗̂θ�

for all ω, η ∈ Ω̄1 makes ∇ in Lemma 2.3 into a bimodule connection.

Proof. Note that we can write

(2.5) σ(ω⊗̂η) = φ(η⊗̄ω) + λ∇̄ωη⊗̂θ� + λ(ω, η)∇θ� +
λ2

2
(Ricci∆̄ +KT )(ω, η)θ�⊗̂θ�.

∇θ
′

                     

σ(ω⊗̂θ′) = θ′⊗̂ω, σ(θ′⊗̂ω) = ω⊗̂θ′, σ(θ′⊗̂θ′) = θ′⊗̂θ′

∇ : Ω
1 → Ω

1⊗̂Ω
1

σ : Ω
1
⊗̂Ω

1
→ Ω

1
⊗̂Ω

1

∇(fω) = df ⊗ω + f∇ω

∇(ωf) = σ(ω⊗df) + (∇ω)f

ˆ

ˆ



6. Summary 

Einstein eqn ~ posn-mom symmetry (SM Class Quan Grav 1988)

1) Position-momentum duality visible in 2+1 

2) Noncommutative space generates in own evolution out of an 
anomaly for differential calculus, wave operator is associated to an 
induced extra dimension

3) Differential calculus is a new degree of freedom, origin of gravity

4) BH model shows resolution of singularities, freq dept redshift

5) Get a deeper view of classical dgm as a shadow of ncg

Thank you!
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