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The twentieth century founders of quantum mechanics drew on a
rich classical mechanical tradition in their effort to incorporate the
quantum of action into their deliberations. The phase space
formulation of mechanics proved to be the most amenable to
adaptation, and in fact the resulting quantum theory proved to not
be so distant from the classical theory within the framework of the
associated Hamilton-Jacobi theory.
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We will briefly review these efforts and their relevance to attempts
over the past few decades to construct a quantum theory of
gravity. We emphasize in our overview the heuristic role of the
action, and in referring to observations of several of the historically
important players we witness frequent expressions of hope, but also
misgivings and even misunderstandings that have arisen in
attempts to apply Hamilton-Jacobi techniques in a semi-classical
approach to quantum gravity. In particular we will address the
origins and misinterpretations of the Wheeler-DeWitt equation.
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We claim that that the deficiencies and misuse of the
Wheeler-DeWitt equation originated in an incomplete
understanding of the role of constraints in the classical phase space
formalism. We then propose a general framework which both
explains the limited successes of the Wheeler DeWitt approach to
date and offers a procedure which can in principle yield
semi-classical solutions in generic general relativity.
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The old quantum theory as semiclassical quantum theory

Pages from Schrödinger’s notebook.
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The role of Hamilton-Jacobi theory in anticipating
structures of quantum theory

The optical mechanical analogy has its roots in Hamilton’s
original introduction of his characteristic function in 1837.
This is the same function that appears in the
Sommerfeld-Epstein rule.

The Hamilton principal function S as a phase is consistent
with the Schrödinger wave equation in the limit ~ → 0 The
power series expansion of S in ~ was first introduced
independently by Wentzel and Brillouin in 1926. They in turn
with Kramers in 1926 established the general conditions under
which Sommerfeld-Epstein quantization agreed with wave
mechanics. See Pauli’s 1933 Handbuch der Physik article for
an overview.
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The role of Hamilton-Jacobi theory in anticipating
structures of quantum theory

As also noted 1926, semi-classical wave packets that satisfy
the correct classical equations of motion may be constructed
through the superposition over complete principal function
solutions of the Hamilton-Jacobi equation. These
superpositions are of the form∫

dαe iS(x ,t;α)/~

The result follows as a consequence of the Hamiltonian
dynamical equations

These observations served as a point of departure of Peter
Weiss’s groundbreaking extension of the Hamilton-Jacobi
formalism to field theory in 1936. [Wei36, Wei38]
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Dirac in 1951 on the significance of Hamilton-Jacobi

From Dirac’s 1951 foundational paper on constrained Hamiltonian
dynamics, “The Hamiltonian form of field dynamics” [Dir51]
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The standard approach to semiclassical canonical
quantization of gravity

Let us now look more closely at the promise and at the limitations
of the standard approach to a semi-classical canonical quantization
of general relativity via the Wheeler-DeWitt equation. It was
inspired by a so-called Einstein-Hamilton-Jacobi equation first
written down by Peres in 1962 [Per62]
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Einstein-Hamilton-Jacobi equation

Peres replaced the canonical momenta pab in the Hamiltonian
constraint

H = −√g 3R +
1
√

g

(
pabpab −

1

2
p2

)
= 0,

with a functional derivative of a Hamilton principal function S with
respect to the spatial metric field gab. It is important to note that
this replacement was not derived by Peres from a variation of the
gravitational action.

This equation inspired Bryce DeWitt. In his own words, from his
1999 paper “The Quantum and Gravity: The Wheeler-DeWitt
equation”: [DeW99]
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Origins of the Wheeler-DeWitt Equation according to
DeWitt

“John Wheeler, the perpetuum mobile of physics, called me one
day in the early sixties. I was then at the University of North
Carolina in Chapel Hill, and he told me that he would be at the
Raleigh-Durham airport for two hours between planes. He asked if
I could meet with him there and spend a while talking quantum
gravity. John was pestering everybody at the time with the
question: What are the properties of the quantum mechanical
state functional Psi and what is its domain? He had fixed in his
mind that the domain must be the space of 3-geometries, and he
was seeking a dynamical law for Psi.”
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Origins of the Wheeler-DeWitt Equation according to
DeWitt

“I had recently read a paper by Asher Peres which cast Einstein’s
theory into Hamilton-Jacobi form, the Hamilton-Jacobi function
being a functional of 3-geometries. It was not difficult to follow
the path already blazed by Schrödinger, and write down a
corresponding wave equation. This I showed to Wheeler, as well as
an inner product based on the Wronskian for the functional
differential wave operator. Wheeler got tremendoulsy excited at
this and began to lecture about it on every occasion.”
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Origins of the Wheeler-DeWitt Equation according to
DeWitt

“I wrote a paper on it in 1965, which didn’t get published until
1967 because my Air Force grant was terminated and the Physical
Review in those days was holding up publication of papers whose
authors couldn’t pay the page charges. My heart wasn’t really in it
[...] But I thought I should at least point out a number of
intriguing features of the functional differential equation, to which
no one had yet begun to devote much attention: [...] The fact that
the wave functional is a wave function of the universe and
therefore cannot be understood except within the framework of a
many-worlds view of quantum mechanics [...] In the long run one
has no option but let the formalism provide its own interpretation.
And in the process of discovering this interpretation one learns that
time and probability are both phenomenological concepts.”
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Wheeler-DeWitt equation

It follows as a consequence of the Einstein-Hamilton-Jacobi
equation in the limit as ~ → 0 that the quantum wave function

Ψ [gab] ∝ e iS/~,

satisfies the Wheeler-DeWitt equation:

−g 3RΨ + gabgcd

(
δ2

δgacδgbd
− 1

2

δ2

δgabδgcd

)
Ψ = 0.
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4. LIMITATIONS OF THE STANDARD APPROACH TO
SEMICLASSICAL CANONICAL QUANTIZATION
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DeWitt’s later view

DeWitt himself famously disavowed the significance of his
equation. We quote from his posthumously published comments
from 2009: [DeW09]
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DeWitt’s attitude toward the Wheeler-DeWitt equation

“This equation should be confined to the dustbin of history for the
following reasons: 1) By focussing on time sclices it violates the
very spirit of relativity. 2) Scores of man-years have been wasted
by researchers trying to extract from it a natural time parameter.
3) Since good path integral techniques exist for basing Quantum
Theory on gauge invariant observables only, it seems a pity to drag
in the paraphernalia of constrained hamiltonian systems.”
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Wheeler DeWitt and phase space

DeWitt’s observations are symptomatic of a widespread dismissive
attitude within the relativity community of canonical phase space
approaches to diffeomorphism symmetry. And it turns out that one
of the first perceived consequences of this symmetry appeared not
directly in the phase space context, but in the related path integral
approach to quantum gravity. We witness it in Misner’s discovery
of “frozen time”. In an interview with Misner and Brill conducted
at the University of Maryland on March 16, 2011 we have the
following response to my query on diffeomorphism symmetry.
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Wheeler DeWitt and phase space

SALISBURY: So this problematic with gauge invariance, then, is
maybe first encountered in this context [of path integral
quantization]?
MISNER: Well it was, because the way it comes up there is that I
was able to show that the propagator as defined four dimensionally
was zero, the Hamiltonian zero. And I got a letter from Pauli
objecting to that, which I eventually lost –
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Misner and frozen time

RICKLES: I wonder whether you noticed any connections to the
issues that Bergmann was dealing with in the 57 paper, in fact,
when you were talking about the propagator being the identity,
and you get the zero Hamiltonian. Did you notice any similarities
to the canonical work?
MISNER: No, I don’t think I had absorbed the canonical work at
that time.
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5. HISTORY OF CONSTRAINED HAMILTONIAN DYNAMICS
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The problem of preferred time foliations

Perhaps the most persuasive argument amongst relativists against
a Hamiltonian approach to general relativity was that it seemed
from the start to grant a preferred status to the initial choice of
time slicing.
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The disputed role of classical canonical constraint analysis

Let us then look at the history of constrained Hamiltonian analysis,
its relation to diffeomorphism covariance, and the relevance of this
work to early quantum gravity. Three individuals were the
significant players in the early development:

Rosenfeld pioneered in this field in 1930 [Ros30, Sal09], but
his results were largely ignored both by his mentor Pauli and
by himself in his later work.

Bergmann and collaborators began publishing work on the
canonical phase space realization of diffeomorphism symmetry
in 1949. [Ber49]

Dirac, whose first published work on constrained Hamiltonian
dynamical formalism appeared in 1950, was never concerned
with constraints as generators of diffeomorphism
transformations. [Dir50]
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The disputed role of classical canonical constraint analysis

This work apparently had little or no impact on the subsequent
development of the ADM formalism of Arnowitt, Deser, and
Misner - who independently produced a canonical formalism for
dealing with the initial value problem in general relativity. (Much
remains to be done to sort out the historical interrelationships of
Rosenfeld, Bergmann, Dirac, and ADM.)

We get some flavor of Deser’s attitude regarding the desirability of
understanding the relationship between constraints and
diffeomorphisms from an interview conducted with Deser on March
12, 2011. We begin with Deser’s presentation of linearized gravity
at Neuchâtel in 1958 in a meeting that was co-organized by
Bergmann and by Deser’s father-in-law, Oskar Klein.
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The disputed role of classical canonical constraint analysis

DESER: ... The thing is actually we were of course ahead of our
time because relativists didn’t understand what we were doing.
First of all, it was linearized, and secondly, it was all this quantum
field theory language. Rosenfeld would have understood it, but
not, you know – And Bergmann was doing very strange stuff.
Bergmann was always orthogonal to us...
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History of constrained Hamiltonian dynamics

Deser continued

DESER: ... Yes, right. Peter and I always had, what shall I say, a
frosty relationship because Peter thought he owned the field, that
is, what should I say, the formal development of GR. We got to
know him and his students. I did because in those days you
actually went to APS meetings and people actually talked at APS
meetings, so we got to know people like Jim Anderson and then
Ralph Schiller and the whole crew. They would all give these to us
incomprehensible talks full of letters with subscripts and
superscripts and all sorts of dots. It was all, we felt – we were very
superior; after all, we came from ... Whereas Peter felt that that
was his domain and this was not something to be encroached on
lightly. So basically we decided to just disagree.
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Deser continued

SALISBURY: A related question has to do with operators or
generators that you identify as being related, at least, to general
coordinate transformations, to the gauge symmetries. One thing
I’ve wondered about is since you were from the very start working
in an operator formulism, you were not really in a position to be
able to relate the variations that were generated by those objects
to coordinate transformations.



Semi-classical Intrinsic Gravity

History of constrained Hamiltonian dynamics

Deser continued

DESER: Its about, in fact, the incredible jungle that’s opened up
when you quantize, because then you can make coordinate
transformations with horrible operator properties, ... That was
formal. You see, you’ve got to be careful. There’s a difference
between formal quantum discussion and a real one, and it’s a
fundamental difference. In fact, that was a problem with people,
like I think Bergmann in particular and Dirac also. You can say
quantum and that’s a great word, but either you’re talking at the
tree level, in which case you’re really talking about classical theory,
or you don’t know anything because the full theory is such a
general ... So that there are all sorts of paradoxes that have come
up already in this word quantum, apparent paradoxes.
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Deser continued

Like operator coordinate transformation – you read that paper
[with Arnowitt and Misner in 1961 on the Heisenberg
representation] and you’ll see everything in that paper is correct,
and it just shows you that if you try to be too general, you just get
totally lost because there’s a fundamental conflict between the
classical formalism and blindly pushing it to the quantum level.
SALISBURY: So the position you would represent then, I guess the
one you have represented historically, is that there’s no benefit to
be gained from having pursued this classical theory.
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Deser continued

DESER: I would say that. Yes, that’s right, I would say that. I
mean look, the general idea is the theory – you know, it’s like in
poker, the theory speaks for itself. It is what it is, and your job is –
I mean loading it down with loaded words does not really do it a
service. You have a theory and you write down an action, and that
action at the classical level, it’s hard enough. Even at the classical
level, of course, you have generators. But there are two thing you
have to understand. One is the general covariance; and secondly,
that unless you then work in a particular gauge, youre not doing
anything at all. In Maxwell theory, of course, not only can you
work on a particular gauge, you can work gauge invariantly even
though it looks as though you’ve chosen a gauge ... So there are
all these subtleties and gradations, which a lot of people sort of do
not take into consideration.
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Anderson on the Bergmann program

We continue with this review of reactions to the constrained
Hamiltonian dynamics program by quoting an observation of one
of Bergmann’s closest early collaborators, Jim Anderson.
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Anderson on the Bergmann program

From interview with James Anderson conducted on March 19,
2011

ANDERSON: ... He [Bergmann] was mainly interested in setting
up a quantum formalism so that he could apply the rules of
quantum mechanics to put classical relativity into quantum form.
And constraints reared their ugly head, in all their ugliness. And
thats mainly what I worked on.
...
ANDERSON: ... Peter’s approach was always get a consistent
Hamiltonian theory of quantum mechanics and then quantize it.
And once I convinced myself that there was no factor sequence
that worked with the constraints, I realized that wasn’t going to
work. And then I sort of lost interest, because I didn’t see any way
out of the problem.
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Anderson continued

ANDERSON: ... That’s why I sort of distanced, and after I left
Peter and the more I worked, I tried to do physics and not the
formalism. In particular he and Art Komar had very elaborate
programs. But I felt the physics was missing.
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Status of Hamiltonian diffeomorphism covariance in the
1950’s through the 1970’s

We need to stress that in this era the relationship between
Hamiltonian constraints and diffeomorphism symmetry was either
misunderstood or in some cases, outright rejected. Kuchar, for
example, still maintained in the mid-1980’s that the full
four-dimensional diffeomorphism group was not realizeable as a
canonical transformation group. One consequence of this lack of
understanding was the earlier naive form of the “problem of time”.
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The problem of frozen time in the canonical approach

The naive classical argument for “frozen time” is based on the
supposition that since a global rigid translation in time is a
diffeomorphism, and physically meaningful objects must be
invariant under this symmetry, then nothing can depend on the
time. Time must be “frozen”!
As far as we can tell this expression first appeared in a Stevens
meeting in 1959
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Frozen time in the canonical approach

Letter from Bergmann to Dirac dated October 9, 1959.
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Frozen time in the canonical approach

Continuation of letter from Bergmann to Dirac dated October 9,
1959.
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Frozen time in the canonical approach

Dirac’s response dated November 11, 1959.
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Frozen time in the Hamilton-Jacobi approach

Komar and Bergmann also concluded that time is frozen and true
diffeomorphism invariants must be time-independent in papers
published in the 1960’s and early 1970’s on the Hamilton-Jacobi
approach [Ber66, Ber71, Kom67, Kom68, Kom71] We shall see
that this issue is resolved through the recognition that time
evolution and gauge symmetry are distinct in canonical gravity.
See the discussion in the most recent edition of Kiefer’s textbook
on quantum gravity.
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Recent progress in canonical gravity

This is part of the new light that has been shed on most of the
issues we have just addressed in a series of papers by Pons,
Salisbury, Shepley, and Sundermeyer. [PSS97, PS05, PSS09a] In
particular, this work has shown that a form of full four-dimensional
diffeomorphism covariance is retained in the constrained
Hamiltonian dynamical treatment of general relativity. And most
importantly for our present discussion, this group can be employed
to construct time-dependent diffeomorphism invariants.
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6. A BRIDGE BETWEEN SPACETIME AND PHASE SPACE
FORMULATIONS OF GENERAL RELATIVITY



Semi-classical Intrinsic Gravity

A bridge between spacetime and phase space formulations of general relativity

The realization of the full diffeomorphism group in phase
space

A misunderstanding of the role of constraints has led to many of
the errors in both the formulation and in the interpretation of the
Wheeler-DeWitt equation. We will show that the appropriate
phase space formalism that will admit the incorporation of the
quantum of action and retain the full four-dimensional
diffeomorphism symmetry is a formalism that retains the lapse and
shift as configuration variables. This will in turn yield a fruitful
fully covariant semi-classical approach to quantum gravity.
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The diffeomorphism-induced canonical transformation
group

Global translations in time (time evolution) are not realizeable
in general relativity as a canonical phase space
transformations. This is commonly known - though not fully
appreciated - as the decomposition of infinitesimal
diffeomorphims into hypersurface tangential and perpendicular
transformations

δxµ = δµa ξ
a + nµξ0.

The notion of “multi-fingered” time was introduced by
Kuchar in 1972 [Kuc72] before it was understood that the full
4-diffeomorphism-induced group could be realized as a
canonical transformation group.
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The diffeomorphism-induced canonical transformation
group

Global rigid translation in time is generated in a fixed gauge by the
Rosenfeld-Bergmann-Dirac Hamiltonian (also known as the ADM
Hamiltonian)

HRBD =

∫
d3x (NµHµ + λµπµ) ,

where the λµ are spacetime functions, related via the Hamiltonian
equations of motion to time rates of change of the lapse and shift,

∂Nµ

∂t
= λµ.



Semi-classical Intrinsic Gravity

A bridge between spacetime and phase space formulations of general relativity

The diffeomorphism-induced canonical transformation
group

General infinitesimal diffeomorphism-induced transformations of
the full 4-metric and conjugate momenta are generated by

Gξ(t) =

∫
d3x

(
Pµξ̇

µ + (Hµ + NρC ν
µρPν)ξ

µ
)
.

Taking into account the time-dependence of this generator, a
standard calculation demonstrates that even though the spacetime
functions λµ in the HRBD Hamiltonian are not dependent on the
phase space variables, the formalism yields the correct variation of
these functions under an arbitrary infinitesimal four-dimensional
diffeomorphism. In other words, the phase space formalism
(retaining lapse and shift as canonical phase space variables) is
fully covariant under arbitrary time coordinate foliations.
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The diffeomorphism-induced canonical transformation
group

Thus the Hamiltonian and true Hamilton-Jacobi formalism is
covariant under the full four-dimensional diffeomorphism group.

This leads us to reconsider the Hamilton-Jacobi approach within
the framework of the enlarged phase space.

As a first step we derive what we call the true Hamilton-Jacobi
equation which is fully covariant under four-dimensional
diffeomorphism-induced canonical transformations.
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The true Hamilton-Jacobi approach

This calculation does not appear in the cited literature: One finds
that the gravitational action varies in the following manner under
independent variations δ0gµν of the metric and εµ of the spacetime
coordinates

δS =

∫
d3x

[
pabδ0gab + πµδ0N

µ

+
(
pabġab − L+ πµṄ

µ
)
ε0 +

(
−pab

|c gab − π0,cN − πa,cN
a
)
εc .

]
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The true Hamilton-Jacobi approach

Thus the “true” Hamilton-Jacobi equation is

∂S

∂t
+ HRBD

[
gab,N

µ,
δS

δgab
,
δS

δNµ
, λ(x)

]
= 0,

where

HRBD =

∫
d3x

(
NµHµ(gab, p

ab) + λµ(x)πµ
)

is the vanishing Rosenfeld-Bergmann-Dirac Hamiltonian generator
of time evolution.
Therefore ∂S

∂t vanishes.
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Comparison with the standard Hamilton-Jacobi approach

We have called this the “true” or “proper” Hamilton-Jacobi
equation to distinguish it from the so-called
Einstein-Hamilton-Jacobi equation of Peres (the forerunner of the
Wheeler-DeWitt equation)

H0

(
gab,

δS

δgab

)
= 0.

How do these two approaches compare?
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Pros and cons of the standard H-J approach

One advantage of the standard approach is that it avoids an
off-shell problem that occurs if one does not automatically satisfy
the constraints.

But a further implication is that it does not access all possible
coordinate gauge choices, limiting as a consequence the choice of
spacetime foliations. This also suggests a preferred role of the
spatial metric.

In its role as a classical principal function the standard principal
function cannot generate all possible solutions of Einstein’s
equations due to the fact the constraints are satisfied identically.
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Pros and cons of the true H-J approach

The key advantage of the true approach is that at least at the
classical level it generates solutions of Einstein’s equations in all
possible gauges, and hence does not favor any special time
foliation.

But this presents a problem in its use in a semi-classical approach
to quantum gravity since the gauge choices are contained in
factors multiplying the constraints.
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Ways to salvage the true H-J approach in semiclassical
gravity

The off-shell problem is well known in approaches to quantum
gravity, most notably in string-membrane theory in which
symmetry generators do not annihilate quantum states.

Hence one might try to satisfy the on-shell conditions only as
expectation values. This would offer an approach in which one
encounters fluctuations around classical temporal and spatial
coordinates.

Alternatively, one might impose quantum conditions on classical
solutions as in the Sommerfeld-Epstein approach.
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Ways to salvage the true H-J approach in semiclassical
gravity

But here we propose a different approach inspired by the limited
successes of the standard approach which may be interpreted as
having made implicitly a choice of intrinsic coordinates that follows
from the satisfaction of constraints.

We thus develop a program of introducing general intrinsic
coordinates in order to maintain the full diffeomorphism covariance
of the true Hamilton-Jacobi equation.
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7. INTRINSIC COORDINATES AND A HAMILTON-JACOBI
APPROACH TO SEMICLASSICAL QUANTUM GRAVITY
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Origins and history of intrinsic coordinates

Einstein himself encountered the problem of the physical
significance of coordinates when he tried to justify a non-covariant
precursor theory of General Relativity by means of his famous “hole
argument.” In resolving this hole argument he recognized that only
spacetime event coincidences (produced by dynamical fields)
possess physical meaning. This seemed to suggest that coordinates
cannot have any physical meaning. This perspective changed,
however, when it became clear that the gravitational field itself
acts as a dynamical field giving rise to such spacetime coincidences.
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Origins and history of intrinsic coordinates

Several authors in the 1960’s and 1970’s proposed that
spacetime correlations could be established with the aid of
spacetime scalars constructed with dynamical fields.

Komar and Bergmann showed in 1960 that Weyl scalars could
be written exclusively in terms of the 3-metric and conjugate
momenta. [BK60] Thus the possibility arose that a purely
gravitational phase space approach to intrinsic coordinates
could be realized.
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Definition of intrinsic coordinates

Intrinsic coordinates are function[al]s of dynamical phase space
variables of the theory that are identified as measures of time and
space. The dynamics can then be understood as correlations
between the values of these function[al]s and the remaining
dynamical variables of the theory.

Intrinsic variables then qualify as “clocks” and “rods” in the
context of general relativity since it will in principle be possible to
show at least locally that the “clocks” define a Cauchy surface.
And in addition the corresponding metric will define a spacelike
measure on the constant intrinsic time foliations.
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Intrinsic coordinates and a Hamilton-Jacobi approach to semi-classical quantum gravity

Construction of diffeomorphism invariants through the
finite action of the diffeomorphism group

The diffeomorphism group can now be deployed to construct
diffeomorphism invariants using intrinsic coordinates as
follows

Choose appropriately behaved spacetime scalar functions of
the phase space variables as intrinsic coordinates Xµ[g , p],
with gauge condition xµ = Xµ[g , p].
Find the finite symmetry transformation that transforms
solutions in any coordinate system to solutions that satisfy the
gauge conditions.

Note that all resulting phase space functionals - including the
lapse and shift - are diffeomorphism invariants
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Intrinsic coordinates and a Hamilton-Jacobi approach to semi-classical quantum gravity

Summary of key observations

Let us summarize the key elements that will enter into our general
proposal

Full canonical phase space diffeomorphism-induced symmetry

A true Hamilton-Jacobi equation

Intrinsic coordinates
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The general proposal

Finally we give our general proposal for constructing a
semi-classical limit of quantum gravity. It consists of the following
steps

Identify appropriately behaved functionals of the dynamical
fields that can serve as intrinsic coordinates.

Determine the corresponding complete Hamilton-Jacobi
principal function S

Employ this principle function in an appropriate semiclassical
approach to quantum gravity
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Examples

We now illustration the implementation of this method with
examples.
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Free relativistic particle example

Choosing θ = t/c as the intrinsic coordinate parameter we obtain
the following invariants (under arbitrary reparameterizations of θ,
[PSS09b]

xa = xa(θ)− pa

p0
x0(θ) +

pa

p0
t,

where the momenta pµ, being independent of θ in any gauge are
already invariants.

We witness here a general feature of the invariants that are
determined in this manner. They will generally consist of
coefficients built of invariant functionals of the dynamical fields,
appearing in power series of the intrinsic coordinates.
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Evolving constants of the motion

This expansion is closely related to Rovelli’s notion of “evolving
constants of the motion.” [Rov90] The coefficients of the powers
of intrinsic time are constant functions of phase space variables.
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Free relativistic particle example

It also happens to be true in this case that we can make this power
series substitution directly into the principal function solution of
the true Hamilton-Jacobi equation. This is true because of our
good fortune in selecting an intrinsic coordinate that happens to
be a canonical dynamical variable!
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A mini-superspace example

This good fortune continues to hold in mini-superspace isotropic
expansion models where either the expansion factor a or matter
fields can serve as intrinsic time. This is the reason why such a
time can be isolated in the Wheeler-DeWitt equation.

This leads us to a somewhat less trivial example - Einstein-Rosen
cylindrical waves.
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A midisuperspace model

We consider an Einstein-Rosen spacetime with metric of the form

gµν =


−n2 + eγ−ψm2 eγ−ψm 0 0

eγ−ψm eγ−ψ 0 0
0 0 e−ψR2 0
0 0 0 eψ


where the lapse function n, the shift m, and the scalar fields R and
ψ are functions of the coordinate time t and the radial coordinate
r . We assume no dependence on the azimuthal angle φ or on the
cylindrical coordinate z .



Semi-classical Intrinsic Gravity

Intrinsic coordinates and a Hamilton-Jacobi approach to semi-classical quantum gravity

Kuchar canonical transformations

First make change in canonical variables (first introduced by
Kuchar [Kuc71])

T = −
∫ r

∞
dr̄ π̄γ ,

pR = πR +

(
ln

(
R ′ − πγ
R ′ + πγ

))′
,

pT = −γ′ +
(
ln

(
R ′2 − π2

γ

))′
.
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Einstein-Rosen constraints and intrinsic coordinates

Then we choose intrinsic coordinates t = T and r = R.

Note that unless this transformation is undertaken before the
corresponding Wheeler-DeWitt equation is written down and
solved the Wheeler-DeWitt equation cannot access these choices
of intrinsic time and position.
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Invariant ψ field

Just to frighten you we write down the expression for the invariant
scalar field ψ, constructed using the finite diffeomorphism
transformation:

Iψ ≈ exp
(
{−, ξIHI}

)
ψ∣∣

ξ=χ

= ψ + χI{ψ, HI}

+
1

2!
χIχJ{{ψ, HI}, HJ}+

1

3!
χIχJχK{{{ψ, HI}, HJ}, HK}+ . . .

=:
∞∑

n=0

1

n!
χn{ψ, H}(n) .

where χ0 := t − T and χ1 := r − R. The construction employs a
trick that was first introduced by Dittrich. [Dit06]
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Hamilton-Jacobi equation

ψ can profitably be expanded in terms of Bessel functions in this
gauge as

ψ(t, r) =

∫ ∞

0
dωAω(t)J0

(ω
c

r
)
.

Then the complete Hamilton principal function takes the form

S [Aω, t] =

∫ ∞

0
dωW (Aω)− Et,

with

W (Aω) =

∫ Aω (
2E (ω)− A′2

ω

)1/2
dA′

ω.
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Hamilton-Jacobi and functional Schrödinger equation

The Hamilton-Jacobi equation is∫ ∞

0
dωω

(
A2
ω +

δS

δAω

δS

δAω

)
+
∂S

∂t
= 0,

with a corresponding functional Schrödinger equation(∫ ∞

0
dωω

[
−~2 δ2

δA2
ω

+ A2
ω

])
Ψ = i~

∂

∂t
Ψ.
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Spacetime quantization

This equation can be solved exactly since it describes independent
oscillator modes whose quantization yields discrete excitations in
ψ.

In addition, the timelike component of the original Einstein-Rosen
metric also depends on this ψ and we obtain therefore a
fluctuating light cone.

These results are consistent with the work of Ashtekar and Pierri in
1996 which were obtained without reference to intrinsic time.
[AP96]
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Spacetime quantization

Finally, we note that in the generic case it will not be possible to
isolate intrinsic coordinates that can be obtained through a
canonical phase space transformation. This means that these
generic choices will generally be inaccessible via the
Wheeler-DeWitt equation.

We also observe that the notion of superspace itself is
questionable. It is by no means certain from the point of view of
intrinsic coordinates that the isolation of an independent complete
set (an enterprise on which we have not engaged ourselves) would
yield a categorization of diffeomorphically inequivalent spaces, nor
that the spatial metric is the most suitable variable to employ in
describing such equivalence classes.
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