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•  GFTs: interesting formalism for QG: strict relation to LQG & tensor models 

• a scenario for cosmology: Big Bang as phase transition/condensation 
(geometrogenesis) 

• GFT states corresponding to approximate homogeneous spacetimes
• continuum homogeneous spacetimes are GFT condensates
• effective cosmological dynamics can be extracted from GFT in full generality
• some models contain FRW dynamics (plus corrections)

Plan:
•   intro to GFT formalism
• relation to LQG, spin foams and tensor models
• GFT states                  (approximate) continuum geometries
• examples of GFT condensates
• effective dynamics for GFT condensates (general)
• special case and approximate FRW equations
• conclusions and outlook

S. Gielen, DO, L. Sindoni, 
AEI-2013-051, arXiv: 1303.XXXX



GFT basics

recent general introductions and reviews: 

D. Oriti, arXiv: gr-qc/0607032 

D. Oriti, arXiv: 0912.2441 [hep-th]

R. Gurau, J. Ryan, arXiv: 1109.4812 [hep-th] 

D. Oriti, arXiv: 1111.5606 [hep-th]

V. Rivasseau, arXiv:1112.5104 [hep-th]

 work by: 

Baratin, Ben Geloun, Bonzom, Carrozza, De Pietri, Fairbairn, Freidel, Gielen, Girelli, Gurau, Livine, Louapre, Krajewski, 
Krasnov, Magnen, Noui, Oriti, Perez, Raasakka, Reisenberger, Rivasseau, Rovelli, Ryan, Sindoni, Smerlak, Tanasa, Vitale, .......
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Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) 
or tetrahedra (including glued ones)

second quantized version of (generalized) LQG (adapted to simplicial context), but 
dynamics not derived from canonical quantization of GR

Fock vacuum: “no-space” (“emptiest”) state   | 0 >

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(ϕ, ϕ) =
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2
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[dgi]ϕ(gi)K(gi)ϕ(gi) +
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D!

∫
[dgia]ϕ(gi1)....ϕ(ḡiD)V(gia, ḡiD) + c.c.
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2.2 N on-com mu t a t i ve Fou r ier t ransfor m an d bi vector for mula t ion

T he simplicial geomet ry encoded in t he model (5) is best understood in a dual formula t ion,
coined ‘met ric represent a t ion’ in [21], ob t ained by a group Fourier t ransform of t he field. T he
relevant Fourier t ransform here is t he obvious ex tension of t he non-commu t a t ive S O (3) Fourier
t ransform [33, 34, 35] to t he group [S O (3) × S O (3)]4:

  ( x 1 , · · · x 4 ) : =
 

[dg i ]4  (g1 , · · · g4 ) e i T r x 1 g1 · · · e i T r x 4 g4 (7)

T he variables x i belong to t he L ie algebra so(4) = su(2)  su(2). T he kernel of t he Fourier
t ransform is a product of ‘plane waves’ E g ( x ) = e i T r xg , where t he t race Tr is defined in terms of
t he usual t race of 2 × 2 ma t rices1 as Tr xg =

 
±  g± t r[x±g±] wi t h  g± = sign( t rg±). T hus E g ( x )

is i tself a product of two S O (3) plane waves eg± ( x±) : = e iεg±trx±g± . T he plane waves sa t isfy t he
proper t ies:  

d6 x E g ( x ) =  (g), E g- 1 ( x ) = E g ( − x ) (8)

1Let τj be i times the Pauli matrices, then trτiτj =−δij . Given and SU(2) element u=eθnjτj parametrized by
the angle θ ∈ [0, π] and the unit R3-vector %n and a=ajτj in the algebra su(2), we thus have tr[au]=− sin θ%n · %a.
Also εu :=sign(tru)=sign(cos θ).
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one possibility (customary in LQG/spin foam context):

trivial kinetic term: K(gi, ḡi) = δ(g1, ḡ1)...δ(g4, ḡ4) “simplicial” interaction:

with fields constrained to satisfy 
“geometricity” conditions 
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other possibility (motivated by tensor models and renormalization): 
(tensor) invariant interactions

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d -colored graphs (d-bubble):

S(ϕ,ϕ) =
∑

b∈B

tbIb(ϕ,ϕ) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot ↔ field (resp. complex
conjugate field);
edge of color ! ↔ convolution of !-th indices of ϕ
and ϕ.

∫
[dgi ]

12ϕ(g1, g2, g3, g4)ϕ(g1, g2, g3, g5)ϕ(g8, g7, g6, g5)

ϕ(g8, g9, g10, g11)ϕ(g12, g9, g10, g11)ϕ(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇒ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) (

m2 −
d∑

!=1

∆!

)−1

Boulatov-like restriction of d.o.f:

∀h ∈ G , ϕ(hg1, . . . , hgd) = ϕ(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
∫

dµC (ϕ,ϕ)ϕ(g!)ϕ(g
′
!) = C(g!; g

′
!) =

∫ +∞

0

dα e−αm2
∫

dh
d∏

!=1

Kα(g!hg
′−1
! ) ,

where Kα is the heat kernel on G at time α.
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• interesting models exist with: nice simplicial geometry, direct links with discrete GR and 
simplicial path integrals, LQG-like Hilbert space, ......   

with non-trivial propagator:
Laplace-Beltrami on group manifold
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• interesting models exist with: nice simplicial geometry, direct links with discrete GR and 
simplicial path integrals, LQG-like Hilbert space, ......   

• several connections between the two classes of models, may be equivalent

with non-trivial propagator:
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Feynman perturbative expansion around trivial Fock vacuum:

Z =
∫
DϕDϕ ei Sλ(ϕ,ϕ) =

∑

Γ

λNΓ

sym(Γ)
AΓ



GFT basics (4d case) : dynamics 

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology 
(including pseudomanifolds)

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
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by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
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The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., 〈s, s′〉phys = 〈sP, s′〉 recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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Feynman perturbative expansion around trivial Fock vacuum:

Z =
∫
DϕDϕ ei Sλ(ϕ,ϕ) =

∑

Γ

λNΓ

sym(Γ)
AΓ

Feynman amplitudes:

• spin foam models (sum-over-histories 
of spin networks)

• simplicial gravity path integrals         
(in group+Lie algebra variables)
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• easier to extract physics and geometry
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(causal) Dynamical 
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GFTs, spin foams, tensor models: many recent results

•    construction of  interesting 4d gravity models (inspired by LQG)

• encoding of simplicial geometry

• field theory symmetries

•    understanding of combinatorial structures (GFT Feynman diagrams)

• large-N expansion 

• GFT renormalization (various renormalizable models)

• critical behaviour (in tensor models)

• mean field expansion (emergent matter, effective QG dynamics,...)

• simplified models (for cosmology) 

• ......



Continuum spacetime and geometry?
(physics?)
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large numbers of GFT building blocks (spin nets, simplices) 

• requires (GFT analogue of) thermodynamic limit, macroscopic approximation, 
appropriate phase

• more specific hypothesis: continuum spacetime is GFT condensate
• GR-like dynamics from GFT hydrodynamics
• phase transition leading to spacetime and geometry (GFT condensation) is what 

replaces Big Bang singularity (geometrogenesis)
• cosmology as “relaxation to equilibrium condensate”

(Oriti ’07, ’11, ’13, Rivasseau ’11, ’12, Sindoni ’11)



geometrogen

spacetime as condensate
of QG building blocks

Big Bang as phase transition
 (condensation)



Cosmology from GFT



Cosmology from GFT

S. Gielen, DO, L. Sindoni, 
AEI-2013-051, arXiv: 1303.XXXX



GFT states and approximate continuum geometries

e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron

GFT states and approximate continuum geometries

preprint

C osmology from G rou p F ield T heor y

Ste  en G ielen,1 , 2 ,  D aniele O ri t i,3 , † and Lorenzo Sindoni3 , ‡

1 R iemann C enter for G eometry and Physics, Le ibn iz U n iversi t ät H annover , A ppelstraße 2, 30167 H annover , G ermany, E U
2 P er imeter I nst itute for T heoret ica l Physics, 31 C a rol i ne St. N . , W ater loo, O nta r io N 2 L 2 Y 5, C anada

3 M ax P lanck I nst itute for G ravitationa l Physics ( A lbert E i nste i n I nst itute) , A m M ühlenberg 1, 14476 G olm, G ermany, E U
( D a t ed: M arch 4, 2013)

T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.
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O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0
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O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

GFT states and approximate continuum geometries
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O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(a t least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equa t ion for a wide class of G F T mod-
els. T his general procedure elucida tes a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sa t isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ifica t ion of quan-
t um st a tes t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st ate is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runcat ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t hat t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st ates. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensate. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret a t ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t ha t such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

GFT states and approximate continuum geometries
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2 P er imeter I nst itute for T heoret ica l Physics, 31 C a rol i ne St. N . , W ater loo, O nta r io N 2 L 2 Y 5, C anada

3 M ax P lanck I nst itute for G ravitationa l Physics ( A lbert E i nste i n I nst itute) , A m M ühlenberg 1, 14476 G olm, G ermany, E U
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O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(a t least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equa t ion for a wide class of G F T mod-
els. T his general procedure elucida tes a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sa t isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ifica t ion of quan-
t um st a tes t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st ate is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runcat ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t hat t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st ates. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensate. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret a t ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t ha t such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron

GFT states and approximate continuum geometries

preprint

C osmology from G rou p F ield T heor y

Ste  en G ielen,1 , 2 ,  D aniele O ri t i,3 , † and Lorenzo Sindoni3 , ‡

1 R iemann C enter for G eometry and Physics, Le ibn iz U n iversi t ät H annover , A ppelstraße 2, 30167 H annover , G ermany, E U
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 
implies choosing embedding point and 3 reference vectors:

GFT states and approximate continuum geometries
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O ne of t he ma jor challenges in non-per t urbat ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci tat ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st ates”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he relat ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.
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O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(a t least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equa t ion for a wide class of G F T mod-
els. T his general procedure elucida tes a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sa t isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ifica t ion of quan-
t um st a tes t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st ate is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runcat ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t hat t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st ates. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensate. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret a t ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t ha t such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron

GFT states and approximate continuum geometries

preprint

C osmology from G rou p F ield T heor y

Ste  en G ielen,1 , 2 ,  D aniele O ri t i,3 , † and Lorenzo Sindoni3 , ‡

1 R iemann C enter for G eometry and Physics, Le ibn iz U n iversi t ät H annover , A ppelstraße 2, 30167 H annover , G ermany, E U
2 P er imeter I nst itute for T heoret ica l Physics, 31 C a rol i ne St. N . , W ater loo, O nta r io N 2 L 2 Y 5, C anada

3 M ax P lanck I nst itute for G ravitationa l Physics ( A lbert E i nste i n I nst itute) , A m M ühlenberg 1, 14476 G olm, G ermany, E U
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t at ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he nat ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equa t ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensa t ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant iza t ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st a t ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t ha t t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 
implies choosing embedding point and 3 reference vectors:

GFT states and approximate continuum geometries
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urbat ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci tat ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st ates”
in loop quant um gravi ty [1]. Such st ates typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t hat t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he relat ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ificat ion of quan-
t um st ates t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st a te is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(a t least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runca t ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t ha t t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spa t ially
homogeneous to arbi t rary accuracy, and hence describe
a spat ially homogeneous universe. T hey correspond to
condensat ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st a tes. W hile t he resul t ing
equat ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensa te. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equa t ion for a wide class of G F T mod-
els. T his general procedure elucida tes a possible pa t h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret at ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urba t ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t hat such t heories cor-
respond to general relat ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sa t isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously di  cul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.

P A C S nu mb ers: 98.80. Q c, 04.60. P p , 03.75. N t

O ne of t he ma jor challenges in non-per t urba t ive ap-
proaches to quant um gravi ty is t he ident ifica t ion of quan-
t um st a tes t ha t can be interpreted as macroscopic space-
t ime geomet ries, such as M inkowski or de Si t ter space-
t ime. T his is because such approaches are buil t on t he
not ion of background independence, so t hat t he most
nat ural not ion of vacuum st ate is one t hat describes no
spacet ime a t all. St a tes corresponding to exci t a t ions of
quant um geomet ry wi t h non-zero eigenvalues for geomet-
ric observables such as lengt hs or areas can be buil t from
t his vacuum st a te; macroscopic geomet ries are usually
t hought of as corresponding to st ates wi t h a very large
number of such exci t a t ions – for inst ance, “ weave st a tes”
in loop quant um gravi ty [1]. Such st a tes typically exci te
(at least locally) only a fini te number degrees of freedom,
and using t hem for ex t ract ing predict ions from t he t heory
necessarily involves some t runcat ion of t he dynamics.

In t his L et ter, after ident ifying a cri terion for discrete
geomet ries (associa ted, in a precise sense, to a fini te num-
ber N of degrees of freedom) to be compat ible wi t h spa-
t ial homogenei ty, we propose a class of quant um st ates
describing macroscopic homogeneous geomet ries in t he
group field t heory ( G F T ) approach to quant um gravi ty
[2]. T hese are coherent st a tes which are superposi t ions
of N -par t icle st a tes such t hat t he cri terion for spat ial
homogenei ty is sa t isfied a t each N ; t hey are spat ially
homogeneous to arbi t rary accuracy, and hence describe
a spa t ially homogeneous universe. T hey correspond to
condensa t ion of many G F T quant a into t he same geo-
met ric configura t ion, which is t he na t ural descrip t ion of
spat ial homogenei ty in t his contex t . We see t ha t t he
appearance of macroscopic geomet ries can be essent ially
cap t ured by a process similar to Bose– E instein conden-
sat ion of appropria te basic quant a.

We t hen use t he equa t ion of mot ion of a given G F T to
ex t ract t he dynamics of such st ates. W hile t he resul t ing
equa t ion is non-linear, we will be able to spli t i t into two
par ts, one of which gives a linear equa t ion on t he pro-
file funct ion on t he condensate. In a W K B regime, t his
linear equat ion reduces to t he H amil ton-Jacobi equat ion

describing t he classical dynamics of a homogeneous uni-
verse; in t he case of an isot ropic geomet ry we recover t he
usual Friedmann equat ion for a wide class of G F T mod-
els. T his general procedure elucidates a possible pat h to
get e  ect ive equat ions for t he resul t ing emergent geom-
et ry in such pregeomet ric scenarios. T he nonlinear par t
of t he equat ion, instead, t akes into account t he interac-
t ions between t he di  erent quant a and i ts interpret a t ion
in terms of st andard quant um cosmology is not yet clear.

O ur work bears cer t ain similari t ies to t he recent work
[3] where t he rela t ion to Bose- E instein condensat ion was
also emphasized. O ur st ar t ing point , however, is not t he
quant izat ion of classical cosmological per t urbat ion t he-
ory; we st ar t wi t h an exist ing proposal for a t heory of
quant um gravi ty and derive t he classical dynamics by
considering cer t ain st ates in a semiclassical approxima-
t ion. T his lends weight to claims t ha t such t heories cor-
respond to general rela t ivi ty in a semiclassical regime.

G roup field theory. — G roup field t heories ( G F T s), a
higher-dimensional generalizat ion of mat rix models, can
be defined as quant um (or st at ist ical) field t heories on
group manifolds via a pat h integral, whose act ion is de-
signed so t hat t he Feynman expansion can be pu t in cor-
respondence wi t h t he dynamics of spin foam models for
quant um gravi ty.

H ere we focus on four dimensions and t he technically
simpler case of R iemannian signat ure gravi ty. In t his
set t ing G F T s can be defined in terms of a (complex) field
 on S O (4)4 , sat isfying t he gauge invariance

 (g1 , g2 , g3 , g4 ) =  (hg1 , hg2 , hg3 , hg4 ),  h  S O (4). (1)

E ach Feynman graph can be viewed as a discrete space-
t ime buil t ou t of fundament al tet rahedra whose geomet ry
is specified by four parallel t ranspor ts gI of t he gravi t a-
t ional connect ion along links dual to i ts faces, or in t he
dual pict ure by four bivectors BI associated to t he faces:

B AB
 I(m)

 
∫

 I(m)

eA  eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏
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ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

•  these coefficients are related to physical continuum metric by:

that is, they are the metric coefficients for the metric “sampled” at N points
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•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
 ̂ can be expanded in annihilat ion operators:  ̂ (g I ) = 

   (g I ) â  , where   (g I ) are elements of a basis of
funct ions sat ifying (1) and â  are ordinary bosonic annihila-
t ion operators. In this picture, an appropriate superposit ion
of N -part icle states in the G F T gives a spin network with
N vert ices; see e.g. [4].

A quantum of the G F T field (created by the operator
 ̂ † (g I )) is then interpreted as a tetrahedron with geometry

given by the parallel transports g I ; the property (1) encodes
the invariance of the field under a gauge transformat ion
act ing on the vertex joining the dual links.

O ne can use a noncommu t a t ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4 :

 ̃ ( B 1 , B 2 , B 3 , B 4 ) =
 

d4 g
4 

I = 1

eg I ( B I )  (g1 , . . . , g4 ) ,

(3)
where eg ( B ) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ransla tes into  ̃ ( B I ) =  (

 
I B I )  

 ̃ ( B I ); if t he L ie algebra elements B I are interpret a ted
as bivectors ob t ained by integra t ing e  e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret at ion, t he variables B I
must sat isfy simpl ic ity constraints [5]:

 n A  S 3  R4 :  I n A B A B
I = 0 . (4)

U p to possible discrete ambigui t ies t hat we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors e A

i  R4 (for i = 1, 2, 3) such t hat for all i

B A B
i =  i

j k e A
j e B

k . (5)

B y an S O (4) t ransforma t ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
B I to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

 (g1 , g2 , g3 , g4 ) =  (g1 h1 , g2 h2 , g3 h3 , g4 h4 )  h I  S O (3) ,
(6)

so t hat  is really a field on four copies of S 3  SU (2).
Homogeneous discrete geometr ies. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|B I ( m )  : =
N 

m = 1

ˆ̃ † ( B 1 ( m ) , . . . , B 4 ( m ) )|0 , (7)

where |0 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors B I ( m ) associa ted to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{B i ( m )} ( i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all B i ( m ) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of e A

i ( m ) , t here is an act ion of S O (4) N ,

B i ( m )   
 

h ( m )
 −1 B i ( m ) h ( m ) , e i ( m )   e i ( m ) h ( m ) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “ met ric” components

g i j ( m ) = e A
i ( m ) e A j ( m ) . (9)

D efining t he six bilinears B̃ i j : = B A B
i B j A B , we can ex-

press t he components g i j in terms of t he bivectors B i ( n ) :

g i j =
1

8 t r( B 1 B 2 B 3 )
 i

k l  j
m n B̃ k m B̃ l n , (10)

as can be verified from B̃ i j =  i
k l  j

m n gk m g l n .
In classical rela t ivi ty, a spa t ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sifica t ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies g i j ( m ) to be compa t-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t ha t
M  G / X where X can be a discrete subgroup of G ;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m   
 

x m  M,
 
v1 ( m ) , v2 ( m ) , v3 ( m )

 
 T x m M

 
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors e A
i ( m ) associa ted to a tet ra-

hedron as physical tet rad vectors integrated along t he
edges specified by v i ( m ) , assuming t he edges are suffi-
cient ly small so t hat we can approxima te t he tet rad as
const ant . W i t hin t his approximat ion, t he vectors e A

i ( m )
are related to physical tet rad vectors by

e A
i ( m ) = e A ( x m )(v i ( m ) ) . (12)

For t he S O (4) invariant quant i t ies g i j , we similarly ob t ain

g i j ( m ) = g( x m )(v i ( m ) , v j ( m ) ) . (13)

(13) defines a 3-met ric at a fini te number of points {x m}
which depends on t he embedding: In addi t ion to t he lo-
cat ion of t he tet rahedra one specifies t heir orient at ion by
a choice of v i ( m ) . C hanging t hose vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

•  these coefficients are related to physical continuum metric by:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

that is, they are the metric coefficients for the metric “sampled” at N points

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 
then it can be put in 1-1 correspondence with such approximate continuum metric

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra small enough and flat enough

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 
then it can be put in 1-1 correspondence with such approximate continuum metric
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

•  these coefficients are related to physical continuum metric by:

that is, they are the metric coefficients for the metric “sampled” at N points

GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
 ̂ can be expanded in annihilat ion operators:  ̂ (g I ) = 

   (g I ) â  , where   (g I ) are elements of a basis of
funct ions sat ifying (1) and â  are ordinary bosonic annihila-
t ion operators. In this picture, an appropriate superposit ion
of N -part icle states in the G F T gives a spin network with
N vert ices; see e.g. [4].

A quantum of the G F T field (created by the operator
 ̂ † (g I )) is then interpreted as a tetrahedron with geometry

given by the parallel transports g I ; the property (1) encodes
the invariance of the field under a gauge transformat ion
act ing on the vertex joining the dual links.

O ne can use a noncommu t a t ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4 :

 ̃ ( B 1 , B 2 , B 3 , B 4 ) =
 

d4 g
4 

I = 1

eg I ( B I )  (g1 , . . . , g4 ) ,

(3)
where eg ( B ) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ransla tes into  ̃ ( B I ) =  (

 
I B I )  

 ̃ ( B I ); if t he L ie algebra elements B I are interpret a ted
as bivectors ob t ained by integra t ing e  e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret at ion, t he variables B I
must sat isfy simpl ic ity constraints [5]:

 n A  S 3  R4 :  I n A B A B
I = 0 . (4)

U p to possible discrete ambigui t ies t hat we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors e A

i  R4 (for i = 1, 2, 3) such t hat for all i

B A B
i =  i

j k e A
j e B

k . (5)

B y an S O (4) t ransforma t ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
B I to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

 (g1 , g2 , g3 , g4 ) =  (g1 h1 , g2 h2 , g3 h3 , g4 h4 )  h I  S O (3) ,
(6)

so t hat  is really a field on four copies of S 3  SU (2).
Homogeneous discrete geometr ies. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|B I ( m )  : =
N 

m = 1

ˆ̃ † ( B 1 ( m ) , . . . , B 4 ( m ) )|0 , (7)

where |0 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors B I ( m ) associa ted to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{B i ( m )} ( i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all B i ( m ) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of e A

i ( m ) , t here is an act ion of S O (4) N ,

B i ( m )   
 

h ( m )
 −1 B i ( m ) h ( m ) , e i ( m )   e i ( m ) h ( m ) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “ met ric” components

g i j ( m ) = e A
i ( m ) e A j ( m ) . (9)

D efining t he six bilinears B̃ i j : = B A B
i B j A B , we can ex-

press t he components g i j in terms of t he bivectors B i ( n ) :

g i j =
1

8 t r( B 1 B 2 B 3 )
 i

k l  j
m n B̃ k m B̃ l n , (10)

as can be verified from B̃ i j =  i
k l  j

m n gk m g l n .
In classical rela t ivi ty, a spa t ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sifica t ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies g i j ( m ) to be compa t-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t ha t
M  G / X where X can be a discrete subgroup of G ;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m   
 

x m  M,
 
v1 ( m ) , v2 ( m ) , v3 ( m )

 
 T x m M

 
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors e A
i ( m ) associa ted to a tet ra-

hedron as physical tet rad vectors integrated along t he
edges specified by v i ( m ) , assuming t he edges are suffi-
cient ly small so t hat we can approxima te t he tet rad as
const ant . W i t hin t his approximat ion, t he vectors e A

i ( m )
are related to physical tet rad vectors by

e A
i ( m ) = e A ( x m )(v i ( m ) ) . (12)

For t he S O (4) invariant quant i t ies g i j , we similarly ob t ain

g i j ( m ) = g( x m )(v i ( m ) , v j ( m ) ) . (13)

(13) defines a 3-met ric at a fini te number of points {x m}
which depends on t he embedding: In addi t ion to t he lo-
cat ion of t he tet rahedra one specifies t heir orient at ion by
a choice of v i ( m ) . C hanging t hose vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

•  these coefficients are related to physical continuum metric by:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

that is, they are the metric coefficients for the metric “sampled” at N points

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 
then it can be put in 1-1 correspondence with such approximate continuum metric
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

Thursday, March 7, 2013



Homogeneous geometries & GFT condensates



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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(Gross-Pitaevskii approximation)



Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

Thursday, March 7, 2013



Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

Thursday, March 7, 2013

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N
• 2nd quantized coherent states

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N
• 2nd quantized coherent states
• can be studied using BEC techniques 

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t ha t g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st a te which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st a te which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

when applied to (coherent) GFT condensate state, 
it gives equation for “wave function”: 

∫
[dg′i] K̃(gi, g

′
i)σ(g′i) + λ

δṼ
δϕ(gi)

|ϕ≡σ = 0

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st a te which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

when applied to (coherent) GFT condensate state, 
it gives equation for “wave function”: 

∫
[dg′i] K̃(gi, g

′
i)σ(g′i) + λ

δṼ
δϕ(gi)

|ϕ≡σ = 0

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a na t ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t hat a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st a te which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st ate only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he dat a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he dat a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he dat a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he dat a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “small enough” and “flat enough”:∫

[dg′
i] K̃(gi, g

′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

GFT dipole condensation requires effective kinetic term with non-trivial kernel 

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he dat a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric dat a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)
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For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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derivation of cosmological equations from GFT quantum dynamics very general
it rests on:

• continuum homogeneous spacetime ~ GFT condensate
• good encoding of discrete geometry in GFT states
• quantum nature of underlying theory

• 2nd quantized GFT formalism

it can then be specialized to interesting GFT models (e.g coming from LQG, ...)
exact form of equations depends on specific model considered

general features:
• quantum cosmology-like equations emerging as hydrodynamics for GFT condensate
• non-linear
• non-local (on “mini-superspace”)

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)
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and consider (formal) eikonal WKB approximation κ→ 0

•    equation becomes at leading order 
(mass term subdominant):

4

Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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is the momentum conjugate to πI . Within this WKB
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tion for the classical action S. For this scheme to be
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tion for the classical action S. For this scheme to be
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rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
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which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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case where all aI and ȧI are equal, this reduces to
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which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
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be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
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careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
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Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 
(suggested by simplicial geometry, LQG, GFT renormalization,..): K(gI , g̃I) =

(
∑

I

∆gI + µ

)
(gI , g̃I)

• full cosmological equations for GFT condensate will contain, 
in some approximation:

(
∑

I

∆gI + µ

)
Ψ(gI) ≈ 0

Ψ(gI) = A(gI)e
i
κ S(gI)•    take order parameter to be of the form: 

and consider (formal) eikonal WKB approximation κ→ 0

•    equation becomes at leading order 
(mass term subdominant):
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where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
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which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
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κ S(gI)•    take order parameter to be of the form: 

and consider (formal) eikonal WKB approximation κ→ 0

•    equation becomes at leading order 
(mass term subdominant):

4

Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =
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1

4

∑
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c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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eikonal limit κ → 0, this equation reduces to
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where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
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of the bivectors BI and of the conjugate quantities πI as
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which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
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similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
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quantum state, and as such, they are still allowed at any
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We motivated the choice of state (18) as a candidate
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Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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T, V = normalized dimensionless Lie algebra elements
(state dependent)

a ’s are scale factors

B4 = B4(B1, B2, B3) π4 = π4(π1, π2, π3)

I = 1, 2, 3

Thursday, March 7, 2013



Approximate FRW equations for GFT condensate



Approximate FRW equations for GFT condensate

•   in the isotropic case aI = a γI for γI constant



Approximate FRW equations for GFT condensate

•   in the isotropic case aI = a γI for γI constant

and one obtains: k = k(TI , VI) > 0ȧ2 − k = O
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if the GFT dynamics involves Laplacian kinetic term, then FRW equation is contained 
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another way to extract effective classical equations from GFT hydrodynamics: take order parameter to be 
coherent state for mini-superspace (DO, L. Sindoni, ’10)
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derivation of cosmology from full QG formalism! 
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