Cosmology from Group Field Theory

Daniele Oriti
Albert Einstein Institute

"Quantum Gravity and Fundamental Cosmology"
Albert Einstein Institute, Golm
07/03/2013

Plan of the talk and main message(s)

Plan of the talk and main message(s)

Main message(s)

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes - continuum homogeneous spacetimes are GFT condensates

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes continuum homogeneous spacetimes are GFT condensates
- effective cosmological dynamics can be extracted from GFT in full generality

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes continuum homogeneous spacetimes are GFT condensates
- effective cosmological dynamics can be extracted from GFT in full generality some models contain FRW dynamics (plus corrections)

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes continuum homogeneous spacetimes are GFT condensates
- effective cosmological dynamics can be extracted from GFT in full generality some models contain FRW dynamics (plus corrections)
S. Gielen, DO, L. Sindoni,

Plan of the talk and main message(s)

Main message(s)

- GFTs: interesting formalism for QG: strict relation to LQG \& tensor models
- a scenario for cosmology: Big Bang as phase transition/condensation (geometrogenesis)
- GFT states corresponding to approximate homogeneous spacetimes continuum homogeneous spacetimes are GFT condensates
- effective cosmological dynamics can be extracted from GFT in full generality some models contain FRW dynamics (plus corrections)
S. Gielen, DO, L. Sindoni, AEI-2013-051, arXiv: 1303.XXXX

Plan:
intro to GFT formalism relation to LQG, spin foams and tensor models GFT states \longleftrightarrow (approximate) continuum geometries examples of GFT condensates effective dynamics for GFT condensates (general)

- special case and approximate FRW equations conclusions and outlook

GFT basics

recent general introductions and reviews:
D. Oriti, arXiv: gr-qc/0607032
D. Oriti, arXiv: 0912.2441 [hep-th]
R. Gurau, J. Ryan, arXiv: 1109.4812 [hep-th]
D. Oriti, arXiv: 1111.5606 [hep-th]
V. Rivasseau, arXiv:1112.5104 [hep-th]
work by:
Baratin, Ben Geloun, Bonzom, Carrozza, De Pietri, Fairbairn, Freidel, Gielen, Girelli, Gurau, Livine, Louapre, Krajewski, Krasnov, Magnen, Noui, Oriti, Perez, Raasakka, Reisenberger, Rivasseau, Rovelli, Ryan, Sindoni, Smerlak, Tanasa, Vitale,

GFT basics (4d case): kinematics

Quantum field theory over group manifold (or corresponding Lie algebra)

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}
$$

$S L(2, \mathbb{C})^{\times 4} \quad$ Lorentzian signature $\operatorname{Spin}(4)^{\times 4} \quad$ Riemannian signature

$$
\left[\mathcal{T}^{*} S L(2, \mathbb{C})\right]^{\times 4} \quad \text { or } \quad\left[\mathcal{T}^{*} \operatorname{Spin}(4)\right]^{\times 4}
$$

GFT basics (4d case): kinematics

Quantum field theory over group manifold (or corresponding Lie algebra)
$S L(2, \mathbb{C})^{\times 4} \quad$ Lorentzian signature
$\operatorname{Spin}(4)^{\times 4} \quad$ Riemannian signature
$\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$
with ("simplicity") conditions enforced on the field or the dynamics to impose "geometricity" of simplicial structures

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G
$$

classical phase space of reference:

$$
\begin{aligned}
& {\left[\mathcal{T}^{*} S L(2, \mathbb{C})\right]^{\times 4} \quad \text { or } \quad\left[\mathcal{T}^{*} \operatorname{Spin}(4)\right]^{\times 4} } \\
B_{i}^{I J} & \simeq N^{I} \wedge b_{i}^{J}
\end{aligned}
$$

group ~ elementary holonomy Lie algebra ~ "discretized triad"

GFT basics (4d case): kinematics

Quantum field theory over group manifold (or corresponding Lie algebra)
$S L(2, \mathbb{C})^{\times 4} \quad$ Lorentzian signature
$\operatorname{Spin}(4)^{\times 4} \quad$ Riemannian signature

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}
$$

with ("simplicity") conditions enforced on the field or the dynamics to impose "geometricity" of simplicial structures

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G
$$

$$
\text { some 4d gravity models: } \mathrm{X}=\mathrm{SU}(2) \text { (as in LQG) }
$$

classical phase space of reference:

$$
\left[\mathcal{T}^{*} S L(2, \mathbb{C})\right]^{\times 4} \quad \text { or } \quad\left[\mathcal{T}^{*} \operatorname{Spin}(4)\right]^{\times 4} \hookleftarrow\left[\mathcal{T}^{*} S U(2)\right]^{\times 4}
$$

$$
B_{i}^{I J} \simeq N^{I} \wedge b_{i}^{J}
$$

group ~ elementary holonomy Lie algebra ~"discretized triad"

GFT basics (4d case): kinematics

Quantum field theory over group manifold (or corresponding Lie algebra)
$S L(2, \mathbb{C})^{\times 4} \quad$ Lorentzian signature
$\operatorname{Spin}(4)^{\times 4} \quad$ Riemannian signature

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}
$$

with ("simplicity") conditions enforced on the field or the dynamics to impose "geometricity" of simplicial structures

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G
$$

some 4d gravity models: $\mathrm{X}=\mathrm{SU}(2)$ (as in LQG) $\uparrow \mathrm{N}$
classical phase space of reference:

$$
\left[\mathcal{T}^{*} S L(2, \mathbb{C})\right]^{\times 4} \quad \text { or } \quad\left[\mathcal{T}^{*} \operatorname{Spin}(4)\right]^{\times 4} \hookleftarrow\left[\mathcal{T}^{*} S U(2)\right]^{\times 4}
$$

$B_{i}^{I J} \simeq N^{I} \wedge b_{i}^{J}$
also obtained from discretization of continuum theory (gravity = BF theory + constraints)
group ~ elementary holonomy Lie algebra ~"discretized triad"

GFT basics (4d case) : kinematics

GFT basics (4d case) : kinematics

Fock vacuum: "no-space" ("emptiest") state | 0 >

GFT basics (4d case) : kinematics

Fock vacuum: "no-space" ("emptiest") state | 0 >
single field "quantum": spin network vertex or tetrahedron $\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$

GFT basics (4d case) : kinematics

Fock vacuum: "no-space" ("emptiest") state | 0 >
single field "quantum": spin network vertex or tetrahedron $\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or tetrahedra (including glued ones)

GFT basics (4d case) : kinematics

Fock vacuum: "no-space" ("emptiest") state | 0 >
single field "quantum": spin network vertex or tetrahedron $\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or tetrahedra (including glued ones)

GFT basics (4d case) : kinematics

Fock vacuum: "no-space" ("emptiest") state | 0 >
single field "quantum": spin network vertex or tetrahedron $\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C}$

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or tetrahedra (including glued ones)

second quantized version of (generalized) LQG (adapted to simplicial context), but dynamics not derived from canonical quantization of GR

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields) $S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad$ c.c.

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{gathered}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\text { "combinatorial non-locality" }
\end{gathered}
$$

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{gathered}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\text { "combinatorial non-locality" }
\end{gathered}
$$

one possibility (customary in LQG/spin foam context):

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{gathered}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\text { "combinatorial non-locality" }
\end{gathered}
$$

one possibility (customary in LQG/spin foam context):
trivial kinetic term: $\quad \mathcal{K}\left(g_{i}, \bar{g}_{i}\right)=\delta\left(g_{1}, \bar{g}_{1}\right) \ldots \delta\left(g_{4}, \bar{g}_{4}\right)$

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

$$
\begin{gathered}
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\text { "combinatorial non-locality" }
\end{gathered}
$$

one possibility (customary in LQG/spin foam context):
trivial kinetic term: $\quad \mathcal{K}\left(g_{i}, \bar{g}_{i}\right)=\delta\left(g_{1}, \bar{g}_{1}\right) \ldots \delta\left(g_{4}, \bar{g}_{4}\right) \quad$ "simplicial" interaction:

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields) $S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+$

one possibility (customary in LQG/spin foam context):
trivial kinetic term: $\quad \mathcal{K}\left(g_{i}, \bar{g}_{i}\right)=\delta\left(g_{1}, \bar{g}_{1}\right) \ldots \delta\left(g_{4}, \bar{g}_{4}\right)$
"simplicial" interaction:

GFT basics (4d case): dynamics

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields) $S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+$

one possibility (customary in LQG/spin foam context):
trivial kinetic term: $\quad \mathcal{K}\left(g_{i}, \bar{g}_{i}\right)=\delta\left(g_{1}, \bar{g}_{1}\right) \ldots \delta\left(g_{4}, \bar{g}_{4}\right)$
"simplicial" interaction:

with fields constrained to satisfy "geometricity" conditions

GFT basics (4d case): dynamics

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization):
(tensor) invariant interactions

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization):
(tensor) invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} I_{b}(\varphi, \bar{\varphi})
$$

indexed by d-colored "bubbles"

$$
\begin{aligned}
& \text { example: } \quad \int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned}
$$

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization):
(tensor) invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} l_{b}(\varphi, \bar{\varphi})
$$

indexed by d-colored "bubbles"

$$
\begin{aligned}
& \qquad \text { example: } \int\left[\mathrm{d}_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \\
& \hline \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right) \\
& \text { with non-trivial propagator: } \quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1} \text { Laplace-Beltrami on group manifold }
\end{aligned}
$$

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization):
(tensor) invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} l_{b}(\varphi, \bar{\varphi})
$$

indexed by d-colored "bubbles"

$$
\begin{aligned}
& \qquad \text { example: } \int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned} \quad \begin{aligned}
& \text { with non-trivial propagator: } \quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1} \text { Laplace-Beltrami on group manifold }
\end{aligned}
$$

- interesting models exist with: nice simplicial geometry, direct links with discrete GR and simplicial path integrals, LQG-like Hilbert space,

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization):
(tensor) invariant interactions

$$
S(\varphi, \bar{\varphi})=\sum_{b \in \mathcal{B}} t_{b} l_{b}(\varphi, \bar{\varphi})
$$

indexed by d-colored "bubbles"

$$
\begin{aligned}
\text { example: } & \int\left[\mathrm{d} g_{i}\right]^{12} \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \bar{\varphi}\left(g_{1}, g_{2}, g_{3}, g_{5}\right) \varphi\left(g_{8}, g_{7}, g_{6}, g_{5}\right) \\
& \bar{\varphi}\left(g_{8}, g_{9}, g_{10}, g_{11}\right) \varphi\left(g_{12}, g_{9}, g_{10}, g_{11}\right) \bar{\varphi}\left(g_{12}, g_{7}, g_{6}, g_{4}\right)
\end{aligned}
$$

with non-trivial propagator: $\quad\left(m^{2}-\sum_{\ell=1}^{d} \Delta_{\ell}\right)^{-1}$ Laplace-Beltrami on group manifold

- interesting models exist with: nice simplicial geometry, direct links with discrete GR and simplicial path integrals, LQG-like Hilbert space,
- several connections between the two classes of models, may be equivalent

GFT basics (4d case) : dynamics

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology (including pseudomanifolds)

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology (including pseudomanifolds)

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology (including pseudomanifolds)

Feynman amplitudes:

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology (including pseudomanifolds)

Feynman amplitudes:

- spin foam models (sum-over-histories of spin networks)

GFT basics (4d case) : dynamics

Feynman perturbative expansion around trivial Fock vacuum:

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology (including pseudomanifolds)

Feynman amplitudes:

- spin foam models (sum-over-histories of spin networks)
- \quad simplicial gravity path integrals (in group+Lie algebra variables)

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

Fock space reformulation (for some models)

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks
Fock space reformulation (for some models)
of LQG Hilbert space

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks
Fock space reformulation (for some models) of LQG Hilbert space
most complete definition of spin foam models

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

Fock space reformulation (for some models) of LQG Hilbert space
most complete definition of spin foam models

- dynamics not coming from canonical GR, but from discrete gravity

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks
Fock space reformulation (for some models) of LQG Hilbert space
most complete definition of spin foam models

- dynamics not coming from canonical GR, but
from discrete gravity
topology is dynamical

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks
Fock space reformulation (for some models) of LQG Hilbert space

- most complete definition of spin foam models
- dynamics not coming from canonical GR, but
from discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- most complete definition of spin foam models
- dynamics not coming from canonical GR, but
from discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)
-key formalism for studying dynamics of many dofs

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- most complete definition of spin foam models
- dynamics not coming from canonical GR, but from discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)
- key formalism for studying dynamics of many dofs

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- most complete definition of spin foam models
- dynamics not coming from canonical GR, but from discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- most complete definition of spin foam models
- dynamics not coming from canonical GR, but from discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- additional data with respect to tensor models (group elements, etc) complexes non assumed as equilateral
- richer framework, direct link with discrete gravity
topology is dynamical
QFT formalism brings powerful new tools
(e.g. renormalization)
- key formalism for studying dynamics of many dofs

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- additional data with respect to tensor models (group elements, etc) complexes non assumed as equilateral
- richer framework, direct link with discrete gravity
- proper QFTs: symmetries, RG flow,

QFT formalism brings powerful new tools (e.g. renormalization)

- key formalism for studying dynamics of many dofs

GFT basics: relation with LQG and matrix/tensor models

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

QFT for spin networks

- Fock space reformulation (for some models) of LQG Hilbert space
- combinatorial generalization of matrix models dynamics from sum over 4d cellular complexes
- most complete definition of spin foam models
- dynamics not coming from canonical GR, but from discrete gravity topology is dynamical

QFT formalism brings powerful new tools (e.g. renormalization)

- additional data with respect to tensor models (group elements, etc) complexes non assumed as equilateral
- richer framework, direct link with discrete gravity
- proper QFTs: symmetries, RG flow,
- easier to extract physics and geometry
-key formalism for studying dynamics of many dofs

Group Field Theory and Tensor Models

Group Field Theory and Tensor Models

Matrix models

Group Field Theory and Tensor Models

Matrix models

Tensor models

Group Field Theory and Tensor Models

Group Field Theory and Tensor Models

Simplicial gravity path integrals
(e.g. quantum Regge calculus)

Matrix models

Group Field Theory and Tensor Models

Matrix models

Simplicial gravity path integrals

Group Field Theory and Tensor Models

Group Field Theory and Tensor Models

LQG

Simplicial gravity path integrals (e.g. quantum Regge calculus)

Matrix models

GFTs, spin foams, tensor models: many recent results

- construction of interesting 4d gravity models (inspired by LQG)
- encoding of simplicial geometry
field theory symmetries
- understanding of combinatorial structures (GFT Feynman diagrams)
- large-N expansion
- GFT renormalization (various renormalizable models)
critical behaviour (in tensor models)
- mean field expansion (emergent matter, effective QG dynamics,...)
- simplified models (for cosmology)

Continuum spacetime and geometry? (physics?)

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

GFT analogous to QFT for atoms in condensed matter system

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase
- more specific hypothesis: continuum spacetime is GFT condensate

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase
- more specific hypothesis: continuum spacetime is GFT condensate

GR-like dynamics from GFT hydrodynamics

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase
- more specific hypothesis: continuum spacetime is GFT condensate
-

GR-like dynamics from GFT hydrodynamics

- phase transition leading to spacetime and geometry (GFT condensation) is what replaces Big Bang singularity (geometrogenesis)

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase
- more specific hypothesis: continuum spacetime is GFT condensate
-GR-like dynamics from GFT hydrodynamics
- phase transition leading to spacetime and geometry (GFT condensation) is what replaces Big Bang singularity (geometrogenesis) cosmology as "relaxation to equilibrium condensate"

Continuum spacetime and geometry from GFT: general vision and specific hypotheses

- GFT analogous to QFT for atoms in condensed matter system
- continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT building blocks (spin nets, simplices)
- requires (GFT analogue of) thermodynamic limit, macroscopic approximation, appropriate phase
- more specific hypothesis: continuum spacetime is GFT condensate
-GR-like dynamics from GFT hydrodynamics
- phase transition leading to spacetime and geometry (GFT condensation) is what replaces Big Bang singularity (geometrogenesis) cosmology as "relaxation to equilibrium condensate"

Cosmology from GFT

Cosmology from GFT

S. Gielen, DO, L. Sindoni, AEI-2013-051, arXiv: 1303.XXXX

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron }
$$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian $\mathrm{SO}(4)$ case for simplicity)

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron }
$$

$\sum_{i=1}^{4} B_{i}=0 \quad$ closure $<->$ gauge invariance $\quad \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\varphi\left(h g_{1}, h g_{2}, h g_{3}, h g_{4}\right), \forall h \in \mathrm{SO}(4)$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

$$
\begin{gathered}
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron } \\
\sum_{i=1}^{4} B_{i}=0 \quad \text { closure <-> gauge invariance } \quad \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\varphi\left(h g_{1}, h g_{2}, h g_{3}, h g_{4}\right), \forall h \in \mathrm{SO}(4) \\
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G \longleftrightarrow B_{i}^{A B}=\epsilon_{i}{ }^{j k} e_{j}^{A} e_{k}^{B}
\end{gathered}
$$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

$$
\begin{aligned}
& \qquad\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron } \\
& \sum_{i=1}^{4} B_{i}=0 \quad \text { closure <-> gauge invariance } \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\varphi\left(h g_{1}, h g_{2}, h g_{3}, h g_{4}\right), \forall h \in \mathrm{SO}(4) \\
& \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G \longleftrightarrow B_{i}^{A B}=\epsilon_{i}^{j k} e_{j}^{A} e_{k}^{B} \\
& \text { - generic N-particle GFT state (N geometric tetrahedra): } \\
& \left|B_{I(m)}\right\rangle:=\prod_{m=1}^{N} \hat{\tilde{\varphi}}^{\dagger}\left(B_{1(m)}, \ldots, B_{4(m)}\right)|0\rangle
\end{aligned}
$$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

$$
\begin{gathered}
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron } \\
\sum_{i=1}^{4} B_{i}=0 \quad \text { closure <-> gauge invariance } \quad \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\varphi\left(h g_{1}, h g_{2}, h g_{3}, h g_{4}\right), \forall h \in \mathrm{SO}(4)
\end{gathered}
$$

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G \longleftrightarrow B_{i}^{A B}=\epsilon_{i}^{j k} e_{j}^{A} e_{k}^{B}
$$

- generic N -particle GFT state (N geometric tetrahedra):

$$
\left|B_{I(m)}\right\rangle:=\prod_{m=1}^{N} \hat{\tilde{\varphi}}^{\dagger}\left(B_{1(m)}, \ldots, B_{4(m)}\right)|0\rangle
$$

- think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) implies choosing embedding point and 3 reference vectors:

$$
\Delta_{m} \mapsto\left\{x_{m} \in \mathcal{M},\left\{\mathbf{v}_{1(m)}, \mathbf{v}_{2(m)}, \mathbf{v}_{3(m)}\right\} \subset T_{x_{m}} \mathcal{M}\right\}
$$

GFT states and approximate continuum geometries

- work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

$$
\begin{gathered}
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \leftrightarrow \varphi\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \rightarrow \mathbb{C} \quad \text { describes geometric tetrahedron } \\
\sum_{i=1}^{4} B_{i}=0 \quad \text { closure <-> gauge invariance } \quad \varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\varphi\left(h g_{1}, h g_{2}, h g_{3}, h g_{4}\right), \forall h \in \mathrm{SO}(4)
\end{gathered}
$$

$$
\varphi\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \hookrightarrow \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad x_{i} \in X \subset G \longleftrightarrow B_{i}^{A B}=\epsilon_{i}^{j k} e_{j}^{A} e_{k}^{B}
$$

- generic N -particle GFT state (N geometric tetrahedra):

$$
\left|B_{I(m)}\right\rangle:=\prod_{m=1}^{N} \hat{\tilde{\varphi}}^{\dagger}\left(B_{1(m)}, \ldots, B_{4(m)}\right)|0\rangle
$$

- think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) implies choosing embedding point and 3 reference vectors:

$$
\Delta_{m} \mapsto\left\{x_{m} \in \mathcal{M},\left\{\mathbf{v}_{1(m)}, \mathbf{v}_{2(m)}, \mathbf{v}_{3(m)}\right\} \subset T_{x_{m}} \mathcal{M}\right\}
$$

- choose embedding vectors to be aligned with left-invariant vector fields of H

GFT states and approximate continuum geometries

- interpret discrete triad variable in GFT state with physical triad field integrated along embedding vector
requires: tetrahedra small enough and flat enough

GFT states and approximate continuum geometries

- interpret discrete triad variable in GFT state with physical triad field integrated along embedding vector
requires: tetrahedra small enough and flat enough
- from the B's (or the e's) construct:

$$
\begin{array}{ll}
g_{i j}=\frac{1}{8 \operatorname{tr}\left(B_{1} B_{2} B_{3}\right)} \epsilon_{i}^{k l} \epsilon_{j}^{m n} \tilde{B}_{k m} \tilde{B}_{l n} & \tilde{B}_{i j}:=B_{i}^{A B} B_{j A B} \\
\text { or: } \quad g_{i j(m)}=e_{i(m)}^{A} e_{A j(m)} &
\end{array}
$$

GFT states and approximate continuum geometries

- interpret discrete triad variable in GFT state with physical triad field integrated along embedding vector requires: tetrahedra small enough and flat enough
- from the B's (or the e's) construct:

$$
\begin{array}{ll}
g_{i j}= & \frac{1}{8 \operatorname{tr}\left(B_{1} B_{2} B_{3}\right)} \epsilon_{i}^{k l} \epsilon_{j}^{m n} \tilde{B}_{k m} \tilde{B}_{l n} \\
\text { or: } \quad g_{i j(m)}=e_{i(m)}^{A} e_{A j(m)} & \tilde{B}_{i j}:=B_{i}^{A B} B_{j A B} \\
\end{array}
$$

- these coefficients are related to physical continuum metric by:

$$
g_{i j(m)}=g\left(x_{m}\right)\left(\mathbf{e}_{i}\left(x_{m}\right), \mathbf{e}_{j}\left(x_{m}\right)\right)
$$

that is, they are the metric coefficients for the metric "sampled" at N points

GFT states and approximate continuum geometries

- interpret discrete triad variable in GFT state with physical triad field integrated along embedding vector
requires: tetrahedra small enough and flat enough
- from the B's (or the e's) construct:

$$
\begin{array}{ll}
g_{i j}= & \frac{1}{8 \operatorname{tr}\left(B_{1} B_{2} B_{3}\right)} \epsilon_{i}^{k l} \epsilon_{j}^{m n} \tilde{B}_{k m} \tilde{B}_{l n} \\
\text { or: } \quad g_{i j(m)}=e_{i(m)}^{A} e_{A j(m)} & \tilde{B}_{i j}:=B_{i}^{A B} B_{j A B} \\
\text { rem }
\end{array}
$$

- these coefficients are related to physical continuum metric by:

$$
g_{i j(m)}=g\left(x_{m}\right)\left(\mathbf{e}_{i}\left(x_{m}\right), \mathbf{e}_{j}\left(x_{m}\right)\right)
$$

that is, they are the metric coefficients for the metric "sampled" at N points

- if GFT state satisfy additional gauge invariance condition under SO(4) at every "point", then it can be put in 1-1 correspondence with such approximate continuum metric

$$
B_{i(m)} \mapsto\left(h_{(m)}\right)^{-1} B_{i(m)} h_{(m)}, \quad e_{i(m)} \mapsto e_{i(m)} h_{(m)}
$$

Homogeneous geometries \& GFT condensates

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- sending N to infinity means improving arbitrarily the accuracy of the sampling

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates

Homogeneous geometries \& GFT condensates

- classical criterion for homogeneity (for GFT data): $g_{i j(m)}=g_{i j(k)} \quad \forall k, m=1, \ldots, N$
i.e. all GFT quanta are labelled by the same (gauge invariant) data
- need to lift it to quantum framework (and include conjugate information):
all GFT quanta have the same (gauge invariant) "wave function", i.e. are in the same quantum state

$$
\Psi\left(B_{i(1)}, \ldots, B_{i(N)}\right)=\frac{1}{N!} \prod_{m=1}^{N} \Phi\left(B_{i}(m)\right)
$$

- in GFT: such states can be expressed in 2nd quantized language and one can consider superpositions of states of arbitrary N
- sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates
similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing,)

Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum quantum spacetimes)

Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum quantum spacetimes)
single-particle condensate
(Gross-Pitaevskii approximation)

Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum quantum spacetimes)
single-particle condensate
(Gross-Pitaevskii approximation)
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

Quantum GFT condensates

> two simple choices of quantum GFT condensate states
> (homogeneous continuum quantum spacetimes)
single-particle condensate
(Gross-Pitaevskii approximation)
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

Quantum GFT condensates

> two simple choices of quantum GFT condensate states
> (homogeneous continuum quantum spacetimes)
single-particle condensate
(Gross-Pitaevskii approximation)
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest

Quantum GFT condensates

two simple choices of quantum GFT condensate states
 (homogeneous continuum quantum spacetimes)

single-particle condensate (Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$$
\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)
$$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

Quantum GFT condensates

two simple choices of quantum GFT condensate states (homogeneous continuum quantum spacetimes)

single-particle condensate (Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest

two-particle dipole condensate

$$
\begin{aligned}
& \text { (Bogoliubov approximation) } \\
& \begin{array}{c}
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
\end{array} \\
& \hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
\end{aligned}
$$

Quantum GFT condensates

two simple choices of quantum GFT condensate states (homogeneous continuum quantum spacetimes)

single-particle condensate (Gross-Pitaevskii approximation)
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest

Quantum GFT condensates

two simple choices of quantum GFT condensate states (homogeneous continuum quantum spacetimes)

single-particle condensate (Gross-Pitaevskii approximation)
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations

Quantum GFT condensates

two simple choices of quantum GFT condensate states

(homogeneous continuum quantum spacetimes)
single-particle condensate (Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations
- depend on same geometric variables: data for homogeneous anisotropic geometries

Quantum GFT condensates

two simple choices of quantum GFT condensate states

 (homogeneous continuum quantum spacetimes)single-particle condensate (Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations
- depend on same geometric variables: data for homogeneous anisotropic geometries
- truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)

Quantum GFT condensates

two simple choices of quantum GFT condensate states

 (homogeneous continuum quantum spacetimes)single-particle condensate
(Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations
- depend on same geometric variables: data for homogeneous anisotropic geometries
- truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N

Quantum GFT condensates

two simple choices of quantum GFT condensate states

 (homogeneous continuum quantum spacetimes)single-particle condensate
(Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations
- depend on same geometric variables: data for homogeneous anisotropic geometries
- truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N
- 2nd quantized coherent states

Quantum GFT condensates

two simple choices of quantum GFT condensate states

 (homogeneous continuum quantum spacetimes)single-particle condensate
(Gross-Pitaevskii approximation)

$$
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle
$$

$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

- simplest
two-particle dipole condensate
(Bogoliubov approximation)

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

- naturally gauge invariant
- takes into account some correlations
- depend on same geometric variables: data for homogeneous anisotropic geometries
- truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N
2nd quantized coherent states can be studied using BEC techniques

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$
$\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$
microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \quad \hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)$
microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

when applied to (coherent) GFT condensate state, it gives equation for "wave function":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \sigma\left(g_{i}^{\prime}\right)+\left.\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \varphi\left(g_{i}\right)}\right|_{\varphi \equiv \sigma}=0
$$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
single-particle GFT condensate:
$|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle$

$$
\hat{\sigma}:=\int d^{4} g \sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right)
$$

$$
\sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)
$$

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields) with extra approximations required for consistent continuum geometric interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

when applied to (coherent) GFT condensate state,
it gives equation for "wave function":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \sigma\left(g_{i}^{\prime}\right)+\left.\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \varphi\left(g_{i}\right)}\right|_{\varphi \equiv \sigma}=0
$$

non-linear and non-local extension of quantum cosmology-like equation for "collective wave function
QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric
interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric
interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

> system of equations
for odd-order GFT interactions, eqn from kinetic term decouples - separate equations

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric
interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

> system of equations
for odd-order GFT interactions, eqn from kinetic term decouples - separate equations
$\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \xi\left(g_{i}^{\prime} \tilde{g}_{i}^{-1}\right)=0 \begin{aligned} & \begin{array}{l}\text { Hamiltonian constraint-like eqn for collective wave function } \\ \text { + non-linear equations coming from higher-order correlators }\end{array}\end{aligned}$

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs
dipole GFT condensate:

$$
|\xi\rangle:=\exp (\hat{\xi})|0\rangle
$$

$$
\hat{\xi}:=\frac{1}{2} \int d^{4} g d^{4} h \xi\left(g h^{-1}\right) \hat{\varphi}^{\dagger}(g) \hat{\varphi}^{\dagger}(h)
$$

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
with extra approximations required for consistent continuum geometric
interpretation: GFT quanta "small enough" and "flat enough":

$$
\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \hat{\varphi}\left(g_{i}^{\prime}\right)+\lambda \frac{\delta \tilde{\mathcal{V}}}{\delta \hat{\varphi}\left(g_{i}\right)}=0
$$

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions
system of equations
for odd-order GFT interactions, eqn from kinetic term decouples - separate equations $\int\left[d g_{i}^{\prime}\right] \tilde{\mathcal{K}}\left(g_{i}, g_{i}^{\prime}\right) \xi\left(g_{i}^{\prime} \tilde{g}_{i}^{-1}\right)=0 \begin{aligned} & \begin{array}{l}\text { Hamiltonian constraint-like eqn for collective wave function } \\ \text { + non-linear equations coming from higher-order correlators }\end{array}\end{aligned}$

GFT dipole condensation requires effective kinetic term with non-trivial kernel

Effective cosmological dynamics from GFT

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:
continuum homogeneous spacetime ~ GFT condensate

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:
continuum homogeneous spacetime ~ GFT condensate
good encoding of discrete geometry in GFT states

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:
continuum homogeneous spacetime ~ GFT condensategood encoding of discrete geometry in GFT states quantum nature of underlying theory

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:

- continuum homogeneous spacetime ~ GFT condensate
- good encoding of discrete geometry in GFT states quantum nature of underlying theory

2nd quantized GFT formalism

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:

- continuum homogeneous spacetime ~ GFT condensate
- good encoding of discrete geometry in GFT states quantum nature of underlying theory

2nd quantized GFT formalism
it can then be specialized to interesting GFT models (e.g coming from LQG, ...) exact form of equations depends on specific model considered

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:

- continuum homogeneous spacetime ~ GFT condensate
- good encoding of discrete geometry in GFT states quantum nature of underlying theory

2nd quantized GFT formalism
it can then be specialized to interesting GFT models (e.g coming from LQG, ...) exact form of equations depends on specific model considered
general features:

- quantum cosmology-like equations emerging as hydrodynamics for GFT condensate
non-linear
non-local (on "mini-superspace")

Effective cosmological dynamics from GFT

derivation of cosmological equations from GFT quantum dynamics very general it rests on:

- continuum homogeneous spacetime ~ GFT condensate
- good encoding of discrete geometry in GFT states
- quantum nature of underlying theory

2nd quantized GFT formalism
it can then be specialized to interesting GFT models (e.g coming from LQG, ...) exact form of equations depends on specific model considered
general features:

- quantum cosmology-like equations emerging as hydrodynamics for GFT condensate
non-linear
non-local (on "mini-superspace")

Approximate FRW equations for GFT condensate

Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 (suggested by simplicial geometry, LQG, GFT renormalization,..): $\mathcal{K}\left(g_{I}, \tilde{g}_{I}\right)=\left(\sum_{I} \Delta_{g_{I}}+\mu\right)\left(g_{I}, \tilde{g}_{I}\right)$

Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 (suggested by simplicial geometry, LQG, GFT renormalization,...): $\mathcal{K}\left(g_{I}, \tilde{g}_{I}\right)=\left(\sum_{I} \Delta_{g_{I}}+\mu\right)\left(g_{I}, \tilde{g}_{I}\right)$

- full cosmological equations for GFT condensate will contain, in some approximation:

$$
\left(\sum_{I} \Delta_{g_{I}}+\mu\right) \Psi\left(g_{I}\right) \approx 0
$$

Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 (suggested by simplicial geometry, LQG, GFT renormalization,..): $\mathcal{K}\left(g_{I}, \tilde{g}_{I}\right)=\left(\sum_{I} \Delta_{g_{I}}+\mu\right)\left(g_{I}, \tilde{g}_{I}\right)$

- full cosmological equations for GFT condensate will contain, in some approximation:

$$
\left(\sum_{I} \Delta_{g_{I}}+\mu\right) \Psi\left(g_{I}\right) \approx 0
$$

- take order parameter to be of the form: $\Psi\left(g_{I}\right)=A\left(g_{I}\right) e^{\frac{i}{\kappa} S\left(g_{I}\right)}$ and consider (formal) eikonal WKB approximation $\kappa \rightarrow 0$

Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 (suggested by simplicial geometry, LQG, GFT renormalization,...): $\mathcal{K}\left(g_{I}, \tilde{g}_{I}\right)=\left(\sum_{I} \Delta_{g_{I}}+\mu\right)\left(g_{I}, \tilde{g}_{I}\right)$

- full cosmological equations for GFT condensate will contain, in some approximation:

$$
\left(\sum_{I} \Delta_{g_{I}}+\mu\right) \Psi\left(g_{I}\right) \approx 0
$$

- take order parameter to be of the form: $\Psi\left(g_{I}\right)=A\left(g_{I}\right) e^{\frac{i}{\kappa} S\left(g_{I}\right)}$ and consider (formal) eikonal WKB approximation $\kappa \rightarrow 0$
- equation becomes at leading order
(mass term subdominant):

$$
\sum_{I}\left(B_{I} \cdot B_{I}-\left(\pi_{I} \cdot B_{I}\right)^{2}\right) \approx 0
$$

$$
\begin{aligned}
& g=\sqrt{1-\vec{\pi}^{2}} \mathbb{I}-i \vec{\sigma} \cdot \vec{\pi} \\
& B_{I}:=\partial S / \partial \pi_{I}
\end{aligned}
$$

Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)^4 (suggested by simplicial geometry, LQG, GFT renormalization,..): $\mathcal{K}\left(g_{I}, \tilde{g}_{I}\right)=\left(\sum_{I} \Delta_{g_{I}}+\mu\right)\left(g_{I}, \tilde{g}_{I}\right)$

- full cosmological equations for GFT condensate will contain, in some approximation:

$$
\left(\sum_{I} \Delta_{g_{I}}+\mu\right) \Psi\left(g_{I}\right) \approx 0
$$

- take order parameter to be of the form: $\Psi\left(g_{I}\right)=A\left(g_{I}\right) e^{\frac{i}{\kappa} S\left(g_{I}\right)}$ and consider (formal) eikonal WKB approximation $\kappa \rightarrow 0$
- equation becomes at leading order
(mass term subdominant):

$$
\sum_{I}\left(B_{I} \cdot B_{I}-\left(\pi_{I} \cdot B_{I}\right)^{2}\right) \approx 0
$$

$$
\begin{aligned}
& g=\sqrt{1-\vec{\pi}^{2}} \mathbb{I}-i \vec{\sigma} \cdot \vec{\pi} \\
& B_{I}:=\partial S / \partial \pi_{I}
\end{aligned}
$$

- using geometric interpretation of states and variables, we can identify:

$$
\begin{array}{lr}
B_{I}=a_{I}^{2} T_{I} \quad \pi_{I}=\dot{a}_{I} V_{I} \quad I=1,2,3 & \text { a 's are scale factors } \\
B_{4}=B_{4}\left(B_{1}, B_{2}, B_{3}\right) \quad \pi_{4}=\pi_{4}\left(\pi_{1}, \pi_{2}, \pi_{3}\right) & \mathrm{T}, \mathrm{~V}=\text { normalized dimensionless Lie algebra elements } \\
\text { (state dependent) }
\end{array}
$$

Approximate FRW equations for GFT condensate

Approximate FRW equations for GFT condensate

- in the isotropic case $\quad a_{I}=a \gamma_{I}$ for $\gamma_{I} \quad$ constant

Approximate FRW equations for GFT condensate

- in the isotropic case $\quad a_{I}=a \gamma_{I} \quad$ for $\quad \gamma_{I} \quad$ constant

$$
\text { and one obtains: } \quad\left(\dot{a}^{2}-k=O\left(\frac{\kappa}{a^{2}}\right)\right) \quad k=k\left(T_{I}, V_{I}\right)>0
$$

Approximate FRW equations for GFT condensate

- in the isotropic case $a_{I}=a \gamma_{I}$ for $\gamma_{I} \quad$ constant

that is an approximate FRW equation for positive curvature

Approximate FRW equations for GFT condensate

- in the isotropic case $a_{I}=a \gamma_{I}$ for $\gamma_{I} \quad$ constant

that is an approximate FRW equation for positive curvature
(thus the dynamics selects $\mathrm{H}=\mathrm{SU}(2)$ as the isometry of the emergent spatial manifold)

Approximate FRW equations for GFT condensate

- in the isotropic case $a_{I}=a \gamma_{I}$ for γ_{I} constant
and one obtains:

$$
\dot{a}^{2}-k=O\left(\frac{\kappa}{a^{2}}\right) \quad k=k\left(T_{I}, V_{I}\right)>0
$$

that is an approximate FRW equation for positive curvature
(thus the dynamics selects $\mathrm{H}=\mathrm{SU}(2)$ as the isometry of the emergent spatial manifold)
if the GFT dynamics involves Laplacian kinetic term, then FRW equation is contained in effective cosmological dynamics for GFT condensate, with corrections

Approximate FRW equations for GFT condensate

- in the isotropic case

$$
a_{I}=a \gamma_{I} \quad \text { for } \quad \gamma_{I} \quad \text { constant }
$$

and one obtains:

$$
\dot{a}^{2}-k=O\left(\frac{\kappa}{a^{2}}\right)
$$

$$
k=k\left(T_{I}, V_{I}\right)>0
$$

that is an approximate FRW equation for positive curvature
(thus the dynamics selects $\mathrm{H}=\mathrm{SU}(2)$ as the isometry of the emergent spatial manifold)
if the GFT dynamics involves Laplacian kinetic term, then FRW equation is contained in effective cosmological dynamics for GFT condensate, with corrections
another way to extract effective classical equations from GFT hydrodynamics: take order parameter to be coherent state for mini-superspace (DO, L. Sindoni, '10)

Summary

Summary

GFT is promising candidate formalism for quantum gravity

Summary

GFT is promising candidate formalism for quantum gravity QFT for spin networks/simplices

Summary

GFT is promising candidate formalism for quantum gravity QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme

Summary

GFT is promising candidate formalism for quantum gravity QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme - \quad generalization of tensor models (same backbone + algebraic data)

Summary

\bullet
GFT is promising candidate formalism for quantum gravity QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme - \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)

Summary

\bullet
GFT is promising candidate formalism for quantum gravity QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme - \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
new suggestions for QG and cosmological scenario

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
- new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)
- steps towards realizing the scenario + extracting physics from GFT

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
- new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)
- steps towards realizing the scenario + extracting physics from GFT
- quantum GFT condensates ~ continuum homogeneous spacetimes

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
- new suggestions for QG and cosmological scenario (emergent continuum spacetime as condensate, Big Bang as phase transition)
- steps towards realizing the scenario + extracting physics from GFT
- quantum GFT condensates ~ continuum homogeneous spacetimes
- effective cosmological dynamics extracted (in full generality)

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)
- steps towards realizing the scenario + extracting physics from GFT
- quantum GFT condensates ~ continuum homogeneous spacetimes
- effective cosmological dynamics extracted (in full generality) from GFT fundamental dynamics

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)
- \quad steps towards realizing the scenario + extracting physics from GFT
- quantum GFT condensates ~ continuum homogeneous spacetimes
- effective cosmological dynamics extracted (in full generality) from GFT fundamental dynamics approximate FRW eqns in some regime (and some models)

Summary

- GFT is promising candidate formalism for quantum gravity

QFT for spin networks/simplices

- completion of spin foam models, possible incarnation of LQG programme
- \quad generalization of tensor models (same backbone + algebraic data)
- progressing fast (results in LQG/spin foams, tensor models + GFT renormalization +)
new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)
- steps towards realizing the scenario + extracting physics from GFT
- quantum GFT condensates ~ continuum homogeneous spacetimes
- effective cosmological dynamics extracted (in full generality) from GFT fundamental dynamics approximate FRW eqns in some regime (and some models)
derivation of cosmology from full QG formalism!

Outlook

Outlook

general goals of approach:

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom
key steps to make "emergent spacetime/geometrogenesis" scenario solid

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom
key steps to make "emergent spacetime/geometrogenesis" scenario solid prove existence of phase transition

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom
key steps to make "emergent spacetime/geometrogenesis" scenario solid
prove existence of phase transition
clarify nature of transition as condensation

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom
key steps to make "emergent spacetime/geometrogenesis" scenario solid
prove existence of phase transition
clarify nature of transition as condensation
physical cosmology from GFT

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models
prove renormalizability and asymptotic freedom
key steps to make "emergent spacetime/geometrogenesis" scenario solid
prove existence of phase transition
clarify nature of transition as condensation
physical cosmology from GFT

- details of effective cosmological equations for interesting (Lorentzian) GFT model

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom key steps to make "emergent spacetime/geometrogenesis" scenario solid prove existence of phase transition clarify nature of transition as condensation
physical cosmology from GFT

- details of effective cosmological equations for interesting (Lorentzian) GFT model
- corrections to FRW (and Bianchi IX) dynamics in semi-classical limit

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom key steps to make "emergent spacetime/geometrogenesis" scenario solid prove existence of phase transition clarify nature of transition as condensation
physical cosmology from GFT

- details of effective cosmological equations for interesting (Lorentzian) GFT model
- corrections to FRW (and Bianchi IX) dynamics in semi-classical limit anisotropies

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom key steps to make "emergent spacetime/geometrogenesis" scenario solid prove existence of phase transition clarify nature of transition as condensation
physical cosmology from GFT

- details of effective cosmological equations for interesting (Lorentzian) GFT model
- corrections to FRW (and Bianchi IX) dynamics in semi-classical limit anisotropies
inhomogeneities (fluctuations above condensate)

Outlook

general goals of approach:
clarify in detail/improve simplicial geometry of 4d gravity models prove renormalizability and asymptotic freedom key steps to make "emergent spacetime/geometrogenesis" scenario solid prove existence of phase transition clarify nature of transition as condensation

physical cosmology from GFT

- details of effective cosmological equations for interesting (Lorentzian) GFT model
- corrections to FRW (and Bianchi IX) dynamics in semi-classical limit anisotropies
inhomogeneities (fluctuations above condensate)
approach to singularity (phase transition)

Thank you for your attention!

