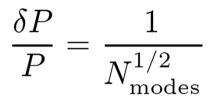
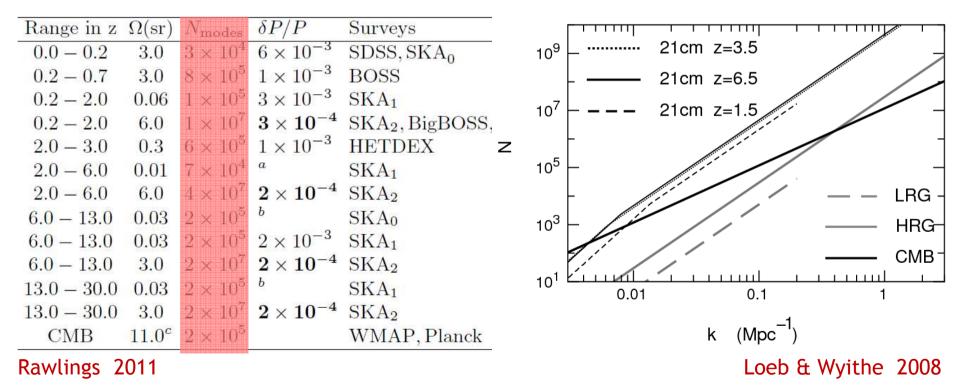

Light from the end of the tunnel: observational consequences of open and anisotropic inflation

Jens Niemeyer

Institute for Astrophysics Göttingen University Germany


The Cosmic Microwave Background (CMB): Things will never be this easy (linear, thermal, unbiased...) again



From surface to volume

Sampling variance gives fundamental limitation from observed number of modes:

 \rightarrow 3D (galaxies, hydrogen 21cm) superior to 2D (CMB)

Current and future galaxy surveys (selection)

SDSS III / BOSS (2009 - 2014):

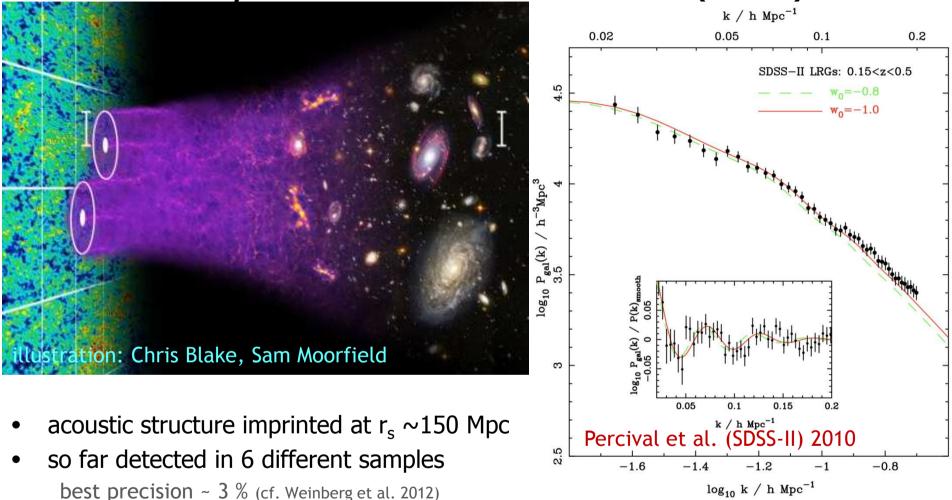
0.3 < z < 0.6 ; ~1.5 million luminous red galaxies
2.2 < z < 3 ; ~160,000 Lyman alpha forest quasar spectra

WiggleZ (done):

0.2 < z < 1 ; ~240,000 blue emission-line galaxies

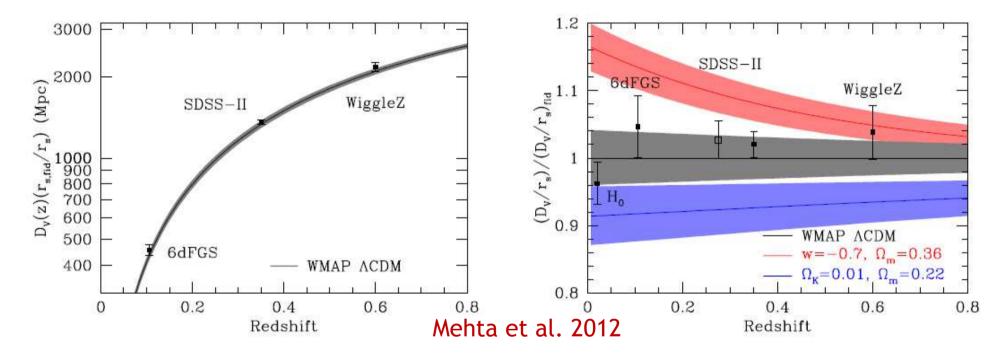
HETDEX (2013 – 2015):

1.9 < z < 3.5 ; ~0.8 million Lyman alpha emitters

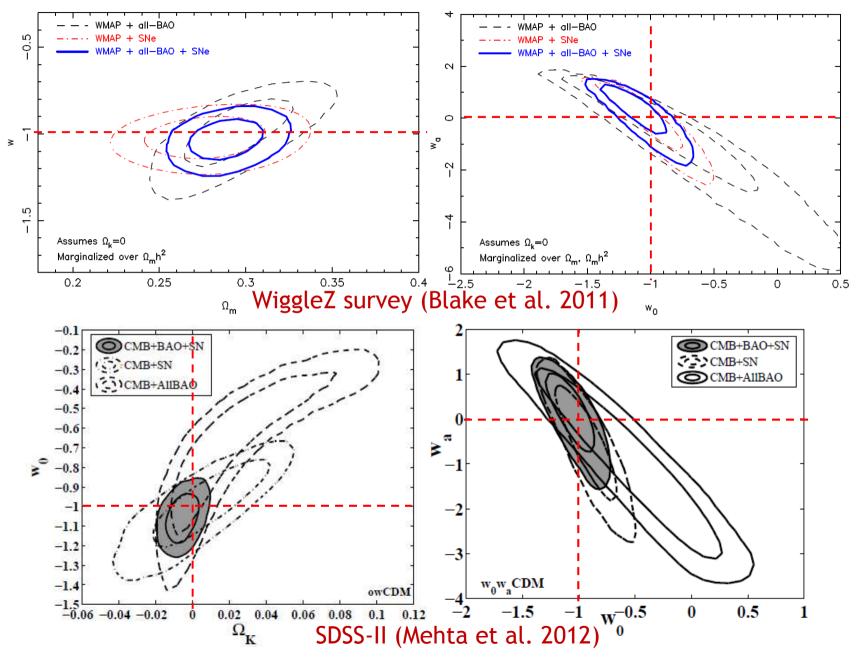

Pan-STARRS, DES, HSC, LSST, BigBOSS . . .

Euclid (~2019): 0.8 < z < 2 ; ~1.5 billion galaxies

Square Kilometer Array (~2020): HI-intensity mapping ; ~ 1 billion HI-galaxies at z < 6



Baryon acoustic oscillations (BAO)


- D_A(z)/r_s from angular direction, H(z)r_s from line-of-sight direction in Mpc, not Mpc h⁻¹ as supernovae
- only spherically averaged distance D_V ~ D_A^{2/3} H^{-1/3} used so far in the future, use full 2-D power spectrum (Shoji, Jeong & Komatsu 2008)

Consistency of sound horizon distances from CMB and BAO

Shaded regions are 1-sigma uncertainties in $\Omega_{\text{M}}h^2$ around WMAP ΛCDM measurements.

Current dark energy constraints from BAOs

What can we expect to learn?

"Prediction is very difficult, especially about the future." (Niels Bohr)

Cosmological constant vs. something else:

- so far, Λ fits all the data
- even if $w_a \neq 0$ etc. should be detected, there is no good reason to assume $\Lambda=0$, so Λ must still be included in the fits
- additional probe of modified gravity: linear growth factor G(a). GR predicts:

$$f_{\rm GR}(z) \equiv \frac{d \ln G}{d \ln a} \approx \Omega_M(z)^{\gamma} \quad , \quad \gamma \approx 0.55$$

- important to use many independent observables and redshifts
- is backreaction an issue?

Other interesting physics from large-scale structure:

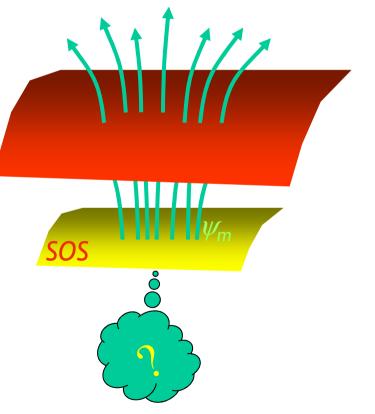
- neutrino masses, warm dark matter constraints
- non-vanilla inflation (primordial non-Gaussianities)
- ...

Inflation and QG phenomenology

Inflationary phenomenology is well protected against QG effects.

- 1. Initial state effects hidden beyond the horizon for N >> 60. Examples:
 - non-BD I: high-k excitations \rightarrow non-Gaussianities and/or oscillatory corrections to power spectrum
 - non-BD II: low-k effects from bubble geometry \rightarrow supercurvature perturbations
 - anisotropic initial conditions
 - a convincing case for detection will require non-zero curvature (i.e., N \sim 60) plus a unique combination of some of the above
 - \rightarrow need precise theory of initial conditions. Tunneling scenarios provide an example.
- 2. "trans-Planckian" effects. Popular classes of models:
 - boundary theories, either as initial state effect (see above) or on "new physics hypersurface"
 - nonlinear dispersion, modified uncertainty relations etc. strongly constrained by backreaction and adiabaticity (JN, Parentani '01)

Initial conditions in dynamical spacetimes


QFT in curved spacetimes: valid below cutoff $\rm M < M_p$, lives on smooth manifold

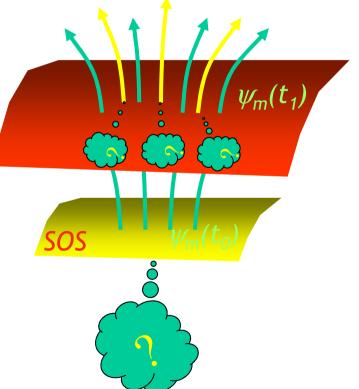
-initial cond.s for matter ψ_m assigned on "surface of semiclassicality (SOS)":

-gravity \rightarrow initial data needs to be arbitrarily densely spaced (density of d.o.f. infinite)

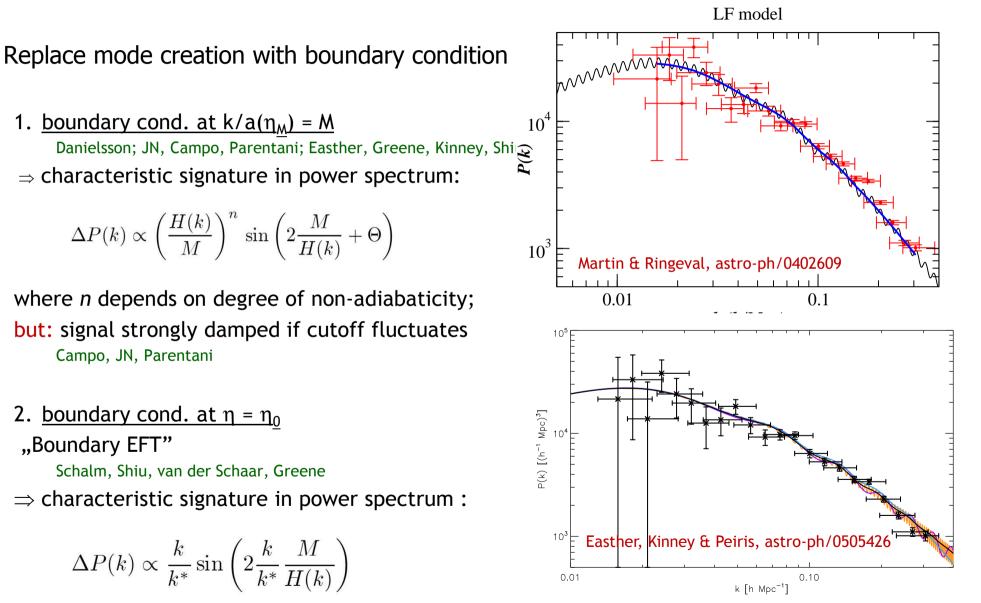
-Lorentz invariance for arbitrary boosts \rightarrow decoupling constrains choice of ψ_m (vacuum)

-Q: Can selection of SOS (and hence $\psi_{\text{m}})$ be described dynamically?

Initial conditions in dynamical spacetimes


What if LI is broken (or simply meaningless) for $I < M^{-1}$?

-SOS only well-defined for proper distances $> M^{-1}$

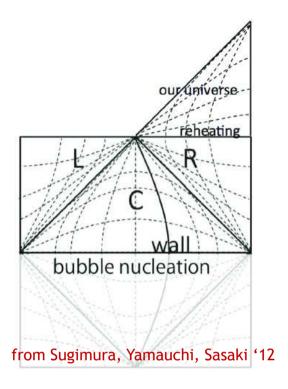

-gravity \rightarrow modes must be depleted or created (density of d.o.f. finite)

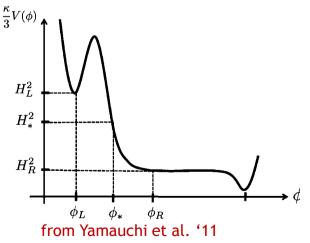
– $\psi_{\text{m}}(t)$ constrained by phenomenology (backreaction, particle production)

-<u>Q</u>: Can selection of SOS *and* $\psi_m(t)$ be described dynamically ("mode creation")?

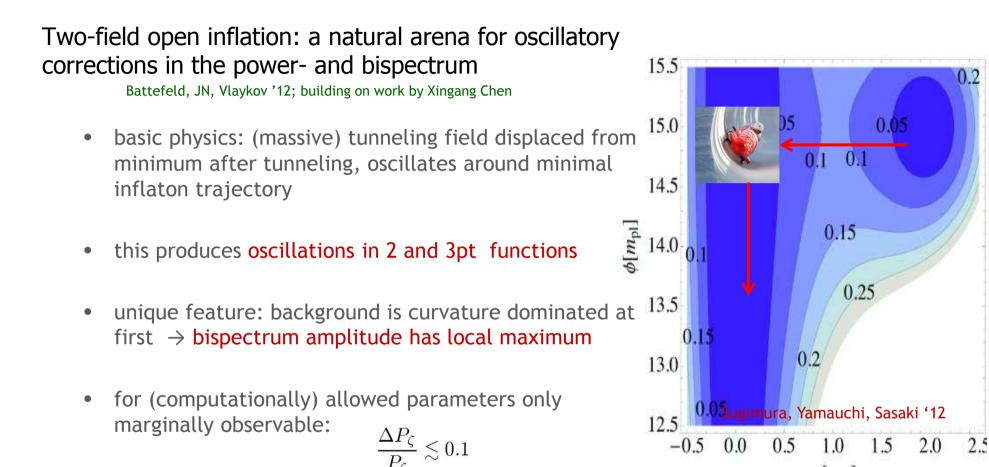
Boundary theories

Open Inflation


Introduced in the 90s to make inflation compatible with $\Omega_m \sim 0.3$


Linde, Sasaki, Tanaka, Yamamoto, Garcia-Bellido, Garriga, Montes, Lyth, Liddle,...

- false vacuum tunneling transitions produce bubbles of true vacuum with open homogeneous slices
- many models contain new, discrete "supercurvature modes" in their spectrum that originate from Cauchy data on the complete spacetime → amplitude sensitive to false vacuum scale:

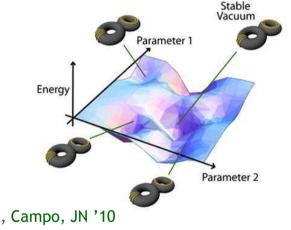

$$l(l+1) \, C_l^{
m sc} \propto H_F^2 \, \Omega_k^l$$

• single field models possible but need to be fine-tuned recently revisited by Vaudrevange, Westphal; Yamauchi, Linde, Naruko, Sasaki, Tanaka

Open Inflation

combination with supercurvature modes?

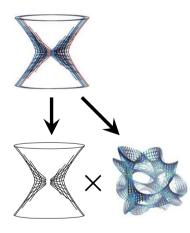
 $\sigma[m_{\rm pl}]$

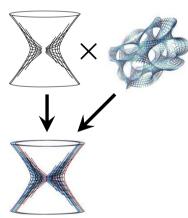

Beyond the 4D Landscape

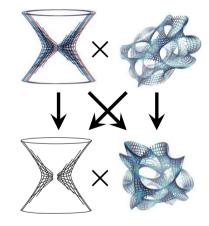
The standard string landscape is purely 4-dimensional

Transitions between vacua by means of Coleman-de Lucia type bubble nucleation + ensuing ("open") inflation

Cosmological transitions between vacua with different numbers of large dimensions:


- dynamical compactification Carroll, Johnson, Randall '09
- dynamical decompactification Graham, Harnik, Rajendran '10; Blanco-Pillado, Salem '10; Adamek, Campo, JN '10
- close relationship with pair creation of charged black holes Carroll, Johnson, Randall '09; Blanco-Pillado, Schwartz-Perlov, Vilenkin '10


The Shapeshifting Universe


More generally, large and small dimensions can exchange roles in tunneling vacuum transitions ("shapeshifting")

i.e., several of our large/small dimensions could have been small/large in our parent vacuum

compactification

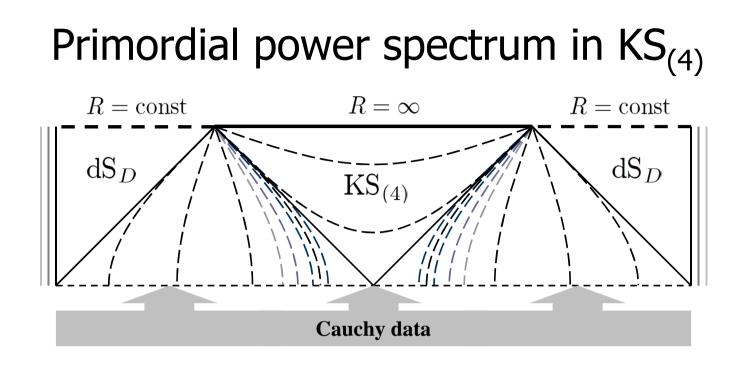
decompactification

shapeshifting

The Shapeshifting Universe

More generally, large and small dimensions can exchange roles in tunneling vacuum transitions ("shapeshifting")

i.e., several of our large/small dimensions could have been small/large in our parent vacuum


Example: creation of anisotropic Kantowski-Sachs spacetime Adamek, Campo, JN '10

schematically: $dS_D \times S_2 \times \mathcal{M}_d \longrightarrow KS_{(4)} \times \mathcal{M}'_{d+D-2}$

spatial topology of KS: $\mathbb{R} imes S_2$

alternative: decompactify 1 dimension \rightarrow Bianchi III ($H_2 \times S_1$) Blanco-Pillado, Salem '10

 \rightarrow fully specified anisotropic cosmology, look for signatures!

Consider test scalar field on KS₍₄₎ background:

- extend static region of dS_4 beyond horizon $\rightarrow KS_{(4)}$ foliation
- quantize, get positive frequency mode from regularity of Cauchy data
- compute power spectrum:

$$\mathcal{P} = \frac{H^2 \left| \Gamma \left(\frac{l+ik}{2} \right) \right|^2}{2 \left(k^2 + (l+1)^2 \right) \left| \Gamma \left(\frac{l+1+ik}{2} \right) \right|^2}$$

(l > 0)

CMB signatures

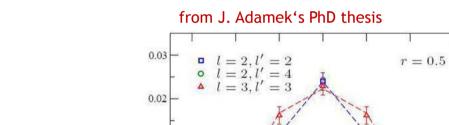
Main effect: quadrupolar distortion

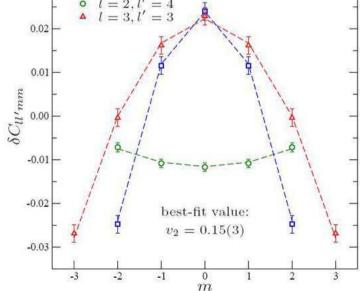
Corrections to correlation between multipole coefficients

$$\langle a_{lm} a_{l'm'}^* \rangle \propto \frac{H^2}{2\pi} \,\delta_{mm'} (\delta_{ll'} + \delta C_{ll'mm})$$

scale as

 $\delta C_{ll'mm} \propto \Omega_{k\perp}$


with the anisotropic curvature parameter


$$\Omega_{k\perp} = \frac{k_\perp}{a_\perp^2 H_\perp^2}$$

and

$$ds^{2} = -dt^{2} + a_{\perp}^{2} \left(\frac{dr^{2}}{1 - k_{\perp}r^{2}} + r^{2} d\phi^{2} \right) + a_{\parallel}^{2}(t) dz^{2}$$

However, anisotropic curvature would also produce an (unobserved) CMB quadrupole contribution of similar magnitude.

The weakest link in the CMB?

Scales larger than ~60 degrees look somewhat funny:

see Copi, Huterer, Schwartz, Starkman '10 for review and original references

- alignment of quadrupole and octopole with each other and perpendicular to the ecliptic and to the dipole
- 2-pt angular correlation function practically zero at angles > 60 degrees
- hemispherical and quadrupolar power asymmetry

The significance of these effects is disputed, but at the very least we do not live in a typical realization of the standard inflationary model.

The $KS_{(4)}$ model can account for the quadrupolar asymmetry if we ignore the quadrupole constraint on anisotropic curvature...

(to be continued)