
Off-shell loop quantum gravity

Martin Bojowald

The Pennsylvania State University

Institute for Gravitation and the Cosmos

University Park, PA

Off-shell loop quantum gravity – p. 1



Quantum gravity and the early universe

Expect large curvature: Higher-curvature effective action.

Quantum corrections in gravitational dynamics.

S =
1

16πG

∫
d4x
√

|det g|
(
R+ αR2 + βRabR

ab + · · ·
)

All possible covariant combinations of metric derivatives should
be present, with suitable coefficients.

Expected to be significant only at Planckian curvature/density.
Difficult to test observationally.

Gravity closely related to space-time structure:
Not just R may receive quantum corrections but also “d4x” or
nature of covariance and space-time tensors.
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Space-time structure

Usual arguments for higher-curvature corrections assume
standard space-time tensor calculus. May not be complete.

→ Correct form to be derived from given candidate of quantum
gravity.

→ Additional corrections may result, potentially more
significant than curvature terms.

→ Interesting candidates: background-independent ones.

Here: Loop quantum gravity
(although status of background independence unclear)

Canonically quantized and fully constrained:
Generalize standard methods for derivation of effective actions.

Off-shell loop quantum gravity – p. 3



Effective canonical dynamics

Parameterize state by expectation values 〈q̂〉 and 〈p̂〉 of basic
operators and moments

Ga,n = 〈(q̂ − 〈q̂〉)a(p̂− 〈p̂〉)n−a〉symm

(Includes mixed states.)

Commutator of operators determines Poisson bracket of
moments. (Symplectic space, but not after restriction to finite n.)

Expectation value of Hamiltonian, interpreted as function of 〈q̂〉,
〈p̂〉 and Ga,n, provides canonical equations of motion.

Effective equations: Correct classical equations for 〈q̂〉, 〈p̂〉 by
quantum back-reaction from moments.

[with A Skirzewski: math-ph/0511043]
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Quantum equations of motion

Anharmonic oscillator:

q̇ =
p

m

ṗ = −mω2q − U ′(q)−
∑

n

1

n!

(
~

mω

)n/2

U (n+1)(q)G̃0,n

˙̃Ga,n = −aωG̃a−1,n + (n− a)ωG̃a+1,n − a
U ′′(q)

mω
G̃a−1,n

+

√
~aU ′′′(q)

2(mω)
3

2

G̃a−1,n−1G̃0,2 +
~aU

′′′′

(q)

3!(mω)2
G̃a−1,n−1G̃0,3

−a
2

(√
~U ′′′(q)

(mω)
3

2

G̃a−1,n+1 +
~U

′′′′

(q)

3(mω)2
G̃a−1,n+2

)
+ · · ·

∞ly many coupled equations for ∞ly many variables.

Off-shell loop quantum gravity – p. 5



Low energy effective action

To second adiabatic order, as second order equation of motion:
(
m+ ~U ′′′(q)2

32m2ω5(1+U′′(q)

mω2 )
5
2

)
q̈

+
~q̇2

(

4mω2U ′′′(q)U ′′′′(q)
(

1+U′′(q)

mω2

)

−5U ′′′(q)3
)

128m3ω7(1+U′′(q)

mω2 )
7
2

+mω2q + U ′(q) + ~U ′′′(q)

4mω(1+U′′(q)

mω2 )
1
2
= 0 .

as it results from

Γeff [q(t)] =

∫
dt

(
1

2

(
m+

~U ′′′(q)2

25m2 (ω2 +m−1U ′′(q))
5

2

)
q̇2

−1

2
mω2q2 − U(q)− ~ω

2

(
1 +

U ′′(q)

mω2

) 1

2

)
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Higher time derivatives

Higher adiabatic order: [with S Brahma, E Nelson: arXiv:1208.1242]

q̈ = −ω2q − U ′(q)/m

− ~

2m2ω
U ′′′(q)

(
f(q, q̇) + f1(q, q̇)q̈ + f2(q)q̈

2 + f3(q, q̇) ˙̈q + f4(q)¨̈q
)

+ · · ·

where

f(q, q̇) = 1
2

(
1 + U ′′(q)

mω2

)−1/2
+ U ′′′′(q)q̇2

16mω4

(
1 + U ′′(q)

mω2

)−5/2
− 5(U ′′′(q))2q̇2

64m2ω6

(
1 +

−U ′′′′′′(q)q̇4

64mω6

(
1 + U ′′(q)

mω2

)−7/2
+ 21(U ′′′′(q))2q̇4

256m2ω8

(
1 + U ′′(q)

mω2

)−9/2

+7U ′′′′′(q)U ′′′(q)q̇4

64m2ω8

(
1 + U ′′(q)

mω2

)−9/2
− 231U ′′′′(q)(U ′′′(q))2q̇4

512m3ω10

(
1 + U ′′(q

mω2

+1155(U ′′′(q))4q̇4

4096m4ω12

(
1 + U ′′(q)

mω2

)−13/2
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Effective constraints

.5Α0 Α0-.5Α0-Α0

Α

.5Α0

Α0

-.5Α0

-Α0

pΑ

Dynamics by effective Hamiltonian 〈Ĥ〉(〈·〉,∆(·)) or effective

constraints 〈p̂olĈ〉(〈·〉,∆(·)).

→ Captures dynamics
of physical states.

→ Allows local internal times.
[arXiv:1009.5953]

[Figure from arXiv:0911.4950]

[Cosmological model in P Höhn, E Kubalova, A Tsobanjan: arXiv:1111.5193]
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Effective constraint algebras

Systems with several classical constraints CI :

→ Effective constraints CI,pol = 〈p̂olĈI〉(〈·〉,∆(·)) with p̂ol
polynomial in basic operators.

→ Compute effective constraint algebra by Poisson brackets.
Easier than commutators of operators. Parameterizable.

→ Check off-shell consistency of first-class constraints.

Example: Hamiltonian and diffeomorphism constraints obey
hypersurface-deformation algebra of classical space-time.

[S(~w1), S(~w2)] = −S(L~w2
~w1)

[T (N), S(~w)] = −T (~w · ~∇N)

[T (N1), T (N2)] = S(N1
~∇N2 −N2

~∇N1)
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Relevance of effective methods

→ “Big-bang state” largely unknown.
Consider generic states in effective parameterization.

→ Local internal times: Do not require artificial matter contents
such as free, massless scalar or dust.

→ No gauge-fixing or deparameterization required before
quantization:

Check off-shell consistency of constraint algebra and
corresponding space-time structure.
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Canonical gravity

Describe space-time geometry by su(2)-valued triad ~Ei and
connection A

→
i (canonically conjugate).

Triad: determines spatial distances/angles by three orthonormal
vectors ~Ei, i = 1, 2, 3, at each point in space.

Connection: A
→
i combination of different measures of curvature of

space. Ashtekar–Barbero connection.

Natural smearing of A
→
i along curves (holonomies) and ~Ei over

surfaces (fluxes). Creation operators to construct state space.

Spatial background independence.

In what follows, use U(1)-connection A
→

for simplicity.
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Loop quantum gravity

Holonomies he = exp(i
∫
e dλA→ · ~te) along curves e in space,

tangent ~te.

Start with basic state ψ0 by ψ0(A
→

) = 1.

Excited states:

ψe1,k1;...;ei,ki
(A
→

) = ĥk1
e1 · · · ĥ

ki

eiψ0(A
→

)

=
∏

e

he(A
→

)ke =
∏

e

exp(ike ∫
e
dλA

→

· ~te)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

h h1 2

["emptiest" space]
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Discrete Geometry

Derivative operator: Flux
∫
S d2yn

→

· ~̂E for surfaces S in space.

∫

S
d2yn

→

·~̂Eψg,k =
8πG~

i

∫

S
d2yn

→

· δψg,k

δA
→

(y)
= 8πℓ2Pl

∑

e∈g

keInt(S, e)ψg,k

with intersection number Int(S, e), Planck length ℓPl =
√
G~.

Discrete geometry: for gravity, flux represents spatial metric.
Scale ∼ ℓPl

√
ke state-dependent.

Spatially diffeomorphism invariant: sum over all deformed
graphs.

More tricky: Space-time covariance, Hamiltonian constraint.
Background independence often forsaken at this stage.
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Hamiltonian

Yang–Mills theory on Minkowski space-time:

H = κ

∫
d3x(| ~Ei|2 + | ~Bi|2)

for ~Bi = ∇
→

× A
→
i + CijkA

→
j × A

→
k (structure constants Cijk)

Gravity on any space-time:

H[N ] =
1

16πG

∫
d3xN

∑
ijk ǫijk(

~Bi × ~Ej) · ~Ek√
1
6 |
∑

ijk ǫijk(
~Ei × ~Ej) · ~Ek|

+ · · ·

with Cijk = ǫijk.

Implies characteristic corrections when quantized.
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Quantum corrections

−→ Inverse-triad corrections from quantizing [T Thiemann 1996]

{
A
→

i,

∫ √
|detE|d3x

}
= 2πGǫijk

~Ej × ~Ek√
|detE|

 0

 0.5

 1

 1.5
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(r)α

µ

r=1/2
r=3/4

r=1
r=3/2

r=2

flux eigenvalues

Automatic cut-off of
1/E-divergences.

−→ Higher-order corrections:
holonomies for ~Bi

−→ Quantum back-reaction
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Background independence?

Status of background independence in loop quantum gravity:

(+) No spatial background metric used to define states and
operators, summed over spatial diffeomorphisms.
Uniqueness of representation.

(−) Hamiltonian constraint quantized in much more messy way.

Modify classical expression by holonomy corrections
(quantum corrections mixed with regulator).

(−) Diffeomorphism constraint and Hamiltonian constraint
contain curvature of A

→
i, but treated differently.

(−) Off-shell algebra of Hamiltonian constraints often ignored.

[see also H Nicolai, K Peeters, M Zamaklar: hep-th/0501114]

Can this procedure result in any consistent space-time picture?
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Abhay’s curse

“In order to derive some physics, we must become less
rigorous!”

Actually, we must become much more rigorous.
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Off-shell closure (anomaly-freedom)

Consistency of off-shell constraint algebra has important
physical implications:

Requires detailed balance of correction terms in constraints.

Making sure that there is a consistent off-shell system can have
surprising consequences.

Overlooked when gauge fixed or time chosen in
deparameterized models. Standard procedure:
→ Choose simple matter field φ as internal time, often added

by hand as artificial matter ingredient.
→ Solve classical constraints for momentum pφ.

→ Quantize p̂φ and solve quantum evolution with respect to φ.

→ Conveniently forget asking whether “predictions” depend on
choice of time.
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Background dependence

Using partial classical solutions, fixing the gauge or
deparameterizing before quantization could lead to correct
results, but unlikely.

→ Only a certain combination of classical constraints is
quantized, the rest solved or eliminated classically.

→ Quantization complete only when one can show that
predictions do not depend on chosen gauge fixing or
internal time. Difficult!

→ Background independence often emphasized when it
comes to space, but ignored when time is to be included.

→ Worry about energy conservation.
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Energy conservation

[with M Kagan, G Hossain, C Tomlin: arXiv:1302.5695]

N
√
deth∇µT

µ
0 = −N ∂Hmatter

∂t
−Na∂Dmatter

a

∂t

+L ~N
Cmatter[N,N

a] +
∂hab
∂t

δHmatter

δhab

+∂b

(
N2habDmatter

a + 2N chba
δHmatter

δhac

)

Classical off-shell algebra: ∂Hmatter/∂t = {Hmatter,H[N,Na]}
cancels ∂a(N2Dmatter

a ), only one term from ∂bT
b
0.

→ Deformed algebra cannot be taken care of by modified
coefficients in ∇µT

µ
ν = 0.

→ No energy conservation if off-shell algebra broken
(or unchecked in gauge-fixed/deparameterized models).
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Big-bang singularity

Does loop quantum cosmology
“replace the big-bang singularity by a quantum bounce”?

Difference equation for wave function of the universe:

C+(µ)ψµ+1 − C0(µ)ψµ + C−(µ)ψµ−1 = Ĥmatter(µ)ψµ

Holonomy corrections: strong at nearly Planckian density.

Replace Hubble parameter H by sin(ℓH)/ℓ in modified
Friedmann equation

sin2(ℓH)

ℓ2
=

8πG

3
ρ

Effective picture in simple models: bounce.
Exact for free, massless scalar in spatially flat isotropic universe.
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High density

Holonomy corrections relevant near Planckian density if ℓ ∼ ℓP.

Higher-curvature corrections large in the same regime: ρ/ρP.

Higher time derivatives contribute to homogeneous models,
interfere with holonomy corrections.

Complete expansion

sin2(ℓH) =

∞∑

n=1

cn(ℓH)2n

used in bounce models.
All higher higher-curvature corrections (comparable to
n = 2-terms) are ignored.

[Details: arXiv:1209.3403]
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Harmonic cosmology

→ Deparameterize free, massless scalar:
holonomy-modified Hamiltonian linear in non-canonical
variables V , J = V exp(iℓH). Linear algebra.

→ Upon quantization, expectation values do not couple to
fluctuations and higher moments. (Specific factor ordering.)

→ 〈V̂ 〉(φ) ∼ V0 cosh(φ− φ0), constant ∆V/〈V̂ 〉.
Volume fluctuations decrease exponentially toward bounce.
Gaussian state: curvature fluctuations increase
correspondingly.

[gr-qc/0608100; reproduced in arXiv:0710.3565 (Ashtekar, Corichi, Singh)]

Anharmonic: curvature fluctuations important for quantum
back-reaction.

Complicated analysis required. Corrections depend on state.
(Near-vacuum assumed for anharmonic oscillator.)
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Quantum back-reaction in cosmology

Fluctuations important moments to leading order, but play role
different from usual statistical one.

Cosmological constant in addition to free, massless scalar,
H = V

√
H2 − Λ.

Linear in V , thus no ∆V in (WdW) effective equations

d〈Ĥ〉
dφ

= −
√

〈Ĥ〉2 − Λ +
1

2
Λ

(∆H)2

(〈Ĥ〉2 − Λ)3/2
+ · · ·

d〈V̂ 〉
dφ

=
〈V̂ 〉〈Ĥ〉√
〈Ĥ〉2 − Λ

+
3

2
Λ
〈V̂ 〉〈Ĥ〉(∆H)2

(〈Ĥ〉2 − Λ)5/2
− Λ

∆(VH)

(〈Ĥ〉2 − Λ)3/2
+ · · ·

Can make ∆V large without affecting dynamics much
(until other moments increase).
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Bounce
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Dispersion

[Talk by Abhay Ashtekar in Erlangen, 2012]
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Bounce?

No evidence for bounce in anything but the simplest models.

Restricted not just by symmetry but also, and crucially, by matter
ingredients.

→ Usual matter choice (for deparameterization) eliminates
quantum back-reaction, too restrictive.

→ Symmetry eliminates control on space-time structure.

Homogeneous models trivialize the constraint algebra,
crucial issues overlooked.

Need realistic matter and at least perturbative inhomogeneity to
obtain propagation equations and see if structure evolves
through high density (bounce or otherwise).
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Deformed deformations

−→ Inverse-triad corrections in Hamiltonian

1

16πG

∫
d3xNα

ǫijkF
i
abE

a
jE

b
k√

|detE|
+ · · ·

−→ Poisson-bracket algebra modified.
Deform but do not violate covariance:

[S(~w1), S(~w2)] = −S(L~w2
~w1)

[T (N), S(~w)] = −T (~w · ~∇N)

[T (N1), T (N2)] = S(α2(N1
~∇N2 −N2

~∇N1))

[with G Hossain, M Kagan, S Shankaranarayanan: arXiv:0806.3929]

Off-shell loop quantum gravity – p. 28



Cosmological perturbation equations

[with G Calcagni: arXiv:1011.2779]

Dynamics of density perturbations u, gravitational waves w:

−u′′ + s(α)2∆u+ (z̃′′/z̃)u = 0

−w′′ + α2∆w + (ã′′/ã)w = 0

Different speeds for different modes: corrections to
tensor-to-scalar ratio.

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

(r)α

µ

r=1/2
r=3/4

r=1
r=3/2

r=2

Do not need high density.

Crucial for falsifiability:
α− 1 large for small lattice spacing.

Two-sided bounds on
discreteness scale.
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Scalar mode

−u′′ + s(α)2∆u+ (z̃′′/z̃)u = 0 [with G Calcagni, S Tsujikawa 2011]

ε
V
 (k

0
)

δ 
(k

0)

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

10−8 < δ = α− 1 < 10−4

much closer than
ℓP and ℓH
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Holonomy corrections

Hypersurface-deformation algebra with pointwise holonomy
corrections: H −→ ℓ−1 sin(ℓH) in perturbative cosmology.

Incomplete: Corrections in series expansion cannot be
separated from higher space and time derivatives. (R ∼ ∂Γ+Γ2)

[S(~w1), S(~w2)] = −S(L~w2
~w1)

[T (N), S(~w)] = −T (~w · ~∇N)

[T (N1), T (N2)] = S(β(N1
~∇N2 −N2

~∇N1))

with β = cos(2ℓH) < 0 at high density.
β = −1 at maximal density (maximum of sin(ℓH), “bounce”).

[J Reyes 2009; A Barrau, T Cailleteau, J Grain, J Mielczarek 2011]
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Signature change

β ≈ −1 at high density.

Space-time signature Euclidean. [with G Paily: arXiv:1112.1899]

t∆c

v/c

Minkowski geometry Euclidean geometry
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Ill-posed bounce

Bounce models require high density, where signature turns
Euclidean.

→ Quantum space-time: no metric/line element, but deformed
constraint algebra determines space(-time) structure.

→ Physical consequence: elliptic rather than hyperbolic partial
differential equations for physical modes.

No deterministic evolution. No initial-value problem.
→ Signature change not a consequence of small

inhomogeneity:
Inhomogeneity only used to probe space-time structure
because homogeneous models are too restrictive.

→ Does not rely on subtleties of perturbation theory:
Same effects in spherically symmetric models.
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Conclusions

Big bounce blunder:
→ Wrong background evolution except for special cases,

ignoring higher time derivatives.
→ In models where the unperturbed background seems to

bounce, it does not evolve deterministically.

Off-shell constraint algebra is important.

Recent results for operators encouraging and fully consistent
with effective calculations.

[A Perez, D Pranzetti: arXiv:1001.3292]

[A Henderson, A Laddha, C Tomlin: arXiv:1204.0211, arXiv:1210.3960]

[C Tomlin, M Varadarajan: arXiv:1210.6869]

Quantum corrections of covariance promising observationally.
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