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Quantum Gravity as (Large) Random Geometry

Quantizing Gravity ' Randomizing Geometry ?

Z '
∫

Dg e
∫

SEH (g)

But what is the measure Dg? On which underlying space-time? Should one
also sum on topologies? How to relate quantum gravity to classical space and
time as we know them?
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Probability and Enumerative Combinatorics

The tensor track is an ab initio approach to quantum gravity. best described as
an extension of random matrix theory and a reformulation of dynamical
triangulations.

It proposes to use mathematics from quantum field theory, geometry,
probability theory and enumerative combinatorics.

In probability theory careful counting is critical.
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Random Spaces

Right now (2013) probabilists know only two universal non-trivial large random
spaces:

The Continuous Random Tree (Aldous, ' 1990

The Brownian Sphere (come also as Brownian plane or as fixed genus
Riemann surface version)

The second space can be thought of as made of a non trivial ”quantum field”
living on the first.
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The Continuous Random Tree

Plane trees are quite universal. The number of plane trees with n edges is the

Catalan number Cn = 1
n+1

(
2n
n

)
.

The 5 plane trees at n = 3

The equidistributed measure on plane trees converges (in Gromov-Hausdorff
sense) to a universal object as n→∞, namely the CRT.
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Main Properties of the Continuous Random Tree

The Harris (or Dyck) Walk of a CRT is exactly a Brownian excursion
quotiented by an equivalence relation.

The number ku(t) is interpreted as the “number of children” of u in t.
We denote by A the set of all rooted ordered trees. In what follows, we see each vertex

of the tree t as an individual of a population whose t is the family tree. The cardinality
#(t) of t is the total progeny.

We will now explain how trees can be coded by discrete functions. We first intro-
duce the (discrete) height function associated with a tree t. Let us denote by u0 =
∅, u1, u2, . . . , u#(t)−1 the elements of t listed in lexicographical order. The height function
(ht(n); 0 ≤ n < #(t)) is defined by

ht(n) = |un|, 0 ≤ n < #(t).

The height function is thus the sequence of the generations of the individuals of t, when
these individuals are listed in the lexicographical order (see Fig.1 for an example). It is easy
to check that ht characterizes the tree t.
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Figure 1

The contour function (or Dyck path in the terminology of [31]) gives another way of
characterizing the tree, which is easier to visualize on a picture (see Fig.1). Suppose that
the tree is embedded in the half-plane in such a way that edges have length one. Informally,
we imagine the motion of a particle that starts at time t = 0 from the root of the tree and
then explores the tree from the left to the right, moving continuously along the edges at unit
speed, until it comes back to its starting point. Since it is clear that each edge will be crossed
twice in this evolution, the total time needed to explore the tree is ζ(t) := 2(#(t) − 1). The
value Ct of the contour function at time t is the distance (on the tree) between the position
of the particle at time t and the root. By convention Ct = 0 if t ≥ ζ(t). Fig.1 explains the
definition of the contour function better than a formal definition.

We will introduce still another way of coding the tree. We denote by S the set of all
finite sequences of nonnegative integers m1, . . . , mp (with p ≥ 1) such that

• m1 + m2 + · · · + mi ≥ i , ∀i ∈ {1, . . . , p − 1};

4

In physics, the CRT is also called a branched polymer.

dHausdorff = 2, dspectral=4/3.
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Quelques notions
� Enracinement : Choix d’une arête orientée.

� Triangulations, quadrangulations, p-angulations : Toutes
les faces ont degré 3, 4, p...

Figure : Une quadrangulation enracinée (→) avec 7 faces
Rooted planar quadrangulations are simple objects

Les quadrangulations
Ce sont les cartes les “plus simples” à énumérer.
On notera dans la suite Qn = { quadrangulations à n faces }.
Les quadrangulations à n faces sont en bijection avec les cartes
générales à n arêtes :

They are quite universal...
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Rooted planar quadrangulations are simple objects

Les quadrangulations
Ce sont les cartes les “plus simples” à énumérer.
On notera dans la suite Qn = { quadrangulations à n faces }.
Les quadrangulations à n faces sont en bijection avec les cartes
générales à n arêtes :

They are quite universal...
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Counting Planar Graphs à la Tutte (1963)

Qn= number of rooted planar quadrangulations with n faces

Adding boundaries Tutte found in 1963 a quadratic recursive equation (à la
Polchinski),

Décomposition récursive
On forme une décomposition récursive en effaçant l’arête racine.

= +

Figure : Décomposition récursive des cartes

Problème : Après effacement de l’arête racine la nouvelle carte
n’est pas forcément une quadrangulation, mais une
quadrangulation à bord.
Solution : On forme la série génératrice des quadrangulations à
bord

Q(x , y) = ∑
quad à bord

x facesybord.

and solved it, getting:

Qn = 3n 2

n + 2

1

n + 1

(
2n
n

)
.
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Problème : Après effacement de l’arête racine la nouvelle carte
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Problème : Après effacement de l’arête racine la nouvelle carte
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Counting Planar Graphs à la ’tHooft and Brezin-Itzykson-Parisi-Zuber (1978)

Why planar quadrangulations?

QFT answer: because they are dual to the Feynman graphs which dominate
the 1/N expansion of a matrix model...

1. Comptons les cartes
1.2 À la ’t Hooft + BIPZ

Z =

∫
dM exp(−1

2
TrM2 +

λ

N
TrM4)

=
∑
n,g

an,gλ
nN2−2g
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The Cori-Vauquelin-Schaeffer Map

The connection with random metrics and their (random) geodesics remained
obscure. Recent progress came from better combinatoric counting.

(n + 2)Qn = 2 · 3nCn, .

There exists a two-to-one map between rooted pointed planar quadrangulations
with n faces and well-labeled plane trees with n edges.
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The Cori-Vauquelin-Schaeffer Map

Recette :
Ajouter un sommet ∂ en
dehors de l’arbre.
- Faire le contour de
l’arbre et relier chaque
coin d’étiquette i au
prochain coin dans le
contour d’étiquette i − 1,
- Si i est d’étiquette mi-
nimale, relier à ∂.
- Orienter la première
arête dessinée avec le
pile-face.

0

1

0

−1

−2

−2

−2

−1
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2D Random Geometry à la Le-Gall-Miermont

2. La géométrie des cartes
planaires aléatoires

2.1 À la Le Gall-Miermont

Theorem (Le Gall, Miermont (2007-2011)

Equidistributed planar quadrangulations of order n converge after rescaling the
graph distance by n−1/4 (in the Gromov-Hausdorff sense), towards a universal
random compact space, called the brownian 2-sphere.

This space has Hausdorff dimension 4 and is almost surely homeomorphic to
the two-dimensional sphere. It is expected to have spectral dimension 2.
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A Look at Large Random Quadrangulations

The Probabilist’s View: The Brownian Snake, Head on
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A Look at Large Random Quadrangulations

The Probabilist’s View: The Brownian Snake, Part Profile
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A Look at Large Random QuadrangulationsUne grande quadrangulation

The Topological View
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A Look at Large Random Quadrangulations

Landing on the Brownian sphere
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A Look at Large Random QuadrangulationsPériode bleue

Artist’s view in 3D (Courtesy: Marckert)
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A Look at Large Random Quadrangulations

Zoom

Uniformized Through Riemann Mapping Theorem
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A Look at Large Random Quadrangulations

Zoom (image de M. Krikun)

Using the Circle Packing Theorem (Courtesy: Krikun)
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A Look at Large Random QuadrangulationsÇa ressemble hein ? (Image de Duplantier-Sheffield)

Figure 3: Analog of Figure 1 with γ = 1.5, using the same instance h of the GFF.

11

The Liouville Theory (Courtesy: Duplantier)
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2D Random Geometry à la KPZ-DDK-DS (1984-2011)

2. La géométrie des cartes
planaires aléatoires

2.1 à la gravité quantique

There exists a relationship between critical exponents x and ∆ of matter on a
fixed (x) and on a random (∆) geometry.

x =
γ2

4
∆2 + (1− γ2

4
)∆

The matter type is characterized by a number γ ∈ [0, 2[, related to the
Schramm-Loewner evolution parameter κ through γ =

√
min(κ, 16/κ), and to

the central charge c = (8−3κ)(κ−6)
2κ

(for Ising, c = 1/2, κ = 3, γ =
√

3).
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Lessons to draw

2d Random geometry can be based on the careful counting of large
triangulations or on the continuum (Liouville) picture. The two pictures should
be equivalent, but the first one is particularly convincing from a conceptual
point of view.

Random 2d planar geometry can be interpreted as trees or branched polymers
equipped with fluctuation fields (the labels). These fields generate space-time
shortcuts which change the Hausdorff dimension from 2 to 4.

Yes, pure 2d quantum gravity is topological, but there is much more in it.
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Colored Triangulations

Any d-dimensional triangulation uniquely defines a (d + 1) vertex-colored
triangulation, its barycentric subdivision.

The dual graph is an edge colored graph (Lins, Crystallization theory).
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Random Tensors

Vector Models are probability measures for random vectors of size N.

Matrix models are probability measures for N by N random matrices M.

Tensor models are probability measures for tensors of higher rank D > 2, with
eg ND coefficients.

Universal properties when N gets large stem from the existence of a 1/N
expansion.

There is an algebraic link between random (unsymmetrized) tensors of rank D
and D + 1 colored triangulations, namely classical invariant theory.
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Classical Invariants

Polynomial U(N)⊗D invariants for pairs of rank D (unsymmetrized)
complex-conjugate tensors are linear combinations of amplitudes associated to
D-regular bipartite colored graphs.

Tensor Invariants

Matrix InvariantsVector Invariants
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Invariants, II

The algebraic invariants associated to the vector and matrix drawings are

Tensor Invariants

Matrix InvariantsVector Invariants

=
∑

i φ̄iφ
i

Tensor Invariants

Matrix InvariantsVector Invariants

=
∑

i,j,k,l M̄ij M
ik M̄lk M lj = Tr [ M†MM†M ]

Vincent Rivasseau Emergent Space-Time, The Random Geometry Perspective



Introduction
Enumerative Combinatorics and Geometry in Two Dimensions

Random Geometry in Higher dimensions
Tensor Group Field Theories

Conclusion

Invariants, III

The algebraic invariants associated to the tensorial drawings are

Tensor Invariants

Matrix InvariantsVector Invariants

=
∑

i,j,k,l,m,n,p,q,r T̄ijpT ikqT̄lkqT lmr T̄nmr T njp

Tensor Invariants

Matrix InvariantsVector Invariants

=
∑

i,j,k,l,m,n,p,q,r T̄ijpT ikqT̄lkqT lmpT̄nmr T njr

and so on...
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Random Vectors and Matrices

iid random vectors have a Gaussian limit as N →∞ (eg in the sense of
the central limit theorem);

invariant random vector models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by bubble chains;

iid (centered) random matrices such as GUE have a Gaussian limit as
N →∞, and the invariant observables such as eigenvalues converge to the
Wigner-Dyson distribution;

invariant random matrix models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by planar graphs;

until recently there was no corresponding expansion for tensors of rank
≥ 3.
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Random Tensors

Random tensors are best analyzed using unsymmetrized colored models. These
models

triangulate pseudo-manifolds (Gurau, 2010)

admit a 1/N expansion (Gurau 2010), whose leading graphs, called melons
triangulate only spheres in any dimension (Gurau, R., 2011)

have computable phase transitions (Bonzom, Gurau, Riello, R. 2011) to a
leading melonic phase of branched polymers (Gurau, Ryan, 2013)

Matter fields can be included (Bonzom et al)

In short: the theory of U(N)⊗D -invariant random tensors is universal
(Gurau 2011; Bonzom, Gurau, R. 2012), and different from the theory of
random matrices.
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Melonic Graphs

Melonic graphs are trees (branched polymers) without random labels. But we
know that a rich structure of labels hides in the sub-melonic contributions,
because random tensors in particular include all random matrix models.
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Models/Field Theories

One could distinguish

Invariant models, with an action fully invariant under U(N)⊗D . These are
the analogs of ultralocal quantum field theories.

Field theories, which have invariant interactions but a propagator which
softly break this invariance. This breaking launches their renormalization
group flow, just like the soft non-locality of the propagator launches
ordinary renormalization group flow in ordinary quantum field theory.
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Renormalization

All standard model interactions (except gravity, until now....) are
renormalizable

Renormalizability is approximate scale invariance over many scales

Renormalizable (marginal) interactions are the natural ones for physics
because they survive long RG flows

There exist renormalizable tensorial field theories (Ben Geloun, R, 2011).

More recently we have found how to renormalize Boulatov-type tensorial
group field theories (Carrozza, Oriti, R. 2012), building a link between
tensorial theory and spin foam amplitudes.
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Building Rules

What could be the natural building rules for general field theories of tensors?

Replace rotation and translation invariance by color permutation symmetry

Replace locality by tensor invariance (use invariant interactions, but not
invariant propagator)

Natural propagator in group space: Laplacian, possibly with GFT projector

Replace clustering by decay of correlation functions in the number and
type of the boundary components (external legs)
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SU(2) Boulatov-type Model

The 3 dimensional theory with SU(2) group and Boulatov-projector is
renormalizable with φ6 type interactions (Carrozza, Oriti, V. R.)

It is expected to be asymptotically free (work in preparation)

It corresponds to a quantization of the B − F action

In the deep ultravilet limit its amplitudes are asymptotic to those of the
Boulatov model.
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Asymptotic Freedom

Standard model interactions (except gravity, until now....) are essentially
asymptotically free

Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.

Vincent Rivasseau Emergent Space-Time, The Random Geometry Perspective



Introduction
Enumerative Combinatorics and Geometry in Two Dimensions

Random Geometry in Higher dimensions
Tensor Group Field Theories

Conclusion

Asymptotic Freedom

Standard model interactions (except gravity, until now....) are essentially
asymptotically free

Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.

Vincent Rivasseau Emergent Space-Time, The Random Geometry Perspective



Introduction
Enumerative Combinatorics and Geometry in Two Dimensions

Random Geometry in Higher dimensions
Tensor Group Field Theories

Conclusion

Asymptotic Freedom

Standard model interactions (except gravity, until now....) are essentially
asymptotically free

Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.

Vincent Rivasseau Emergent Space-Time, The Random Geometry Perspective



Introduction
Enumerative Combinatorics and Geometry in Two Dimensions

Random Geometry in Higher dimensions
Tensor Group Field Theories

Conclusion

Asymptotic Freedom

Standard model interactions (except gravity, until now....) are essentially
asymptotically free

Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.

Vincent Rivasseau Emergent Space-Time, The Random Geometry Perspective



Introduction
Enumerative Combinatorics and Geometry in Two Dimensions

Random Geometry in Higher dimensions
Tensor Group Field Theories

Conclusion

Enumerative Combinatorics in 3D and 4D

Until now it seemed difficult to find analogues of CVS map in 3D. Even the
Gromov conjecture is unproven today.

Gromov Conjecture: The number STn of triangulations of the sphere with n
tetrahedra is exponentially bounded in n:

STn ≤ K n (1)

Random tensors could bring new ideas there. Goal: define and study the
random 3d and 4d sphere...
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Uniformization in 3D

The transfer to a non-diffeo-invariant reference frame (eg a fixed sphere) is an
essential step in understanding quantum gravity. It requires some form of
uniformization.

Uniformization in 3D is possible thanks to the works of Thurston, Hamilton
and Perelman.
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Conclusions

• Random Geometry in higher dimensions might be better understood
analytically through the use of random tensors and colored triangulations.

• Associated renormalizable tensor field theories exist, are typically
asymptotically free hence point towards the generic presence of phase
transitions.
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Suggestions

To quantize gravity this suggests

no need for supersymmetry

no need for Kaluza-Klein dimensions

no need for any ultraviolet cutoff at Planck scale
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Suggestions

In cosmology, no results yet. However the approach suggests

nothing bounced at the ”big bang”

nothing banged at the ”big bang”

our universe condensed into birth through a cascade of several geometric
phase transitions. The first one generated a primitive space-time of the
branched polymer kind. This space was rounded later by further RG
evolution.

Quantum Gravity should induce KPZ-like effects on cosmic data
Λ ' 10−122 and
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Beyond space and time

Quantum gravity is diffeo-invariant but we are not.

There should be measurable consequences of quantum gravity.

Beyond time and space, there could be still physics. A more abstract
renormalization group could govern this physics of our universe in its
pregeometric phases.

Thank you for your attention!
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A Citation

The Ricci flow has also been discussed in quantum field theory, as an
approximation to the renormalization group (RG) flow (...)
While my background in quantum physics is insufficient to discuss this on a
technical level, I would like to speculate on the Wilsonian picture of the RG flow
(...) To compute something on a lower energy scale one has to average the
contributions of the degrees of freedom corresponding to the higher energy
scale. (...)
Note that we have a paradox here: the regions that appear to be far from each
other at larger distance scale may become close at smaller distance scale;
moreover, if we allow Ricci flow through singularities, the regions that are in
different connected components at larger distance scale may become
neighboring when viewed through microscope.
Anyway, this connection between the Ricci flow and the RG flow suggests that
Ricci flow must be gradient-like; the present work confirms this expectation.

Perelman, arXiv 0211159, 2002
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