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What are spin foams!?

epath integral approach related to loop quantum gravity

View point here:
Spin foams are a class of (quantum statistical) models, generalizing lattice gauge theories.

Nice result: Semi-classical limit with large building blocks reproduces Regge action.
[Barrett and many others for different models] [Recently:issues pointed out by Hellmann, Kaminski ’12]

Open question: Continuum limit?
Do we obtain smooth 4D manifold on large scales!?
Do we regain diffeomorphism symmetry (Lorentz invariance)?




What are spin foams?

epath integral approach to quantum gravity:
*sum over geometric data associated to triangulations
ofirst order action: geometry encoded in connection (group) variables
edual variables: spin (SU(2) representation) labels

emodels can be understood as generalized lattice gauge theory




3d and 4d actions

geom ~ metric ~ (n-beine, connection A)

curvature of A

/

Plebanski action in 4d Seda = /B AN+ ¢BAB 7 B ~x(eAe)
simplicity
(Lie algebra valued) d-2 form Lagrange constraints
multiplier
first order action in 3d Sy = /B AF , B~ e
BFtheory SBF — /B/\F F=0 , DsB =0

topological field theory

Yang Mills in first order Svvy = /B N F + QQB N xB
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Lattice gauge theory

lattice gauge theory:

ZNZwahf

coon® 7| N\ g

variables face weight holonomy
at edges (class function)

zero coupling
BF (topological) theory

standard lattice gauge theory: w0 ( h)
idynamics encoded in face weights !

exp(—SYM(h))<— |

'\

needs lattice metric for
construction (for instance
heat kernel action)

| const. —

1

strong coupling limit
(degenerate phase /no
geometry vacuum)

We have to introduce another principle to allow for non-flat face holonomies.




Spin foams as generalized lattice gauge theory

[Bahr, BD, Hellmann, Kaminski ’12]
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Allows face holonomy h¢ = gyeger' Gu’e’ Gerv - -+ to be non-flat even for wy = dg.

Choice of E-function determines the model (dynamics). Implements simplicity constraints.

Almost all current spin foam models can be expressed in this way.




Dimensional reduction

4D lattice gauge theories =l 2D Ising like models
(gauge symmetry = global symmetry)




Spin foams
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2D Ising like models
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Analogue model building | tomake numerical

simulations feasible

[Bahr, BD,Ryan 'l |, BD, Eckert, Martin-Benito ’| 1]

Spin foams = generalized lattice gauge theories

dimensional reduction
hope: statistical properties similar

Spin nets = generalized Ising like models

replace rotation group with
finite group

future:
with quantum groups

Spin net state sum is now a finite sum.

Despite simplifications we can still aim to understand influence of simplicity constraints on dynamics.
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Main question

elattice gauge theory phases:

weak coupling (deconfining) strong coupling (confining)
\ > \
‘topological’ phase degenerate geometry phase

(perturbation around BF)

*spin foams: generalization of standard lattice gauge theories:
higher dimensional phase space parametrized by (simplicity constraint function) E-function

Are there additional phases in spin foams?  Phase transitions!?

*hoping that 4D lattice gauge theory - 2D edge model correspondence generalizes:

Are there additional phases in spin nets! Phase transitions!?

How far can we go with simulation?
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Remarks

*Spin foams are  NOT Wick rotated: real time path integral
*a priori cannot use (standard) Monte Carlo simulations
*is there a conformal factor problem?

echoice of Euclidean or Lorentzian signature metrics encoded in symmetry (rotation) group

ebut: path integral does in general not lead to unitary transfer operators
erather: projection operators (on simplicity constraints and on diffeo and Hamiltonian constraints)

*(surprising) fact:
*for some models (Barrett-Crane) and in some representations amplitudes are nevertheless
real or even positive
*Monte Carlo simulations (mostly test face weights) [Baez, Christensen, Khavkine et al ‘00s] revealed
fast convergence to either confining or deconfining phase

We are looking for a method applicable for general models.
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Real space coarse graining

egives effective dynamics at different scales (needs to be defined in quantum gravity)

eproblem: real space renormalization methods have been very restricted [Migdal-Kadanoff 70s]
eproliferation of non-local couplings
etruncations not under control

*in the last years new developments in condensed matter/ quantum information
edensity matrix renormalization [White92,...]
*matrix pI’OdUCt states [Cirac,Verstraete,... 04+ ]
etensor network renormalization [ Levin, Nave '06, Gu,Wen '09 ]
eentanglement renormalization [Vidal 07+]
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Coarse graining with tensor network methods

[Levin & Nave, Gu & Wen,Vidal ...’06+]

[BD, Eckert, Martin-Benito, New. . Phys.’| I]

[BD, Laurie v. Massenbach, Martin-Benito, w.i.p.]
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Coarse graining state sums: splitting the sum

effective amplitude
includes sum over

amplitude function finer field variables

v v
Z = Yaw) = Y Y W) = YW
(o U o B(y)=V Y

1

coarse field variables  blocking of finer field
variables

eHow to block finer variables into coarser ones!?

*What is the [finite dimensional] space of models, renormalization flow takes place in?

*How to truncate the flow back to this space!?

*How to deal with non-local couplings!?

*How to coarse grain the boundary?
Should we require triangulation independence for the boundary!?

= tensor network renormalization provides answers
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State sums with (generalized) boundaries

State sum models associate amplitudes to space time regions with boundary (data)
[Oeckl 03]

1-
L__
_l__

| &
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A(ZCl,ZCQ,xSaajll) — w(xlax27$3ax4)

E a(xy,xa, T3, T4, Thulk) is a boundary wave function

Lhulk

A is an (anti-)linear functional
on bdry Hilbert space H;i,

A(Y) = Z A )ip(x)

where x are boundary data

defines (transition) amplitudes
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Coarse graining space time regions

We want to define an
effective amplitude
acting on coarser
boundary Hilbert space H;

Amplitude for a ‘larger’ region
glued from amplitudes of smaller regions,
acts on ‘refined’ bdry Hilbert space Ho

At e Il A Tl
— —: > I _:
| r |
- | :
Vel L, R

Need to relate coarser and
finer bdry Hilbert spaces
by embedding maps
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Embedding boundaries

N I R S R

l embedding ! '
— _I [
:_ _I ‘__) -

K '_‘”_1_ .

Via the embedding map we can find
the effective amplitude functional

A/ on Hl.

defines coarse grained
amplitude (map)

Take A’ as new amplitude functional.

Iterate and find fixed point.
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Embedding maps

eembed coarser boundary configurations into finer ‘typical’ states

osplitting of boundary Hilbert space into relevant and irrelevant degrees of
freedom

eblock finer variables into coarser ones

etruncate coarse graining flow

Cylindrical consistent measure:
used in the kinematics of Loop Quantum Gravity to take continuum limit,
defines kinematical (degenerate geometry) vacuum

Embeddings allow to define dynamical cylindrical consistent measure:
defines dynamical vacuum.

[BD, NJP 2012]
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How to choose the embedding maps!?
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Motivation: transfer operator technique

A

A

A

A

Transition amplitude between

two states (11 |A|y9)

insert id = ZONB 1) ()|

Truncate by restricting ) onp
to the eigenvectors of 1" with the
x largest (in mod) eigenvalues.

Expect good approximation if 11, 1
are in span of these eigenvectors.

But: explicit diagonalization of 1" difficult.
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Dynamically determined embedding maps

Truncate by restricting > np
to the eigenvectors of 1" with the
x largest (in mod) eigenvalues.

o

AN

A

—

iteration procedure

|
—_> J Al —>

embedding map after 3 iterations

)

1

Localize truncations,
diagonalize only subparts
of transfer operator

blocking
—_—

H_
H_

e-—
embedding

EV-decomposition.

| 7 Determined by (generalized
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Example: Ising model

~1 Gauss| w(k) |
w(9195 ) R I
g1 92 k I

group elements 41 rep labels k£ = 0,1 at edges Ak, .. ke) = Vi ay
at vertices, —_— edge weights w(k) O(k1 4+ ko — ks — ky)

edge weights w  Fourier trafo Gauss constraints at vertices
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Example: Ising model

determine embedding maps embedding maps condition on embedding maps

aF e o

high temperature: cosa =1, a =0
(symmetric phase)

(1) =0] a=0

Embedding maps parametrized by:

0 1 0
O]—O 1}0 1]—1 0]—1 ~
o(l)=1 )

COS(CV) Siﬂ(a) 1/\/5 1/\/§ low temperature: cosa = sina =
(symmetry broken phase)

_
@ =7

S
<

INE



Example: Ising model

0 1
s =
| [teration 3 0 1
|—|—| |—|—| Iteration 2

F1 1 1 1 Tteration 1 cos(a) sin(a)

08 Oé 0.8 —

Oow temperature:

0.6 -
0.6 -

W(1), iy = 0.5915, /.

04

=0.3,04,...,0.9

02

M\N\N | ‘hi‘gh temperature b

8 10 ) )
number of iterations number of iterations

021

Plateau (scale free dynamics) of almost constant embedding maps around phase transition

Embeddings determined by the dynamics of the system. Represent the physical vacuum for
finer degrees of freedom.
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Example: Ising model

' X Embedding maps describe structure of vacuum (at

given temperature) at finer and finer scales.

Highly excited state (from kinematical vacuum)?
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The procedure for 2D state sum

L

L

ju}
L

ju}
L

o

_

approximation

iteration step

Mg L
Mg L

1 — -

o
—

embedding maps
needed to compare results
for different bond dimensions

convergence defines continuum limit
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(a) square lattice

(a) contraction

[Levin, Nave *07 , Gu,Wen "09]

The algorithm

; b
1 C S3
c i
— L7 —>
q } Sa ©
d
; b
S1
c
_’_'T’_a, —> c ? !
dl %
(b) splitting of vertices
J ()

(b) coarse grained lattice
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Application to spin nets

hve h
e
g,v/- hvle h6/
7 —> ZZh
7 = * 7 =
hz: % hz vertex model
, , i (= tensor network)
(1_[) E(he) H O(GuhvegyGo oreGu) H C({he}eso) in group variables
ve € vV
Group Group
Fourier Fourier
Transform Transform
Z= )
Do Me,Me vertex model with

H 5({p€7 Me, ne}eav) rePresentation
v labels
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The algorithm

*spin nets come with global symmetry group:
Gauss constraint preserving algorithm in dual (spin) representation
[BD, Eckert, Martin-Benito, New.]. Phys.’ ||, BD, Laurie v. Massenbach, Martin-Benito, w.i.p.]
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Space Of mOdels [Bahr, BD, Hellmann, Kaminski ’12]

S3, permutation of 3 elements, has 6 elements: unit element, three 2-cycles, two 3-cylces.

E—functions invariant under Zs generated by first 2-cycle element:

E(g) = d(unit,g) +a(d(1. 2-cycle,g)) + b (d(2. 2-cycle,g) + (3. 2-cylce, g)) +
c(0(1. 3-cylce,g) + (2. 3-cycle, g))

= Phase space parametrized by a, b, c.
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Space of models

If a = b, models can be rewritten
into standard ‘edge models’.

Obvious fixed points:

e zero temp (BF, weak coupling):
a=b=c=0

e BF on quotient group Zy = S3/%s:
a=b=0,c=1

e high temp (strong coupling):
a=b=c=1
2D subspace
of lattice gauge analogue
models

a # b

e Barrett Crane analogue model:
a=1,b=c=0
(not a fixed point)

3D space
of spin foam analogue
models
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Stan d a. rd edge m Od e I S [BD, Laurie v. Massenbach,

Martin-Benito, w.i.p.]
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zero temp
fixed point
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Phase diagram for
a+ b
?
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Model with simplicity constraints

c=0

0.0 0.5 1.0

/

analogue
Barrett-Crane

model

[BD, Laurie v. Massenbach,
Martin-Benito, w.i.p.]

quotient group
Z-2
fixed point

flows to
strong
coupling

flows to zero
coupling

1.5 20 3

Near the analogue Barrett-Crane model
(a=1,b=c=0) phase transition between

zero and high temperature.

Will it persist for Lie
groups?

35




Summary

* Presented a strategy to take continuum limit for spin foams: key test for the models

* We are able to test the key dynamical input of spin foams - the implementation of simplicity
constraints - in simplified models.

* Lattice gauge theories experience: results might hold in full models.

* |s there a BF phase for SULZ.) spin foams as generalized lattice models!?
(confinement conjecture: this Is not the case for standard lattice gauge theory models)
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Outlook

[w.i.p.]

* methods allow to get insight into cclrnamics of spin foams models:
develop semi-analytical tools in order to go to full models

* analysis of embedding maps will give us information on
structure of dynamical vacuum

=|s the (dynamically determined) blocking geometrically meaningful?
= Are the simplicity constraints relaxed under coarse graining?

* recently derived structure of transfer operator for spin foams will allow further insight
[BD, Hellmann, Kaminski 1209.4539]

[further in the future:]

* models with quantum groups: have gravity interpretation!

*higher dimensions, spin foams, ....

Stay tuned!
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Thanks!
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