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Radiative corrections in covariant LQG

carlo rovelli

Important new result:

“Self-Energy in the Lorentzian ERPL-FK Spinfoam model of Quantum Gravity”
Aldo Riello: ArXives 1302:178]




Is there a consistent quantum theory E 4 .

whose classical limit is general relativity, Classical GR |
in 4 lorentzian dimensions, 7 —
with its standard matter couplings?

e Effective QFT J

Two separate . Unification of all interactions
problems: . Quantum properties of the gravitational field
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Main Results, old and new

1. Boundary states represent geometries.

(Canonical LQG 1990°, Penrose spin-geometry theorem 1971).

2. (Geometry operators have discrete spectra: geometry is discrete at small scale.

(Canonical LQG main results, 1990’).

3. The classical limit of the vertex amplitude is Lorentz invariant and converges to the Regge
Hamilton function with A.
(Conrady-Freidel, Barrett et al, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012).

4. The amplitudes (with positive cosmological constant) are (UV and IR) finite: ch < 00
(Han, Fairbairn, Moesburger, 2011).



Main features

G ~ 6 . 10_8 cm , )\ ~ 10_56cm_2
1. Two dimensionfull constants: lp ~ hG, A = 1/)‘ gr-s
: wo dimensionless constants: — : :
L, MG

3. UV finiteness is given by a finite physical cut-off.

. Same as in string theory! No infinite renormalization.
. Semiclassical QG arguments (Bronstein, Wheeler, Isham ... ): there is no real physical scale below [p

. Amati-Ciafaloni-Veneziano scattering.

. Finite number of bits on black hole surface.
. Finite number of bits along a strings.

. Discreteness of Area and Volume spectra.

- Special relativity: discovery that there is maximal physical velocity ¢

- Quantum mechanics: discovery there is minimal physical action h
- Quantum gravity: discovery there is a minimal length [ p .

4. IR finiteness given by cosmological constant.



Tassonomy of quantum gravity approaches

Tensor models

Just New physics
gravitational field Py
Fundamental Loops Strings
scale
Standard gft CDT
defined by a critical point Asymptotic safety Supergravity




Main features

QCD. Large distance: non perturbative (lattice!)  Short distance: perturbative.
Gravity. Large distance: perturbative. Short distance: non perturbative (lattice!).
& _  u

QCD: Zoep = lim [ dU, otSa, N (Ue)

a—0 Plaquette

\ o L5
CDT:  Zcpr = lim A(T) i 7 N ——
| [ A<\ -\ |-
]\CTL :: c(>)o T ' ’ ’J’/_i\_\/ )/
7 I; b A+ h. i 7 Length is the variable summed over.
LQG: LQG — Nl_{rio e (7', e ]f) o8 ., No continuous parameter to tune.
T, Jf (Like in string theory)

Spins are discrete.



Convergence between the QED and the QCD pictures

- All physical QFT are constructed via a truncation of the d.o.f. (cfr: QED: particles, QCD Lattice).
- All physical calculation are performed within a truncation.

- The limit in which all d.o.f.is then recovered is pretty different in QED gqnd QCD:

d
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What about Quantum Gravity!?
Lattice site = small region of space = excitations of the gravitational field = quanta of space = quanta of the field

Diff invariance !



General relativity

Tetrads

Spin connection

GR action

GR Holst action

Canonical variables

On the boundary

Jab — 67&, gab = 67& 6}3 e = Gadilfa - R(l’g)

w = wedx® € sl(2,C) w(e) : de+wAe=0

/e/\e/\F*

1
/e/\e/\F* +—/e/\e/\F[w]
Y

1
w, B=(eNe)"+—(eNe)
Y

ni = eng, niet =0 SL(2,C) — SU(2)
B — (K =nB,L =nB")

K+~L =0 “Linear simplicity constraint”

n; = (1,0,0,0)



Main tool: SL(2,C) unitary irreducible representations (why so little used in physics?)

SU(2) unitary representations: 2] € Z l7sm) € H,;
SL(2,C) unitary representations: o e N. ve R k,vij,m) € Hi,, = E ij "
1=k,00
Y-simple representations: v=~y(k+1)
SU(2) — SL(2,C) map: Yo Hi =M
gym) = [(J,7(G+1)); 4,m)
Image of Y, : j =k
minimal weight subspace
Main property: K + 7y [ — 0 weakly on the image of Y7

Boost generator Rotation generator



Structure of the theory

Exact quantum gravity General relativity

L . h—0 : .
transition amplitudes > Hamilton function
0 W (hy) S(q)
v N AN
; : :
= 0 T
5 O <
S
k= LQG Regge
+ CL : h—0 : :
5 transition amplitudes N Hamilton function
~ We (hi) ) Sa(liy)
Classical limit .
/4
; No critical point
Regime of validity of the expansions: Lpianck < L < \/ No infinite renormalization
Curvature

Physical scale: Planck length



Covariant LQG is good

* There is one single known physical spinfoam amplitudes (4d, Lorentzian,correct degrees of freedom.)
 The theory is defined by its transition amplitudes, order by order in the 2-complex.

* The transition amplitudes with cosmological constant A are finite. [Han, Fairbairn, Moesburger, Zhang.]
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Since A=A"1is large (A~10120), radiative correction might be large, invalidating the expansion!
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Problem:

e Since A=A\"1is very large (A~10720), radiative correction might be large, invalidating the expansion.

Strateqgy:

» Large corrections are likely described by the divergences of the A=0 theory.

» Study divergences of the A=0 theory to understand the viability of the expansion.



New main message (good news):

e

The first radiative correction
to the edge amplitude

IS logarithmic in A7
[Aldo Riello 2013]

The first radiative correction
to the vertex amplitude
IS finite.
[Aldo Riello 2013]

(up to possible technical loopholes, not yet closed)
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W(ja,na,ﬁa) — Z (H(zjab + 1)“) w(jaajabanaaﬁa)

jab ab

W(Jas Jabs Mas Ta) = / ( )dgabdgab [ [nalY o, YY T g0aY1ia) i 1 77500 Y T 000 960 Y Y TG gan Y
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1

ab
Tr;[YigY YTgY] :/ dm dm’ H<myYTgY\m’>j<m’|YT§me>j
52 — —
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2d

Spike

“Riello tetrahedra”



(Jurna)

W(Ja, Jabs M, Na) = /dgabd!?ab [ [(nalY g, VY G0aY |0a);,

/dg dm dz e2=ab JabSab(g:m,2)

—  Reduced closure relations
for the Riello tetrahedra!




/dg dm dz e JavS(g,m,z)

—

Saddle point /R Cdat M) = (QD (detHz f)* M) (14 0(N)
Saddle point equations symmetries
Compute dimensions of the saddle point //<\ / \
Symmetries ! 8 [SL(2,C)]+12[S2] +12[CP'—4[SU(2)]-2[SL(2,C)))
w~ O™ face amplitude
/
Summing over spins W~ i (Jab) ™ w(jap) ~ { l?l(f\vj(u—l)) Z _ 1
Jab

w(ja,ajaba Mg, ﬁa) — /dgabdgab H na‘YTgab YYTgbaY‘na HTT] b YT gbaYYTgab gab]

—

, 3 A~ 6(k—1) 5 o
Ul ampliude Walin o) =§ 00 b dgdg (nalY YTy Y )
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o —

Ja

A, = WalJasNa, a) ~ ln(l/)\hG)/ dgdg (ng|YTgY Y §Y|7s)
SL(2,C)2

Not a large number !

Proportional to the edge for large |? (Jacek Puchta)

In(1/ARG) =1n10*° = 1.7 (47)°



New main message (good news):
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General comments:

» |s the large-j expansion credible?
* Yes: it does the correct result in the BF case (large polynomial divergences.)

Additional moral: Gravity is much more convergent than BF!

* Previous results:
* Euclidean spin-zero external legs [Perini Speziale CR, 09] (using properties of nJ-symbols)
 Euclidean generic external legs [Krajewski Mangen Rivasseau Tanasa Vitale 10] (using gft techniques).
All consistent.

Additional moral: Euclidean and Lorentzian are rather similar.

* The edge correction is the “melon” of tensor models: much is known about summing melons !



So:

» (Can this be used to prove that radiative corrections do not invalidate the expansion?
* Are these the only elementary divergences?

 What about overlapping divergences?

» (Can this be used to compute the running of G or A between the Planck scale and our scale?

 If this is small, there is no naturalness problem for the cosmological constant.

Cartoon calculation

= In(ARG,)es76s 5 = ewmrc

Gio + InIn(A\RG,) = é



