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GFT basics

recent general introductions and reviews:

D. Oriti, arXiv: gr-qc/0607032
D. Oriti, arXiv: 0912.2441 [hep-th]
R. Gurau, J. Ryan, arXiv: 1109.4812 [hep-th]
D. Oriti, arXiv: 1111.5606 [hep-th]

V. Rivasseau, arXiv:1112.5104 [hep-th]

work by:

Baratin, Ben Geloun, Bonzom, Carrozza, De Pietri, Fairbairn, Freidel, Gielen, Girelli, Gurau, Livine, Louapre, Krajewski,
Krasnov, Magnen, Noui, Oriti, Perez, Raasakka, Reisenberger, Rivasseau, Rovelli, Ryan, Sindoni, Smerlak, Tanasa, Vitale,
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90(91792793794) <_>QD(£U1,$2,$3,ZE4) ) ceXCaG
some 4d gravity models: X = SU(2) (as in LQG) 1

classical phase space of reference: l

[T*SL(2,C)** or T*Spin(4)]** — [T*SU(2)]**

BZ.IJ ~ NI A b;.] also obtained from discretization of continuum theor;
(gravity = BF theory + constraints)

group ~ elementary holonomy  Lie algebra ~ “discretized triad”
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Fock vacuum: “no-space” (“emptiest”) state |0 >

4

generic quantum state: arbitrary collection of spin network vertices (including glued ones)
or tetrahedra (including glued ones)

/ N

second quantized version of (generalized) LQG (adapted to simplicial context), but
dynamics not derived from canonical quantization of GR
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(p,p) = 5/[d9¢]s&(gi)’C(gi)¢(gi) + ﬁ/[dgia]w(gu).---w(gw)V(gm,§w) + cec

“combinatorial non-locality” /

one possibility (customary in LQG/spin foam context):

trivial kinetic term: (g, §i) = 6(91, G1)-.-6(g4, Ga) “simplicial” interaction:

with fields constrained to satisfy
“geometricity” conditions
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example: /[dg;]lzw(gl, , 83, 84)(81, 82,83, 25)p(gs, 87, 865 85)

p(gs, 29, 810, 211)p(g12, 29, 810, g11)P(g12, &7, &6, 84)
_1

Laplace-Beltrami on group manifold

d
with non-trivial propagator: m> — Z JAY,
=1

® interesting models exist with: nice simplicial geometry, direct links with discrete GR and
simplicial path integrals, LQG-like Hilbert space,
® several connections between the two classes of models, may be equivalent
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Feynman perturbative expansion around trivial Fock vacuum:

ANT

Z:/Dng@ el O (p:P) Z Ar
T

sym(I')

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology

(including pseudomanifolds)
-
Feynman amplitudes:

® spin foam models (sum-over-histories ' %1)
q o

of spin networks)

simplicial gravity path integrals
(in group+Lie algebra variables)
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Fock space reformulation (for some models) ® combinatorial generalization of matrix models
of LQG Hilbert space dynamics from sum over 4d cellular complexes

most complete definition of spin foam models @ additional data with respect to tensor models
(group elements, etc)
dynamics not coming from canonical GR, but complexes non assumed as equilateral
from discrete gravity
ericher framework, direct link with discrete gravity
topology is dynamical
L proper QFTs: symmetries, RG flow, ....
QFT formalism brings powerful new tools
(e.g. renormalization) easier to extract physics and geometry

ekey formalism for studying dynamics of many dofs
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GFT analogous to QFT for atoms in condensed matter system

continuum spacetime (with GR-like dynamics) emerges from collective behaviour of
large numbers of GFT building blocks (spin nets, simplices)
requires (GFT analogue of) thermodynamic limit, macroscopic approximation,
appropriate phase

more specific hypothesis: continuum spacetime is GFT condensate
GR-like dynamics from GFT hydrodynamics
phase transition leading to spacetime and geometry (GFT condensation) is what
replaces Big Bang singularity (geometrogenesis)
cosmology as “relaxation to equilibrium condensate”

(Oriti '07, ’11, ’13, Rivasseau ’11, ’12, Sindoni ’11)
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closure <-> gauge invariance ¢(91, 92, 93, 9a) = ©(hg1, hga, hgs, hgs), Vh € SO(4)

(915 92, 935 94) — @(T1, T2, T3, T4) r, € X CG < ’BfB €; ]keAekB
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® (generic N—particle GFT state (N geometric tetrahedra):

® think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) -
implies choosing embedding point and 3 reference vectors:

Am —> {:Em S M, {Vl(m)yv2(m)7v3(7n)} C chmM}

® choose embedding vectors to be aligned with left-invariant vector fields of H
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® interpret discrete triad variable in GFT state with physical triad field integrated
along embedding vector
requires: tetrahedra flat enough

® from the B’s (or the e’s) construct:

1

El _ mn p >
1] = ) ' B mBn
Ji; 8’[r(B1B2B3)6 € & l

or: Gij(m) = eé%m) €Aj(m)
® these coefficients are related to physical continuum metric by:
9ij(m) = g(m)(€i(Tm), € (Tm))
that is, they are the metric coefficients for the metric “sampled” at N points

e if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”,
then it can be put in 1-1 correspondence with such approximate continuum metric

1
Bitm) = (h(m))  Bitm)Pm) > €i(m) = €i(m)Pm)
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e classical criterion for homogeneity (for GFT data): Yij(m) — Yij(k) Vkem=1,...,N
l.e. all GFT quanta are labelled by the same (gauge invariant) data

® need to lift it to quantum framework (and include conjugate information):

[all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum statej

® in GFT: such states can be expressed in 2nd quantized language and
one can consider superpositions of states of arbitrary N

® sending N to infinity means improving arbitrarily the accuracy of the sampling

q [Continuum homogeneous spacetimes are quantum GFT CondensatesJ

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

o) :=exp (6) |0)

& / g olgn)ptar)  olgik) = o(gr)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

o) :=exp (6) |0)

?'(gr)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

o) :=exp (6) |0)

?'(gr)

® simplest




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) :=exp (6) |0)

?'(gr)

® simplest




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

5t (g1) _ (il / g d*h é(g Y6 (g )

2

® simplest




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

o gr) fil / g d*h é(g )l (g )

2

® simplest




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

5t (g1) (il / g d*h é(g Y6 (g )

2

® simplest ° naturally gauge invariant
® takes into account some correlations




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

) .1
/d4g o(gr)"

(91 Eim g [digatnetg el )

® simplest ° naturally gauge invariant
® takes into account some correlations

depend on same geometric variables: data for homogeneous anisotropic geometries




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

5t (g1) (il / g d*h é(g Y6 (g )

v 9

® simplest ° naturally gauge invariant
® takes into account some correlations

depend on same geometric variables: data for homogeneous anisotropic geometries
truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

5t (g1) (il / g d*h é(g Y6 (g )

v 9

® simplest ° naturally gauge invariant
® takes into account some correlations

depend on same geometric variables: data for homogeneous anisotropic geometries
truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N




Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)

5t (g1) (il / g d*h é(g Y6 (g )

v 9

® simplest ° naturally gauge invariant
® takes into account some correlations

depend on same geometric variables: data for homogeneous anisotropic geometries
truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N
2nd quantized coherent states
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two simple choices of quantum GFT condensate states
(homogeneous continuum guantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) == exp (6 |0) €) == exp (£) |0)
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® simplest ° naturally gauge invariant
® takes into account some correlations

depend on same geometric variables: data for homogeneous anisotropic geometries
truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
support perturbations at any sampling scale N
2nd quantized coherent states
can be studied using BEC techniques
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follow closely procedure used in real BECs

single-particle GFT condensate:

o) = exp (6)]0) 6= / P9 o(g)d' () olgrk) = olgr)

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric
interpretation: GFT quanta “flat enough”:

. ' 2%
dg;] K(9:, 9;)0(9;) + A=
[ 146 R 01,6200 + A 52
5V
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when applied to (coherent) GFT condensate state, ~
it gives equation for “wave function”: /[dg,;] K(g:,9:)0(g;) + A

‘EO':O
)90

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
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dipole GFT condensate:
1
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microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)
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follow closely procedure used in real BECs

dipole GFT condensate:
1

€) = exp (f) 0) § =3 /d4g d*h &(g h™1)@(g )

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric
interpretation: GFT quanta “flat enough”:

. * 2%
[ 146 Reaidetah + A55

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations

for odd-order GFT interactions, egn from kinetic term decouples - separate equations

P ~—1 Hamiltonian constraint-like eqn for collective wave function
ddl K (a:. o a7 ) =0 g
/[ gZ] (g“ g@) f(gzgz ) + non-linear equations coming from higher-order correlators

GFT dipole condensation requires effective kinetic term with non-trivial kernel
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derivation of cosmological equations from GFT quantum dynamics very general
it rests on:

continuum homogeneous spacetime ~ GFT condensate
® good encoding of discrete geometry in GFT states
® quantum nature of underlying theory

2nd quantized GFT formalism

it can then be specialized to interesting GFT models (e.g coming from LQG, ...)
exact form of equations depends on specific model considered

general features:
® guantum cosmology-like equations emerging as hydrodynamics for GFT condensate
® non-linear
L non-local (on “mini-superspace”)

similar equations obtained in non-linear extension of LQC (Bojowald et al. '12)
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Approximate FRW equations for GFT condensate

special case: (effective) kinetic term = Laplacian on SU(2)"4 i )
(suggested by simplicial geometry, LQG, GFT renormalization,..): K(gr,g1) = Z Ag, + | (91,91
I

e full cosmological equations for GFT condensate will contain,
In some approximation:

 take order parameter to be of the form:  W(g;) = A(

and consider (formal) eikonal WKB approximation x — ()

® equation becomes at leading order
(mass term subdominant): g = \/1 22T _ g

g-T
> (Br-Br—(m-Bp)?) =~ 0
Ji B[ Z:aS/aTF[

® using geometric interpretation of states and variables, we can identify:

Br = CL% 17 mr = p[V] 1=1,2,3 a’s are scale factors

- T, V = normalized dimensionless Lie algebra elements
Ba= B4(Bl’ Ba, BB) = 7T4(7T1, 2 WS) (state dependent) °
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® in the isotropic case ar = for ~; constant

N
Y
2
and one obtains: p°—k =0 (_2>
a
- J

that is an approximate FRW equation for positive curvature

(thus the dynamics selects H=SU(2) as the isometry of the emergent spatial manifold)

if the GFT dynamics involves Laplacian kinetic term, then FRW equation is contained
in effective cosmological dynamics for GFT condensate, with corrections

another way to extract effective classical equations from GFT hydrodynamics: take order parameter to be
coherent state for mini-superspace (DO, L. Sindoni, ’10)
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Summary

GFT is promising candidate formalism for quantum gravity
QFT for spin networks/simplices
completion of spin foam models, possible incarnation of LQG programme
generalization of tensor models (same backbone + algebraic data)

progressing fast (results in LQG/spin foams, tensor models + GFT renormalization + ....

new suggestions for QG and cosmological scenario
(emergent continuum spacetime as condensate, Big Bang as phase transition)

steps towards realizing the scenario + extracting physics from GFT
quantum GFT condensates ~ continuum homogeneous spacetimes
effective cosmological dynamics extracted (in full generality)
from GFT fundamental dynamics
approximate FRW egns in some regime (and some models)

derivation of cosmology from full QG formalism!
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physical cosmology from GFT
details of effective cosmological equations for interesting (Lorentzian) GFT model
corrections to FRW (and Bianchi IX) dynamics in semi-classical limit
anisotropies

inhomogeneities (fluctuations above condensate)

approach to singularity (phase transition)



Thank you for your attention!
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other renormalizable models (Samary, Vignes-Tourneret, Ben Geloun, Livine)
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—1

non-trivial propagator:

d
2
m- = Z A Laplace-Beltrami on group manifold
=1
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GFT renormalization

latest achievement: renormalizability of SU(2) GFT model in 3 dimensions with gauge invariance

Boulatov-like for 3d quantum gravity Carrozza, DO, Rivasseau, to appear

tA té
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Feynman amplitudes have “lattice gauge theory” structure @ @ @
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renormalizability proven by rigorous multi-scale analysis
requires adaptation of QFT techniques to GFT combinatorial structures
crucial: notion of “face-connectedness”
many results on combinatorics of colored GFT diagrams (in particular, melonic graphs)




