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• continuum homogeneous spacetimes are GFT condensates
• effective cosmological dynamics can be extracted from GFT in full generality
• some models contain Friedmann dynamics (plus corrections)

Plan:
•   intro to GFT formalism
• relation to LQG, spin foams and tensor models
• GFT states                  (approximate) continuum geometries
• examples of GFT condensates
• effective dynamics for GFT condensates (general)
• special case and approximate Friedmann equations
• conclusions and outlook
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GFT basics

recent general introductions and reviews: 

D. Oriti, arXiv: gr-qc/0607032 

D. Oriti, arXiv: 0912.2441 [hep-th]

R. Gurau, J. Ryan, arXiv: 1109.4812 [hep-th] 

D. Oriti, arXiv: 1111.5606 [hep-th]

V. Rivasseau, arXiv:1112.5104 [hep-th]

 work by: 

Baratin, Ben Geloun, Bonzom, Carrozza, De Pietri, Fairbairn, Freidel, Gielen, Girelli, Gurau, Livine, Louapre, Krajewski, 
Krasnov, Magnen, Noui, Oriti, Perez, Raasakka, Reisenberger, Rivasseau, Rovelli, Ryan, Sindoni, Smerlak, Tanasa, Vitale, .......
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) 
or tetrahedra (including glued ones)

second quantized version of (generalized) LQG (adapted to simplicial context), but 
dynamics not derived from canonical quantization of GR
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(ϕ, ϕ) =
1
2

∫
[dgi]ϕ(gi)K(gi)ϕ(gi) +

λ

D!

∫
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)× SO(3)]4:

ϕ̂(x1, · · · x4) :=
∫

[dgi]4 ϕ(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⊕ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2× 2 matrices1 as Trxg=

∑
± εg±tr[x±g±] with εg±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=eiεg±trx±g± . The plane waves satisfy the
properties: ∫

d6x Eg(x) = δ(g), Eg-1(x) = Eg(−x) (8)

1Let τj be i times the Pauli matrices, then trτiτj =−δij . Given and SU(2) element u=eθnjτj parametrized by
the angle θ ∈ [0, π] and the unit R3-vector %n and a=ajτj in the algebra su(2), we thus have tr[au]=− sin θ%n · %a.
Also εu :=sign(tru)=sign(cos θ).
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trivial kinetic term: K(gi, ḡi) = δ(g1, ḡ1)...δ(g4, ḡ4) “simplicial” interaction:

with fields constrained to satisfy 
“geometricity” conditions 
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other possibility (motivated by tensor models and renormalization): 
(tensor) invariant interactions

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d -colored graphs (d-bubble):

S(ϕ,ϕ) =
∑

b∈B

tbIb(ϕ,ϕ) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot ↔ field (resp. complex
conjugate field);
edge of color ! ↔ convolution of !-th indices of ϕ
and ϕ.
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Multi-scale analysis
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇒ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) (

m2 −
d∑

!=1

∆!

)−1

Boulatov-like restriction of d.o.f:

∀h ∈ G , ϕ(hg1, . . . , hgd) = ϕ(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
∫

dµC (ϕ,ϕ)ϕ(g!)ϕ(g
′
!) = C(g!; g

′
!) =

∫ +∞

0

dα e−αm2
∫

dh
d∏

!=1

Kα(g!hg
′−1
! ) ,

where Kα is the heat kernel on G at time α.
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• interesting models exist with: nice simplicial geometry, direct links with discrete GR and 
simplicial path integrals, LQG-like Hilbert space, ......   

with non-trivial propagator:
Laplace-Beltrami on group manifold
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We would like to have a TGFT with:

a built-in notion of scale ⇒ a non-trivial propagator spectrum;
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Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
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• interesting models exist with: nice simplicial geometry, direct links with discrete GR and 
simplicial path integrals, LQG-like Hilbert space, ......   

• several connections between the two classes of models, may be equivalent

with non-trivial propagator:
Laplace-Beltrami on group manifold
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇒ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) (
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)−1
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Z =
∫
DϕDϕ ei Sλ(ϕ,ϕ) =

∑

Γ

λNΓ

sym(Γ)
AΓ



GFT basics (4d case) : dynamics 

Feynman diagrams dual to cellular (usually simplicial) complexes of arbitrary topology 
(including pseudomanifolds)

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

〈s, s′〉phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., 〈s, s′〉phys = 〈sP, s′〉 recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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Feynman perturbative expansion around trivial Fock vacuum:

Z =
∫
DϕDϕ ei Sλ(ϕ,ϕ) =

∑

Γ

λNΓ

sym(Γ)
AΓ

Feynman amplitudes:

• spin foam models (sum-over-histories 
of spin networks)

• simplicial gravity path integrals         
(in group+Lie algebra variables)
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• GR-like dynamics from GFT hydrodynamics
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replaces Big Bang singularity (geometrogenesis)
• cosmology as “relaxation to equilibrium condensate”

(Oriti ’07, ’11, ’13, Rivasseau ’11, ’12, Sindoni ’11)



geometrogen

spacetime as condensate
of QG building blocks

Big Bang as phase transition
 (condensation)
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GFT states and approximate continuum geometries

e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron

GFT states and approximate continuum geometries

preprint

Cosmology from Group Field Theory

Steffen Gielen,1, 2, ∗ Daniele Oriti,3, † and Lorenzo Sindoni3, ‡

1Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany, EU
2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada

3Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany, EU
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

GFT states and approximate continuum geometries
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI ) =∑

ν ϕν (gI ) âν , where ϕν (gI ) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI )) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(3)
where eg (B) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ransla tes into ϕ̃(BI ) = δ(

∑
I BI ) #

ϕ̃(BI ); if t he L ie algebra elements BI are interpret a ted
as bivectors ob t ained by integra t ing e ∧ e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

U p to possible discrete ambigui t ies t ha t we will ignore in
t he following, t he simplici ty const raints imply t ha t t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (5)

B y an S O (4) t ransforma t ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
BI to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(6)

so t ha t ϕ is really a field on four copies of S3 ∼ SU (2).
Homogeneous discrete geometries. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors BI(m) associated to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all Bi(m) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of eAi(m) , t here is an act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sificat ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he loca t ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he
edges specified by vi(m) , assuming t he edges are suffi-
cient ly small so t ha t we can approximate t he tet rad as
const ant . W i t hin t his approximat ion, t he vectors eAi(m)
are related to physical tet rad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For t he S O (4) invariant quant i t ies gij , we similarly ob t ain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-met ric at a fini te number of points {xm}
which depends on t he embedding: In addi t ion to t he lo-
cat ion of t he tet rahedra one specifies t heir orient at ion by
a choice of vi(m) . C hanging t hose vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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T he descrip t ion of macroscopic space t ime geome t ries as quant um st a t es in non-p er t urba t ive ap-
proaches to quant um gravi t y has b een notoriously difficul t . H ere we ident ify a class of coherent
st a t es in t he group field t heor y ( G F T ) approach t ha t can b e int erpre t ed as describing mascrocopic
homogeneous spa t ial geome t ries. C ompu t ing ex p ec t a t ion values of t he G F T equa t ions of mot ion on
t hose st a t es allows us to for t he first t ime ex t rac t cosmological d y namics from G F T as a fundament al
t heor y of quant um geome t r y: We recover t he classical Friedmann equa t ion.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

GFT states and approximate continuum geometries
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H

!"

!
#

!
$

Thursday, March 7, 2013

GFT states and approximate continuum geometries

preprint

Cosmology from Group Field Theory

Steffen Gielen,1, 2, ∗ Daniele Oriti,3, † and Lorenzo Sindoni3, ‡

1Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany, EU
2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada

3Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany, EU
(Dated: March 4, 2013)

The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
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theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H

!"

!
#

!
$

Thursday, March 7, 2013



GFT states and approximate continuum geometries

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI ) =∑

ν ϕν (gI ) âν , where ϕν (gI ) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI )) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(3)
where eg (B) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ransla tes into ϕ̃(BI ) = δ(

∑
I BI ) #

ϕ̃(BI ); if t he L ie algebra elements BI are interpret a ted
as bivectors ob t ained by integra t ing e ∧ e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

U p to possible discrete ambigui t ies t ha t we will ignore in
t he following, t he simplici ty const raints imply t ha t t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (5)

B y an S O (4) t ransforma t ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
BI to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(6)

so t ha t ϕ is really a field on four copies of S3 ∼ SU (2).
Homogeneous discrete geometries. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors BI(m) associated to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all Bi(m) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of eAi(m) , t here is an act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sificat ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he loca t ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he
edges specified by vi(m) , assuming t he edges are suffi-
cient ly small so t ha t we can approximate t he tet rad as
const ant . W i t hin t his approximat ion, t he vectors eAi(m)
are related to physical tet rad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For t he S O (4) invariant quant i t ies gij , we similarly ob t ain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-met ric at a fini te number of points {xm}
which depends on t he embedding: In addi t ion to t he lo-
cat ion of t he tet rahedra one specifies t heir orient at ion by
a choice of vi(m) . C hanging t hose vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 
implies choosing embedding point and 3 reference vectors:

GFT states and approximate continuum geometries
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proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI ) =∑

ν ϕν (gI ) âν , where ϕν (gI ) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI )) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(3)
where eg (B) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ransla tes into ϕ̃(BI ) = δ(

∑
I BI ) #

ϕ̃(BI ); if t he L ie algebra elements BI are interpret a ted
as bivectors ob t ained by integra t ing e ∧ e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

U p to possible discrete ambigui t ies t ha t we will ignore in
t he following, t he simplici ty const raints imply t ha t t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (5)

B y an S O (4) t ransforma t ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
BI to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(6)

so t ha t ϕ is really a field on four copies of S3 ∼ SU (2).
Homogeneous discrete geometries. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors BI(m) associated to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all Bi(m) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of eAi(m) , t here is an act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sificat ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he loca t ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he
edges specified by vi(m) , assuming t he edges are suffi-
cient ly small so t ha t we can approximate t he tet rad as
const ant . W i t hin t his approximat ion, t he vectors eAi(m)
are related to physical tet rad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

closure <-> gauge invariance
4∑

i=1

Bi = 0

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 
implies choosing embedding point and 3 reference vectors:
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously difficult. Here we identify a class of coherent
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get effective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the different quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
ϕ on SO(4)4, satisfying the gauge invariance

ϕ(g1, g2, g3, g4) = ϕ(hg1, hg2, hg3, hg4), ∀h ∈ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
"I(m)

∼
∫

"I(m)

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

ϕ(g1, g2, g3, g4) ↪→ ϕ(x1, x2, x3, x4) xi ∈ X ⊂ G

closure <-> gauge invariance

4∑

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

ϕ(g1, g2, g3, g4)↔ ϕ(B1, B2, B3, B4)→ C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H

!"

!
#

!
$

Thursday, March 7, 2013



GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra flat enough



GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, t he field ϕ̂ can be expanded in bosonic
annihilat ion opera tors: ϕ̂(gI ) =

∑
ν ϕν (gI ) âν ; using t he

basic operators â†ν , one can t hen const ruct t he G F T Fock
space ou t of t he ‘no-space’ Fock vacuum |0〉. In t his pic-
t ure, an appropriate superposi t ion of N -par t icle st ates in
t he G F T corresponds to a spin network wi t h N ver t ices;
see e.g. [6].

A G F T Feynman graph is t hen viewed as a discrete
spacet ime history buil t ou t of geomet ric tet rahedra. T he
per t urbat ive expansion of t he G F T par t i t ion funct ion in-
cludes a sum over all such spacet ime histories.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on the L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(1)
where eg (B) is a plane wave on t he L ie algebra so(4).
G eomet rically t he ‘moment um’ variables BI are viewed
as bivectors associated to t he faces of t he tet rahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

U p to possible discrete ambigui t ies t hat we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (4)

O ne possibili ty for imposing simplici ty const raints in t he
G F T formalism, used in [8], is to use a par t ial gauge
fixing to fix t he normals n to a const ant n0; t hen (3)
amounts to rest rict ing BI to be in a fixed so(3) subalge-
bra. T his version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(5)

so t hat ϕ is really a field on four copies of S3 ∼ SU (2).
T here is a second const raint on t he G F T field, corre-

sponding to invariance under gauge t ransformat ions act-
ing on t he ver tex joining t he dual links. C hoosing t his as
a right act ion on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ S O (4), (6)

one can define a G F T reproducing t he dynamics of t he
B arret t- C rane model [9]. T his correspondence between
spin foam models and appropria tely defined G F T s is
generic, and our analysis is not t ied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In L ie algebra variables, (6) t ransla tes into ϕ̃(BI ) =
ϕ̃(BI )#δ(

∑
I BI ). (6) implements t he closure constraint:

t he bivectors BI must close to form a tet rahedron.
Homogeneous discrete geometries. — In t his second

quant ized formalism, we interpret t he N -par t icle st ate

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geomet ry of N tet rahedra wi t h bivectors
BI(m) associated to t he faces. A ssuming t hat the closure
and simplici ty const raints hold, we can paramet rize (7)
by t he 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N )
and assume t hat all Bi(m) are of t he form (4). O n t his
space of bivectors solving t he closure and simplici ty con-
st raints, or al ternat ively t he space of eAi(m) , t here is an
act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding to

a local frame rot at ion. T he gauge-invariant configurat ion
space for each tet rahedron is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sifica t ion (see e.g. [10]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the



GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, t he field ϕ̂ can be expanded in bosonic
annihilat ion opera tors: ϕ̂(gI ) =

∑
ν ϕν (gI ) âν ; using t he

basic operators â†ν , one can t hen const ruct t he G F T Fock
space ou t of t he ‘no-space’ Fock vacuum |0〉. In t his pic-
t ure, an appropriate superposi t ion of N -par t icle st ates in
t he G F T corresponds to a spin network wi t h N ver t ices;
see e.g. [6].

A G F T Feynman graph is t hen viewed as a discrete
spacet ime history buil t ou t of geomet ric tet rahedra. T he
per t urbat ive expansion of t he G F T par t i t ion funct ion in-
cludes a sum over all such spacet ime histories.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on the L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(1)
where eg (B) is a plane wave on t he L ie algebra so(4).
G eomet rically t he ‘moment um’ variables BI are viewed
as bivectors associated to t he faces of t he tet rahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

U p to possible discrete ambigui t ies t hat we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (4)

O ne possibili ty for imposing simplici ty const raints in t he
G F T formalism, used in [8], is to use a par t ial gauge
fixing to fix t he normals n to a const ant n0; t hen (3)
amounts to rest rict ing BI to be in a fixed so(3) subalge-
bra. T his version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(5)

so t hat ϕ is really a field on four copies of S3 ∼ SU (2).
T here is a second const raint on t he G F T field, corre-

sponding to invariance under gauge t ransformat ions act-
ing on t he ver tex joining t he dual links. C hoosing t his as
a right act ion on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ S O (4), (6)

one can define a G F T reproducing t he dynamics of t he
B arret t- C rane model [9]. T his correspondence between
spin foam models and appropria tely defined G F T s is
generic, and our analysis is not t ied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In L ie algebra variables, (6) t ransla tes into ϕ̃(BI ) =
ϕ̃(BI )#δ(

∑
I BI ). (6) implements t he closure constraint:

t he bivectors BI must close to form a tet rahedron.
Homogeneous discrete geometries. — In t his second

quant ized formalism, we interpret t he N -par t icle st ate

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geomet ry of N tet rahedra wi t h bivectors
BI(m) associated to t he faces. A ssuming t hat the closure
and simplici ty const raints hold, we can paramet rize (7)
by t he 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N )
and assume t hat all Bi(m) are of t he form (4). O n t his
space of bivectors solving t he closure and simplici ty con-
st raints, or al ternat ively t he space of eAi(m) , t here is an
act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding to

a local frame rot at ion. T he gauge-invariant configurat ion
space for each tet rahedron is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sifica t ion (see e.g. [10]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

•  these coefficients are related to physical continuum metric by:

that is, they are the metric coefficients for the metric “sampled” at N points

GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 

along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

•  these coefficients are related to physical continuum metric by:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

that is, they are the metric coefficients for the metric “sampled” at N points

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 

then it can be put in 1-1 correspondence with such approximate continuum metric
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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•  interpret discrete triad variable in GFT state with physical triad field integrated 
along embedding vector

requires: tetrahedra flat enough

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 
then it can be put in 1-1 correspondence with such approximate continuum metric

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI ) =∑

ν ϕν (gI ) âν , where ϕν (gI ) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI )) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on t he L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(3)
where eg (B) is a choice of plane wave on t he L ie alge-
bra so(4). T hen (1) t ranslates into ϕ̃(BI ) = δ(

∑
I BI ) #

ϕ̃(BI ); if t he L ie algebra elements BI are interpret a ted
as bivectors ob t ained by integra t ing e ∧ e over t he faces
of t he tet rahedron, t his would be t he condi t ion on t he
bivectors to close to form a tet rahedron.

In order to ensure t his interpret a t ion, t he variables BI

must sat isfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

U p to possible discrete ambigui t ies t ha t we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (5)

B y an S O (4) t ransformat ion t he normal n can be gauge-
fixed to n = (1, 0, 0, 0); t hen (4) amounts to rest rict ing
BI to be in a so(3) subalgebra. In t he G F T t his gauge-
fixed version of (4) can be t aken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(6)

so t hat ϕ is really a field on four copies of S3 ∼ SU (2).
Homogeneous discrete geometries. — W i t hin t his sec-

ond quant ized formalism, we will interpret an N -par t icle
st ate in t he G F T H ilber t space, such as

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is t he Fock vacuum, as a discrete geomet ry
of N tet rahedra wi t h bivectors BI(m) associa ted to t he
faces. A ssuming t hat t he closure and simplici ty con-
st raints hold, we can paramet rize (7) by t he 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N ) and assume t hat
all Bi(m) are of t he form (5). O n t his space of bivectors

solving t he closure and simplici ty const raints, or al terna-
t ively t he space of eAi(m) , t here is an act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding

to a local frame rot at ion. I t is advant ageous to reduce
to t he gauge-invariant configurat ion space. For each
tet rahedron t his space is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical rela t ivi ty, a spa t ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sificat ion (see e.g. [7]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spa t ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he
edges specified by vi(m) , assuming t he edges are suffi-
cient ly small so t ha t we can approximate t he tet rad as
const ant . W i t hin t his approxima t ion, t he vectors eAi(m)
are related to physical tet rad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For t he S O (4) invariant quant i t ies gij , we similarly ob t ain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-met ric at a fini te number of points {xm}
which depends on t he embedding: In addi t ion to t he lo-
cat ion of t he tet rahedra one specifies t heir orient a t ion by
a choice of vi(m) . C hanging t hose vectors corresponds

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

2

More concretely, t he field ϕ̂ can be expanded in bosonic
annihilat ion opera tors: ϕ̂(gI ) =

∑
ν ϕν (gI ) âν ; using t he

basic operators â†ν , one can t hen const ruct t he G F T Fock
space ou t of t he ‘no-space’ Fock vacuum |0〉. In t his pic-
t ure, an appropriate superposi t ion of N -par t icle st ates in
t he G F T corresponds to a spin network wi t h N ver t ices;
see e.g. [6].

A G F T Feynman graph is t hen viewed as a discrete
spacet ime history buil t ou t of geomet ric tet rahedra. T he
per t urbat ive expansion of t he G F T par t i t ion funct ion in-
cludes a sum over all such spacet ime histories.

O ne can use a noncommu t at ive Fourier t ransform to
define t he analogous field on the L ie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =
∫

d4g
4∏

I=1

egI (BI ) ϕ(g1, . . . , g4) ,

(1)
where eg (B) is a plane wave on t he L ie algebra so(4).
G eomet rically t he ‘moment um’ variables BI are viewed
as bivectors associated to t he faces of t he tet rahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tet rad field encoding t he met ric geomet ry.
In order to ensure t his interpret at ion, t he variables BI

must sat isfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

U p to possible discrete ambigui t ies t hat we will ignore in
t he following, t he simplici ty const raints imply t hat t here
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such t hat for all i

BAB
i = εi

jkeAj e
B
k . (4)

O ne possibili ty for imposing simplici ty const raints in t he
G F T formalism, used in [8], is to use a par t ial gauge
fixing to fix t he normals n to a const ant n0; t hen (3)
amounts to rest rict ing BI to be in a fixed so(3) subalge-
bra. T his version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ S O (3) ,
(5)

so t hat ϕ is really a field on four copies of S3 ∼ SU (2).
T here is a second const raint on t he G F T field, corre-

sponding to invariance under gauge t ransformat ions act-
ing on t he ver tex joining t he dual links. C hoosing t his as
a right act ion on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ S O (4), (6)

one can define a G F T reproducing t he dynamics of t he
B arret t- C rane model [9]. T his correspondence between
spin foam models and appropria tely defined G F T s is
generic, and our analysis is not t ied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In L ie algebra variables, (6) t ransla tes into ϕ̃(BI ) =
ϕ̃(BI )#δ(

∑
I BI ). (6) implements t he closure constraint:

t he bivectors BI must close to form a tet rahedron.
Homogeneous discrete geometries. — In t his second

quant ized formalism, we interpret t he N -par t icle st ate

|BI(m)〉 : =
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geomet ry of N tet rahedra wi t h bivectors
BI(m) associated to t he faces. A ssuming t hat the closure
and simplici ty const raints hold, we can paramet rize (7)
by t he 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N )
and assume t hat all Bi(m) are of t he form (4). O n t his
space of bivectors solving t he closure and simplici ty con-
st raints, or al ternat ively t he space of eAi(m) , t here is an
act ion of S O (4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
T his is a gauge symmet ry of gravi ty, corresponding to

a local frame rot at ion. T he gauge-invariant configurat ion
space for each tet rahedron is six-dimensional and may be
paramet rized by t he “met ric” components

gij(m) = eAi(m) eAj(m) . (9)

D efining t he six bilinears B̃ij : = BAB
i Bj AB , we can ex-

press t he components gij in terms of t he bivectors Bi(n):

gij =
1

8 t r(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln .
In classical relat ivi ty, a spat ially homogeneous universe

is characterized by a 3-dimensional L ie group G whose ac-
t ion on spat ial hypersurfaces leaves t he met ric invariant ,
wi t h t he possible choices for G given by t he B ianchi clas-
sifica t ion (see e.g. [10]). In t he discrete contex t , in order
to give a cri terion for t he quant i t ies gij(m) to be compat-
ible wi t h spat ial homogenei ty, we t hink of t he tet rahedra
as embedded into a 3-dimensional topological manifold
M which a L ie group G acts on t ransi t ively, so t hat
M * G/X where X can be a discrete subgroup of G;
G defines t he not ion of homogenei ty. A n embedding of
each tet rahedron is specified by giving t he locat ion of one
of t he ver t ices and t hree t angent vectors specifying t he
direct ions of t he t hree edges emanat ing from t his ver tex ,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponent iate t he t angent vectors to ob t ain
t he locat ion of t he ot her t hree ver t ices, we can use t he
M aurer-C ar t an connect ion on G pulled back to M.

We interpret t he R4 vectors eAi(m) associated to a tet ra-
hedron as physical tet rad vectors integrated along t he

2

More concretely, the field ϕ̂ can be expanded in bosonic
annihilation operators: ϕ̂(gI) =

∑
ν ϕν(gI) âν ; using the

basic operators â†ν , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0〉. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
!I

∼
∫

!I

eA ∧ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(5)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

ϕ(g1, g2, g3, g4) = ϕ(g1h, g2h, g3h, g4h) ∀h ∈ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ϕ̃(BI) =
ϕ̃(BI)#δ(

∑
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉 (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

•  these coefficients are related to physical continuum metric by:

that is, they are the metric coefficients for the metric “sampled” at N points

GFT states and approximate continuum geometries

•  interpret discrete triad variable in GFT state with physical triad field integrated 

along embedding vector

requires: tetrahedra small enough and flat enough

•   from the B’s (or the e’s) construct:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

or:

•  these coefficients are related to physical continuum metric by:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

that is, they are the metric coefficients for the metric “sampled” at N points

• if GFT state satisfy additional gauge invariance condition under SO(4) at every “point”, 

then it can be put in 1-1 correspondence with such approximate continuum metric
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
ϕ̂ can be expanded in annihilation operators: ϕ̂(gI) =∑

ν ϕν(gI) âν , where ϕν(gI) are elements of a basis of
functions satifying (1) and âν are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
ϕ̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

ϕ̃(B1, B2, B3, B4) =

∫
d4g

4∏

I=1

egI (BI)ϕ(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ϕ̃(BI) = δ(

∑
I BI) #

ϕ̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ∧ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

∃nA ∈ S3 ⊂ R4 : ∀I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ∈ R4 (for i = 1, 2, 3) such that for all i

BAB
i = εi

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SO(3) ,
(6)

so that ϕ is really a field on four copies of S3 ∼ SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)〉 :=
N∏

m=1

ˆ̃ϕ†(B1(m), . . . , B4(m))|0〉, (7)

where |0〉 is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) (→
(
h(m)

)−1
Bi(m)h(m) , ei(m) (→ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
εi

klεj
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = εiklεjmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M * G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m (→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are suffi-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates



Homogeneous geometries & GFT condensates

• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•     need to lift it to quantum framework (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

Ψ
(
Bi(1), ...., Bi(N)

)
=

1
N !

N∏

m=1

Φ(Bi(m))

•   in GFT: such states can be expressed in 2nd quantized language and 
one can consider superpositions of states of arbitrary N

•   sending N to infinity means improving arbitrarily the accuracy of the sampling

Continuum homogeneous spacetimes are quantum GFT condensates

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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(Gross-Pitaevskii approximation)



Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N
• 2nd quantized coherent states

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Quantum GFT condensates
two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

•  simplest • naturally gauge invariant
•  takes into account some correlations

• depend on same geometric variables: data for homogeneous anisotropic geometries  
•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)
• support perturbations at any sampling scale N
• 2nd quantized coherent states
• can be studied using BEC techniques 

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “flat enough”:

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

when applied to (coherent) GFT condensate state, 
it gives equation for “wave function”: 

∫
[dg′i] K̃(gi, g

′
i)σ(g′i) + λ

δṼ
δϕ(gi)

|ϕ≡σ = 0

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “flat enough”:

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

when applied to (coherent) GFT condensate state, 
it gives equation for “wave function”: 

∫
[dg′i] K̃(gi, g

′
i)σ(g′i) + λ

δṼ
δϕ(gi)

|ϕ≡σ = 0

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “flat enough”:

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete da t a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)
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For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 
interpretation: GFT quanta “flat enough”:

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)

Thursday, March 7, 2013

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations

Hamiltonian constraint-like eqn for collective wave function 
+ non-linear equations coming from higher-order correlators

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ
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3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spa t ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spa t ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st a tes of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equa t ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

GFT dipole condensation requires effective kinetic term with non-trivial kernel 

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)
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For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a t ransforma t ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spat ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric a t N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
ma t ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approximated
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of da t a, i .e. for any N , t he spat ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupa t ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st ates. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplicat ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t hat
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sat isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configurat ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au tomat ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst ate of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect at ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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for odd-order GFT interactions, eqn from kinetic term decouples - separate equations

Hamiltonian constraint-like eqn for collective wave function 
+ non-linear equations coming from higher-order correlators

Effective cosmological dynamics from GFT

follow closely procedure used in real BECs

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

with extra approximations required for consistent continuum geometric 

interpretation: GFT quanta “small enough” and “flat enough”:∫
[dg′

i] K̃(gi, g
′
i)ϕ̂(g′

i) + λ
δṼ

δϕ̂(gi)
= 0

effective dynamics for dipole condensate extracted from this + SD equations for n-point functions

system of equations 

for odd-order GFT interactions, eqn from kinetic term decouples - separate equations∫
[dg′i] K̃(gi, g

′
i) ξ(g′ig̃

−1
i ) = 0 Hamiltonian constraint-like eqn for collective wave function 

+ non-linear equations coming from higher-order correlators

dipole GFT condensate:

3

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t ha t t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informa t ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spa t ial homo-
genei ty is in addi t ion compat ible wi t h spa t ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St atements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informa t ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, a t any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spa t ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st a tes of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configura t ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t ha t t he st a te is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st a te only depends on gauge-invariant da t a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate crea ted by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ′g I ) =  (g I ) for all k ′  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h−1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ′) for all k , k ′ in
SU (2) and  (g I ) =  (g−1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candida te st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g′  (g I ) K̂ (g I , g′

I )  (g′
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g′ K̂ (g I , g′
I )  ̂ (g′

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equa t ion for  :

 
d4 g′ K̂ (g I , g′

I )  (g′
I ) +  

 V5

  (g I )

   
ϕ = σ

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g′′ K̂ (g′

I , g′′
I )  (g I g′′

I
−1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (16)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (17)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(gI , g

′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (23)

3

For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ∀k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 δ!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up toN1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& "→ g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(g& )ϕ̂

†(g& ) (16)

if we require σ(g& k) = σ(g& ) for all k ∈ SU(2); with-
out loss of generality σ(k′g& ) = σ(g& ) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(g& h

−1
& )ϕ̂†(g& )ϕ̂

†(h& ), (17)

where due to (1) and [ϕ̂†(g& ), ϕ̂†(h& )] = 0 the function ξ
can be taken to satisfy ξ(g& ) = ξ(kg& k′) for all k, k′ in
SU(2) and ξ(g& ) = ξ(g−1

& ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (18)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(g& )K̂(g& , g

′
& )ϕ(g

′
& ) + λV5[ϕ] (19)

leading to the quantum equation of motion

∫
d4g′ K̂(g& , g

′
& )ϕ̂(g

′
& ) + λ

δV̂5

δϕ̂(g& )
= 0 . (20)

Since |σ〉 is an eigenstate of ϕ̂(g& ), when (20) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(g& , g

′
& )σ(g

′
& ) + λ

δV5

δϕ(g& )

∣∣∣
ϕ=σ

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ξ: Multiplying (20) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′& , g

′′
& )ξ(g& g

′′
&
−1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ξ.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(∆ I + µ) ξ(g& g
′
&
−1

) = 0 . (23)
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derivation of cosmological equations from GFT quantum dynamics very general
it rests on:

• continuum homogeneous spacetime ~ GFT condensate
• good encoding of discrete geometry in GFT states
• quantum nature of underlying theory

• 2nd quantized GFT formalism

it can then be specialized to interesting GFT models (e.g coming from LQG, ...)
exact form of equations depends on specific model considered

general features:
• quantum cosmology-like equations emerging as hydrodynamics for GFT condensate
• non-linear
• non-local (on “mini-superspace”)

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)



Approximate FRW equations for GFT condensate
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(

δαβ − παπβ
)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI)
2
)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
constants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.
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with H amiltonian const raint given by K̃. T his equation
implies tha t a condensation of correlated pairs of G F T
quant a, for this class of G F T models (with odd interac-
t ions), is only possible if the kinet ic operator K̂ admits
a nont rivial kernel. T he exact form of the equations of
course depend on the specific G F T model considered, and
for interest ing models will be given in a later publication,
together with the details of the above derivation.
Effective modified Friedmann equation — O ne can

prove another interest ing result , in quite some general-
ity: any model cont aining a kinet ic operator being the
L aplace-B el t rami operator on SU (2)4 , together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isot ropic limit . T his case is relevant
because SU (2)4 is a natural domain for many G F T mod-
els for 4d gravity, while the presence of the L aplacian
seems to be required by G F T renormalization [18].

T he effect ive cosmological dynamics reduces (e.g. in a
weak-coupling limit , for the simple condensate |σ〉) to, or
cont ains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg′I
−1) = 0 . (20)

Using the paramet rization for SU (2) given by g =√
1 − #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

mat rices, the L aplace-B el t rami operator on SU (2) is

∆gf (π[g]) =
(

δαβ − παπβ
)

∂α∂βf (π) . (21)

Subst i tu ting this expression into (20), rewrit ing
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI )2
)

≈ 0, (22)

where · is the K illing form on su(2) and BI : = ∂S/∂πI

is the momentum conjuga te to πI . Since S[π(gI )] =
S[π(kgIk′)] for all k, k′ in SU (2) the BI satisfy addit ional
relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
For this scheme to be self-consistent , the phase of the
funct ion ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU (2)4). (22) con-
t ains only the leading term in the W K B expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized L ie algebra element , TI · TI = 1, and
similarly πI = pIVI for normalized VI . T his identification
follows from the geomet ric interpret at ion of the bivectors
BI (which encode the scale factors) and of the conjugate
quantit ies πI as infinitesimal holonomies. T hen (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. A t leading order this
is the classical Friedmann equation for an emp ty universe
with spa tial curvature k. Since k > 0, this interpretat ion
is consistent when G = SU (2). T he fundamental G F T
dynamics allows also to compu te explici t ly the correc-
t ions to such an equa tion, which include both the sub-
dominant terms in the W K B approximation of the above
equation, and the correct ions coming from the higher or-
der terms in the effect ive cosmological dynamics.
Discussion — T his L et ter illust rates a new and con-

crete avenue for ex t ract ing an effect ive cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe i t is the first t ime tha t such a
direct , simple path is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
We have identified quantum G F T states (easily ex-
por t able to the loop quantum gravity / spin foam or sim-
plicial gravity approaches) that are natural candida tes
to describe homogeneous (anisot ropic) cosmological ge-
omet ries. T hey are G F T quantum condensa tes. Simi-
lar sta tes have indeed been proposed in related contex ts
[19, 20]. C ont rary to those proposals, however, the G F T
condensa tes do not depend on any single la t t ice st ruc-
ture. T he advantage of this will appear once moving away
from the homogeneous condensed state: inhomogenei t ies
in the geomet ry can be encoded in fluctuations above the
G F T condensate states, and such coherent states suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensate G F T st ates allowed us to ex t ract
an effect ive cosmological dynamics from the fundamental
G F T dynamics, in full generali ty and rather st raight for-
wardly. I t takes the form of a non-linear and non-local
ex tension of standard (loop) quantum cosmology, which
then arises as a G F T analogue of G ross–P itaevskii hy-
drodynamics in real Bose condensates. T his ex t ract ion
procedure can be applied to any given G F T model (with
the right type of pre-geomet ric data), specifically to the
interest ing models proposed in [10, 12]. We have also
shown that , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equation can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed at ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for instance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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(suggested by simplicial geometry, LQG, GFT renormalization,..): K(gI , g̃I) =

(
∑

I

∆gI + µ

)
(gI , g̃I)
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(

δαβ − παπβ
)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI)
2
)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
constants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.
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with H amiltonian const raint given by K̃. T his equation
implies tha t a condensation of correlated pairs of G F T
quant a, for this class of G F T models (with odd interac-
t ions), is only possible if the kinet ic operator K̂ admits
a nont rivial kernel. T he exact form of the equations of
course depend on the specific G F T model considered, and
for interest ing models will be given in a later publication,
together with the details of the above derivation.
Effective modified Friedmann equation — O ne can

prove another interest ing result , in quite some general-
ity: any model cont aining a kinet ic operator being the
L aplace-B el t rami operator on SU (2)4 , together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isot ropic limit . T his case is relevant
because SU (2)4 is a natural domain for many G F T mod-
els for 4d gravity, while the presence of the L aplacian
seems to be required by G F T renormalization [18].

T he effect ive cosmological dynamics reduces (e.g. in a
weak-coupling limit , for the simple condensate |σ〉) to, or
cont ains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg′I
−1) = 0 . (20)

Using the paramet rization for SU (2) given by g =√
1 − #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

mat rices, the L aplace-B el t rami operator on SU (2) is

∆gf (π[g]) =
(

δαβ − παπβ
)

∂α∂βf (π) . (21)

Subst i tu ting this expression into (20), rewrit ing
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI )2
)

≈ 0, (22)

where · is the K illing form on su(2) and BI : = ∂S/∂πI

is the momentum conjuga te to πI . Since S[π(gI )] =
S[π(kgIk′)] for all k, k′ in SU (2) the BI satisfy addit ional
relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
For this scheme to be self-consistent , the phase of the
funct ion ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU (2)4). (22) con-
t ains only the leading term in the W K B expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized L ie algebra element , TI · TI = 1, and
similarly πI = pIVI for normalized VI . T his identification
follows from the geomet ric interpret at ion of the bivectors
BI (which encode the scale factors) and of the conjugate
quantit ies πI as infinitesimal holonomies. T hen (22) be-
comes

∑
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a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
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∑

I γ
4
I

)

/
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)

. A t leading order this
is the classical Friedmann equation for an emp ty universe
with spa tial curvature k. Since k > 0, this interpretat ion
is consistent when G = SU (2). T he fundamental G F T
dynamics allows also to compu te explici t ly the correc-
t ions to such an equa tion, which include both the sub-
dominant terms in the W K B approximation of the above
equation, and the correct ions coming from the higher or-
der terms in the effect ive cosmological dynamics.
Discussion — T his L et ter illust rates a new and con-

crete avenue for ex t ract ing an effect ive cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe i t is the first t ime tha t such a
direct , simple path is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
We have identified quantum G F T states (easily ex-
por t able to the loop quantum gravity / spin foam or sim-
plicial gravity approaches) that are natural candida tes
to describe homogeneous (anisot ropic) cosmological ge-
omet ries. T hey are G F T quantum condensa tes. Simi-
lar sta tes have indeed been proposed in related contex ts
[19, 20]. C ont rary to those proposals, however, the G F T
condensa tes do not depend on any single la t t ice st ruc-
ture. T he advantage of this will appear once moving away
from the homogeneous condensed state: inhomogenei t ies
in the geomet ry can be encoded in fluctuations above the
G F T condensate states, and such coherent states suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensate G F T st ates allowed us to ex t ract
an effect ive cosmological dynamics from the fundamental
G F T dynamics, in full generali ty and rather st raight for-
wardly. I t takes the form of a non-linear and non-local
ex tension of standard (loop) quantum cosmology, which
then arises as a G F T analogue of G ross–P itaevskii hy-
drodynamics in real Bose condensates. T his ex t ract ion
procedure can be applied to any given G F T model (with
the right type of pre-geomet ric data), specifically to the
interest ing models proposed in [10, 12]. We have also
shown that , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equation can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed at ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for instance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(

δαβ − παπβ
)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI)
2
)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes

∑
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a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
constants γI and βI , and (23) becomes

p2 − k = O
( κ
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)

, (24)
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. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.
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with H amiltonian const raint given by K̃. T his equation
implies tha t a condensation of correlated pairs of G F T
quant a, for this class of G F T models (with odd interac-
t ions), is only possible if the kinet ic operator K̂ admits
a nont rivial kernel. T he exact form of the equations of
course depend on the specific G F T model considered, and
for interest ing models will be given in a later publication,
together with the details of the above derivation.
Effective modified Friedmann equation — O ne can

prove another interest ing result , in quite some general-
ity: any model cont aining a kinet ic operator being the
L aplace-B el t rami operator on SU (2)4 , together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isot ropic limit . T his case is relevant
because SU (2)4 is a natural domain for many G F T mod-
els for 4d gravity, while the presence of the L aplacian
seems to be required by G F T renormalization [18].

T he effect ive cosmological dynamics reduces (e.g. in a
weak-coupling limit , for the simple condensate |σ〉) to, or
cont ains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg′I
−1) = 0 . (20)

Using the paramet rization for SU (2) given by g =√
1 − #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

mat rices, the L aplace-B el t rami operator on SU (2) is

∆gf (π[g]) =
(

δαβ − παπβ
)

∂α∂βf (π) . (21)

Subst i tu ting this expression into (20), rewrit ing
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑
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(

BI ·BI − (πI ·BI )2
)

≈ 0, (22)

where · is the K illing form on su(2) and BI : = ∂S/∂πI

is the momentum conjuga te to πI . Since S[π(gI )] =
S[π(kgIk′)] for all k, k′ in SU (2) the BI satisfy addit ional
relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
For this scheme to be self-consistent , the phase of the
funct ion ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU (2)4). (22) con-
t ains only the leading term in the W K B expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized L ie algebra element , TI · TI = 1, and
similarly πI = pIVI for normalized VI . T his identification
follows from the geomet ric interpret at ion of the bivectors
BI (which encode the scale factors) and of the conjugate
quantit ies πI as infinitesimal holonomies. T hen (22) be-
comes
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where cI = TI · VI depend on the state. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes
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, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. A t leading order this
is the classical Friedmann equation for an emp ty universe
with spa tial curvature k. Since k > 0, this interpretat ion
is consistent when G = SU (2). T he fundamental G F T
dynamics allows also to compu te explici t ly the correc-
t ions to such an equa tion, which include both the sub-
dominant terms in the W K B approximation of the above
equation, and the correct ions coming from the higher or-
der terms in the effect ive cosmological dynamics.
Discussion — T his L et ter illust rates a new and con-

crete avenue for ex t ract ing an effect ive cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe i t is the first t ime tha t such a
direct , simple path is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
We have identified quantum G F T states (easily ex-
por t able to the loop quantum gravity / spin foam or sim-
plicial gravity approaches) that are natural candida tes
to describe homogeneous (anisot ropic) cosmological ge-
omet ries. T hey are G F T quantum condensa tes. Simi-
lar sta tes have indeed been proposed in related contex ts
[19, 20]. C ont rary to those proposals, however, the G F T
condensa tes do not depend on any single la t t ice st ruc-
ture. T he advantage of this will appear once moving away
from the homogeneous condensed state: inhomogenei t ies
in the geomet ry can be encoded in fluctuations above the
G F T condensate states, and such coherent states suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensate G F T st ates allowed us to ex t ract
an effect ive cosmological dynamics from the fundamental
G F T dynamics, in full generali ty and rather st raight for-
wardly. I t takes the form of a non-linear and non-local
ex tension of standard (loop) quantum cosmology, which
then arises as a G F T analogue of G ross–P itaevskii hy-
drodynamics in real Bose condensates. T his ex t ract ion
procedure can be applied to any given G F T model (with
the right type of pre-geomet ric data), specifically to the
interest ing models proposed in [10, 12]. We have also
shown that , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equation can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed at ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for instance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
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−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
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)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
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)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes
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where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
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. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.

4
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∑

I
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relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
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∑

I
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where cI = TI · VI depend on the state. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes
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I c

2
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L aplacian form, a modified Friedmann equation can be
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new avenue should now be explored in full and points
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physics directly from current candidate G F T models for
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Approximate FRW equations for GFT condensate

• full cosmological equations for GFT condensate will contain, 
in some approximation:

(
∑

I

∆gI + µ

)
Ψ(gI) ≈ 0

Ψ(gI) = A(gI)e
i
κ S(gI)•    take order parameter to be of the form: 

and consider (formal) eikonal WKB approximation κ→ 0

•    equation becomes at leading order 
(mass term subdominant):

4

Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes
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case where all aI and ȧI are equal, this reduces to
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which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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eikonal limit κ → 0, this equation reduces to
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where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.
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variables, we write BI = a2I TI , where each TI is a dimen-
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ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
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model.
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4

Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(

δαβ − παπβ
)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI)
2
)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
constants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.
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the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
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in the geomet ry can be encoded in fluctuations above the
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L aplacian form, a modified Friedmann equation can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
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physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for instance, quantum gravity
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Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes

∑

I

a4I
(
ȧ2I c

2
I − 1

)
≈ 0 , (26)

where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
( κ

a2

)
, k =

(
1

4

∑

I

c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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tion for the classical action S. For this scheme to be
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rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
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Using the parametrization for SU(2) given by g =√
1− !π2 1 − i!σ · !π , |!π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
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)
∂α∂βf(π) . (24)

Substituting this expression into (23), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(
BI ·BI − (πI ·BI)

2
)
≈ 0 (25)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Within this WKB
approximation (25) becomes the Hamilton-Jacobi equa-
tion for the classical action S. For this scheme to be
self-consistent, the phase of the function ξ has to vary
rapidly compared to the modulus (which is peaked near
the identity in SU(2)4). Eq. (25) contains only the leading
term in the WKB expansion, and therefore the term in µ,
being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = ȧIVI for normalized VI . This identifica-
tion is fully consistent with the geometric interpretation
of the bivectors BI and of the conjugate quantities πI as
infinitesimal holonomies. Then (25) becomes
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(
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2
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where cI = TI · VI depend on the state. In the isotropic
case where all aI and ȧI are equal, this reduces to

ȧ2 − k = O
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, k =

(
1

4
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c2I

)−1

, (27)

which at leading order is the classical Friedmann equation
for an empty universe with spatial curvature k. Since
k > 0, this interpretation is consistent when G = SU(2).

Discussion. — The states discussed in this Letter
are natural candidates to describe, within a GFT ap-
proach, quantum states naturally associated to homo-
geneous (but perhaps anisotropic) cosmologies. While
certainly they are just a first approximation to the full
many body problem of the ground state of GFT, they
seem to capture the degrees of freedom that are relevant
in highly symmetric configurations.

The choice of state is not associated to the choice of
a particular triangulation of the spatial slice. While an

approximation scale might be contained in the average
number of quanta per unit volume, there is no reference
triangulation associated to it, since the state retains part
of the sum over triangulations. The advantage of this
will appear once moving away from the homogeneous
condensed state: inhomogeneities in the geometry can
be interpreted as the presence of fluctuations above this
quantum state, and as such, they are still allowed at any
scale, given that the truncation in the state is not a trun-
cation associated to the presence of a cutoff.

We motivated the choice of state (18) as a candidate
ground state from its geometric interpretation, but as
any other form of many body problem, the nature or
the best approximation for the ground state requires a
careful analysis of the microscopic dynamics and its in-
fluence on the resulting large scale dynamics. Therefore
(25) and (27) cannot be taken too seriously yet. How-
ever, they clearly show that the steps briefly described in
this Letter can concretely lead us, for the first time, to the
formulation of an effective macroscopic dynamics for the
hydrodynamics of many GFT quanta, interpreted in terms
of geometry, starting from a fully pregeometric microscopic
model.
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)
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with Hamiltonian constraint given by K̃. This equation
implies that a condensation of correlated pairs of GFT
quanta, for this class of GFT models (with odd interac-
tions), is only possible if the kinetic operator K̂ admits
a nontrivial kernel. The exact form of the equations of
course depend on the specific GFT model considered, and
for interesting models will be given in a later publication,
together with the details of the above derivation.

Effective modified Friedmann equation — One can
prove another interesting result, in quite some general-
ity: any model containing a kinetic operator being the
Laplace-Beltrami operator on SU(2)4, together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isotropic limit. This case is relevant
because SU(2)4 is a natural domain for many GFT mod-
els for 4d gravity, while the presence of the Laplacian
seems to be required by GFT renormalization [18].

The effective cosmological dynamics reduces (e.g. in a
weak-coupling limit, for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg
′
I
−1

) = 0 . (20)

Using the parametrization for SU(2) given by g =√
1− #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(

δαβ − παπβ
)

∂α∂βf(π) . (21)

Substituting this expression into (20), rewriting
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI)
2
)

≈ 0, (22)

where · is the Killing form on su(2) and BI := ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI)] =
S[π(kgIk′)] for all k, k′ in SU(2) the BI satisfy additional
relations. Within this WKB approximation (22) becomes
the Hamilton-Jacobi equation for the classical action S.
For this scheme to be self-consistent, the phase of the
function ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU(2)4). (22) con-
tains only the leading term in the WKB expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized Lie algebra element, TI · TI = 1, and
similarly πI = pIVI for normalized VI . This identification
follows from the geometric interpretation of the bivectors
BI (which encode the scale factors) and of the conjugate
quantities πI as infinitesimal holonomies. Then (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the state. Specializing to
an isotropic geometry, we can set aI = γIa, pI = βIp for
constants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. At leading order this
is the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation
is consistent when G = SU(2). The fundamental GFT
dynamics allows also to compute explicitly the correc-
tions to such an equation, which include both the sub-
dominant terms in the WKB approximation of the above
equation, and the corrections coming from the higher or-
der terms in the effective cosmological dynamics.

Discussion — This Letter illustrates a new and con-
crete avenue for extracting an effective cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe it is the first time that such a
direct, simple path is open in (background independent,
pre-geometric) quantum gravity approaches.

The results presented can be summarized as follows.
We have identified quantum GFT states (easily ex-
portable to the loop quantum gravity/spin foam or sim-
plicial gravity approaches) that are natural candidates
to describe homogeneous (anisotropic) cosmological ge-
ometries. They are GFT quantum condensates. Simi-
lar states have indeed been proposed in related contexts
[19, 20]. Contrary to those proposals, however, the GFT
condensates do not depend on any single lattice struc-
ture. The advantage of this will appear once moving away
from the homogeneous condensed state: inhomogeneities
in the geometry can be encoded in fluctuations above the
GFT condensate states, and such coherent states support
such perturbations at any approximation scale. Most im-
portantly, condensate GFT states allowed us to extract
an effective cosmological dynamics from the fundamental
GFT dynamics, in full generality and rather straightfor-
wardly. It takes the form of a non-linear and non-local
extension of standard (loop) quantum cosmology, which
then arises as a GFT analogue of Gross–Pitaevskii hy-
drodynamics in real Bose condensates. This extraction
procedure can be applied to any given GFT model (with
the right type of pre-geometric data), specifically to the
interesting models proposed in [10, 12]. We have also
shown that, for any GFT model having a kinetic term of
Laplacian form, a modified Friedmann equation can be
obtained in the semi-classical and isotropic limit. This
new avenue should now be explored in full and points
to several directions, all aimed at extracting interesting
physics directly from current candidate GFT models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework, for instance, quantum gravity
corrections to FRW cosmology and to the evolution of
anisotropies, and inhomogeneities, described by fluctua-
tions above the GFT condensate.
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procedure can be applied to any given G F T model (with
the right type of pre-geomet ric data), specifically to the
interest ing models proposed in [10, 12]. We have also
shown that , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equation can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed at ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for instance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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with H amiltonian const raint given by K̃. T his equation
implies tha t a condensation of correlated pairs of G F T
quanta, for this class of G F T models (with odd interac-
t ions), is only possible if the kinet ic operator K̂ admits
a nont rivial kernel. T he exact form of the equations of
course depend on the specific G F T model considered, and
for interest ing models will be given in a later publica tion,
together with the details of the above derivation.
Effective modified Friedmann equation — O ne can

prove another interest ing result , in quite some general-
ity: any model containing a kinet ic operator being the
L aplace-B el t rami operator on SU (2)4 , together with a
‘mass term’, gives a modified Friedmann equation in the
semi-classical and isot ropic limit . T his case is relevant
because SU (2)4 is a natural domain for many G F T mod-
els for 4d gravity, while the presence of the L aplacian
seems to be required by G F T renormalization [18].

T he effect ive cosmological dynamics reduces (e.g. in a
weak-coupling limit , for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg′I
−1) = 0 . (20)

Using the paramet rization for SU (2) given by g =√
1 − #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

ma t rices, the L aplace-B el t rami operator on SU (2) is

∆gf (π[g]) =
(

δαβ − παπβ
)

∂α∂βf (π) . (21)

Subst i tu ting this expression into (20), rewrit ing
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI )2
)

≈ 0, (22)

where · is the K illing form on su(2) and BI : = ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI )] =
S[π(kgIk′)] for all k, k′ in SU (2) the BI satisfy addit ional
relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
For this scheme to be self-consistent , the phase of the
funct ion ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU (2)4). (22) con-
t ains only the leading term in the W K B expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized L ie algebra element , TI · TI = 1, and
similarly πI = pIVI for normalized VI . T his identifica tion
follows from the geomet ric interpretat ion of the bivectors
BI (which encode the scale factors) and of the conjugate
quantit ies πI as infinitesimal holonomies. T hen (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the sta te. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
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I γ
4
I

)

/
(
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I γ
4
Iβ

2
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2
I

)

. A t leading order this
is the classical Friedmann equa tion for an emp ty universe
with spa tial curvature k. Since k > 0, this interpreta t ion
is consistent when G = SU (2). T he fundament al G F T
dynamics allows also to compu te explici t ly the correc-
t ions to such an equa tion, which include both the sub-
dominant terms in the W K B approxima tion of the above
equation, and the correct ions coming from the higher or-
der terms in the effect ive cosmological dynamics.
Discussion — T his L et ter illust rates a new and con-

crete avenue for ex t ract ing an effect ive cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe i t is the first t ime tha t such a
direct , simple pa th is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
We have identified quantum G F T sta tes (easily ex-
por t able to the loop quantum gravity / spin foam or sim-
plicial gravity approaches) that are na tural candida tes
to describe homogeneous (anisot ropic) cosmological ge-
omet ries. T hey are G F T quantum condensa tes. Simi-
lar sta tes have indeed been proposed in rela ted contex ts
[19, 20]. C ont rary to those proposals, however, the G F T
condensa tes do not depend on any single la t t ice st ruc-
ture. T he advantage of this will appear once moving away
from the homogeneous condensed state: inhomogenei t ies
in the geomet ry can be encoded in fluctua tions above the
G F T condensa te states, and such coherent st ates suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensa te G F T states allowed us to ex t ract
an effect ive cosmological dynamics from the fundament al
G F T dynamics, in full generali ty and ra ther st raight for-
wardly. I t t akes the form of a non-linear and non-local
ex tension of standard (loop) quantum cosmology, which
then arises as a G F T analogue of G ross–P itaevskii hy-
drodynamics in real Bose condensa tes. T his ex t ract ion
procedure can be applied to any given G F T model (with
the right type of pre-geomet ric da t a), specifically to the
interest ing models proposed in [10, 12]. We have also
shown tha t , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equa tion can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed a t ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for inst ance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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direct , simple pa th is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
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condensa tes do not depend on any single la t t ice st ruc-
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from the homogeneous condensed state: inhomogenei t ies
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G F T condensa te states, and such coherent st ates suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensa te G F T states allowed us to ex t ract
an effect ive cosmological dynamics from the fundament al
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ex tension of standard (loop) quantum cosmology, which
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semi-classical and isot ropic limit . T his case is relevant
because SU (2)4 is a natural domain for many G F T mod-
els for 4d gravity, while the presence of the L aplacian
seems to be required by G F T renormalization [18].

T he effect ive cosmological dynamics reduces (e.g. in a
weak-coupling limit , for the simple condensate |σ〉) to, or
contains (for the dipole condensate |ξ〉, which we use in
the following) the equation:

(∆gI + µ) ξ(gIg′I
−1) = 0 . (20)

Using the paramet rization for SU (2) given by g =√
1 − #π2 1 − i#σ · #π , |#π| ≤ 1 , where σi are the Pauli

ma t rices, the L aplace-B el t rami operator on SU (2) is

∆gf (π[g]) =
(

δαβ − παπβ
)

∂α∂βf (π) . (21)

Subst i tu ting this expression into (20), rewrit ing
ξ(πI [gI ]) = A[πI ] exp(iS[πI ]/κ) and taking the (formal)
eikonal limit κ → 0, this equation reduces to

∑

I

(

BI ·BI − (πI ·BI )2
)

≈ 0, (22)

where · is the K illing form on su(2) and BI : = ∂S/∂πI

is the momentum conjugate to πI . Since S[π(gI )] =
S[π(kgIk′)] for all k, k′ in SU (2) the BI satisfy addit ional
relat ions. W ithin this W K B approximation (22) becomes
the H amilton-Jacobi equation for the classical act ion S .
For this scheme to be self-consistent , the phase of the
funct ion ξ has to vary rapidly compared to the modulus
(which is peaked near the identity in SU (2)4). (22) con-
t ains only the leading term in the W K B expansion, and
the term in µ, being of higher order, does not appear.

In order to identify the BI and πI with cosmological
variables, we write BI = a2I TI , where each TI is a dimen-
sionless normalized L ie algebra element , TI · TI = 1, and
similarly πI = pIVI for normalized VI . T his identifica tion
follows from the geomet ric interpretat ion of the bivectors
BI (which encode the scale factors) and of the conjugate
quantit ies πI as infinitesimal holonomies. T hen (22) be-
comes

∑

I

a4I
(

p2I c
2
I − 1

)

≈ 0 , (23)

where cI = TI · VI depend on the sta te. Specializing to
an isot ropic geomet ry, we can set aI = γIa, pI = βIp for
const ants γI and βI , and (23) becomes

p2 − k = O
( κ

a2

)

, (24)

where k =
(
∑

I γ
4
I

)

/
(
∑

I γ
4
Iβ

2
I c

2
I

)

. A t leading order this
is the classical Friedmann equa tion for an emp ty universe
with spa tial curvature k. Since k > 0, this interpreta t ion
is consistent when G = SU (2). T he fundament al G F T
dynamics allows also to compu te explici t ly the correc-
t ions to such an equa tion, which include both the sub-
dominant terms in the W K B approxima tion of the above
equation, and the correct ions coming from the higher or-
der terms in the effect ive cosmological dynamics.
Discussion — T his L et ter illust rates a new and con-

crete avenue for ex t ract ing an effect ive cosmological dy-
namics from a fundamental (complete) quantum gravity
formalism. We believe i t is the first t ime tha t such a
direct , simple pa th is open in (background independent ,
pre-geomet ric) quantum gravity approaches.

T he results presented can be summarized as follows.
We have identified quantum G F T sta tes (easily ex-
por t able to the loop quantum gravity / spin foam or sim-
plicial gravity approaches) that are na tural candida tes
to describe homogeneous (anisot ropic) cosmological ge-
omet ries. T hey are G F T quantum condensa tes. Simi-
lar sta tes have indeed been proposed in rela ted contex ts
[19, 20]. C ont rary to those proposals, however, the G F T
condensa tes do not depend on any single la t t ice st ruc-
ture. T he advantage of this will appear once moving away
from the homogeneous condensed state: inhomogenei t ies
in the geomet ry can be encoded in fluctua tions above the
G F T condensa te states, and such coherent st ates suppor t
such per turbations at any approximation scale. Most im-
por t antly, condensa te G F T states allowed us to ex t ract
an effect ive cosmological dynamics from the fundament al
G F T dynamics, in full generali ty and ra ther st raight for-
wardly. I t t akes the form of a non-linear and non-local
ex tension of standard (loop) quantum cosmology, which
then arises as a G F T analogue of G ross–P itaevskii hy-
drodynamics in real Bose condensa tes. T his ex t ract ion
procedure can be applied to any given G F T model (with
the right type of pre-geomet ric da t a), specifically to the
interest ing models proposed in [10, 12]. We have also
shown tha t , for any G F T model having a kinet ic term of
L aplacian form, a modified Friedmann equa tion can be
ob tained in the semi-classical and isot ropic limit . T his
new avenue should now be explored in full and points
to several direct ions, all aimed a t ex t ract ing interest ing
physics directly from current candidate G F T models for
quantum gravity, thus solidly rooted in a complete quan-
tum gravity framework , for inst ance, quantum gravity
correct ions to F RW cosmology and to the evolu tion of
anisot ropies, and inhomogenei t ies, described by fluctua-
t ions above the G F T condensate.
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•  progressing fast (results in LQG/spin foams, tensor models + GFT renormalization + ....)

• new suggestions for QG and cosmological scenario
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derivation of cosmology from full QG formalism! 
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•   clarify in detail/improve simplicial geometry of 4d gravity models

• prove renormalizability and asymptotic freedom

key steps to make “emergent spacetime/geometrogenesis” scenario solid

• prove existence of phase transition

• clarify nature of transition as condensation

physical cosmology from GFT

•   details of effective cosmological equations for interesting (Lorentzian) GFT model

• corrections to FRW (and Bianchi IX) dynamics in semi-classical limit

• anisotropies

• inhomogeneities (fluctuations above condensate)

• approach to singularity (phase transition)



Thank you for your attention!



GFT renormalization

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d -colored graphs (d-bubble):

S(ϕ,ϕ) =
∑

b∈B

tbIb(ϕ,ϕ) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot ↔ field (resp. complex
conjugate field);
edge of color ! ↔ convolution of !-th indices of ϕ
and ϕ.

∫
[dgi ]

12ϕ(g1, g2, g3, g4)ϕ(g1, g2, g3, g5)ϕ(g8, g7, g6, g5)

ϕ(g8, g9, g10, g11)ϕ(g12, g9, g10, g11)ϕ(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

indexed by              
d-colored “bubbles”

interactions given by “tensor invariants” 

•   abelian renormalizable models in 3d and 4d - without gauge invariance (Ben Geloun, Rivasseau)

• proven to be asymptotically free (Ben Geloun)

• abelian renormalizable model in 4d with gauge invariance  (Carrozza, DO, Rivasseau)

• other renormalizable models (Samary, Vignes-Tourneret, Ben Geloun, Livine)



GFT renormalization

non-trivial propagator:
Laplace-Beltrami on group manifold

GFT basics (4d case): dynamics

other possibility (motivated by tensor models and renormalization): 

(tensor) invariant interactions
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with non-trivial propagator:

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇒ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) (

m2 −
d∑

!=1

∆!

)−1

Boulatov-like restriction of d.o.f:

∀h ∈ G , ϕ(hg1, . . . , hgd) = ϕ(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
∫

dµC (ϕ,ϕ)ϕ(g!)ϕ(g
′
!) = C(g!; g

′
!) =

∫ +∞

0

dα e−αm2
∫

dh
d∏

!=1

Kα(g!hg
′−1
! ) ,

where Kα is the heat kernel on G at time α.
Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

Laplace-Beltrami on group manifold
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Correspondence with tensor invariants:

white (resp. black) dot ↔ field (resp. complex
conjugate field);
edge of color ! ↔ convolution of !-th indices of ϕ
and ϕ.

∫
[dgi ]

12ϕ(g1, g2, g3, g4)ϕ(g1, g2, g3, g5)ϕ(g8, g7, g6, g5)

ϕ(g8, g9, g10, g11)ϕ(g12, g9, g10, g11)ϕ(g12, g7, g6, g4)
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indexed by              
d-colored “bubbles”

interactions given by “tensor invariants” 

•   abelian renormalizable models in 3d and 4d - without gauge invariance (Ben Geloun, Rivasseau)

• proven to be asymptotically free (Ben Geloun)

• abelian renormalizable model in 4d with gauge invariance  (Carrozza, DO, Rivasseau)

• other renormalizable models (Samary, Vignes-Tourneret, Ben Geloun, Livine)



GFT renormalization

latest achievement: renormalizability of SU(2) GFT model in 3 dimensions with gauge invariance

Boulatov-like for 3d quantum gravity Carrozza, DO, Rivasseau, to appear

According to our analysis of the Abelian divergence degree, SΛ can contain only up to ϕ6 d-bubbles. This
gives exactly 5 possible patterns of contractions (up to color permutations): one ϕ2 interaction, one ϕ4

interaction, and three ϕ6 interactions. They are represented in Figure 1.
Among the three types of interactions of order 6, only the first two can constitute melonic subgraphs.

Indeed, an interaction of the type (6, 3) cannot be part of a melonic subgraph, therefore cannot give any con-
tribution to the renormalization of coupling constants. Reciprocally, the contraction of a melonic subgraph
in a graph built from vertices of the type 2, 4, (6, 1) and (6, 2) cannot create an e ective (6, 3)-vertex. This
is due to the fact that a (6, 3)-bubble is dual to the triangulation of a torus, while the other four interactions
represent spheres, and the topology of d-bubbles is conserved under contraction of melonic subgraphs [46].

Therefore, we can and we shall exclude interactions of the type (6, 3) from SΛ from now on. This is
a very nice feature of the model, for essentially two reasons. First, from a discrete geometric perspective,
(6, 3) interactions would introduce topological singularities that would be di  cult to interpret in a quantum
gravity context, so it is good that they are not needed for renormalization. Second, contrary to the other
interactions, they are not positive and could therefore induce non-perturbative quantum instabilities.
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Figure 1: Possible d-bubble interactions.

The 2-point interaction is identical to a mass term, and will therefore be used to implement the mass
renormalization counter-terms. Since the model will also generate quadratically divergent 2-point functions,
we also need to include wave function counter-terms in SΛ. Finally, we require color permutation invariance
of the 4- and 6-point interactions. All in all, this gives

SΛ =
tΛ4
2

S4 +
tΛ6,1

3
S6,1 + tΛ6,2S6,2 + CT Λ

mSm + CT Λ
ϕ Sϕ , (26)
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•   renormalizability proven by rigorous multi-scale analysis
• requires adaptation of QFT techniques to GFT combinatorial structures 
• crucial: notion of “face-connectedness”
• many results on combinatorics of colored GFT diagrams (in particular, melonic graphs)

be easily defined in the colored extension Gc: a face f of color ! is a maximal connected subset of edges of
color 0 and !. In G, f is a set of color-0 lines, from which the holonomies are constructed. We finally use
the following additionnal notations: α(f) ≡

∑
e∈∂f αe is the sum of the Schwinger parameters appearing

in the face f ; εef = ±1 or 0 is the adjacency or incidence matrix, encoding the line content of faces and
their relative orientations; the faces are split into closed (F ) and opened ones (Fext); gs(f) and gt(f) denote
boundary variables in open faces, with functions s and t mapping open faces to their “source” and “target”
boundary variables. The amplitude AG takes the form:

AG =




∏

e∈L(G)

∫
dαe e−m2αe

∫
dhe








∏

f∈F (G)

Kα(f)




−−→∏

e∈∂f

he
εef












∏

f∈Fext(G)

Kα(f)



gs(f)




−−→∏

e∈∂f

he
εef



 g-1

t(f)







 . (7)

An important feature of the amplitude of G is a GV (G) gauge symmetry:

he $→ gt(e)heg
-1

s(e) , (8)

where t(e) (resp. s(e)) is the target (resp. source) vertex of an (oriented) edge e, and one of the two group
elements is trivial for open lines. As we have anticipated, it is the gauge invariance (3) imposed on the
TGFT field that is responsible of this gauge invariance at the level of the Feynman amplitudes, and for their
expression (7) as a lattice gauge theory on G. When G is connected, it is convenient to to gauge fix the h
variables along a spanning tree T of the graph:

he = 1l

in the integrand of (7), for every line e ∈ T . We will use such gauge fixing in the following.

1.2 Subgraphs, connectedness and quasi-locality

We collect here a number of definitions and results, first introduced in [38], which are key for the analysis
of the non-Abelian model we will perform in the following. Among them, the new notions of subgraph,
face-connectedness, contractibility, melopoles and traciality already show that TGFTs require a non-trivial
adaptation of standard QFT concepts, in order to unravel the combinatorial structure of the Feynman
diagrams and to study the renormalizability.

Definition 1. A subgraph H of a graph G is a subset of lines of G, hence G has exactly 2L(G) subgraphs.
H is then completed by first adding the vertices that touch its lines. The faces closed in G which pass
only through lines of H form the set of internal faces of H. The external faces of H are the maximal open
connected pieces of either open or closed faces of G that pass through lines of H. Finally all the external
legs or half-lines of G \ H touching the vertices of H are considered external legs of H.

We denote L(H) and F (H) the set of lines and internal faces of H, and N(H) and Fext(H) the set of
external legs and external faces of H. When no confusion is possible we also write L, F etc for the cardinality
of the corresponding sets.

On top of the usual notion of connectedness of subgraphs, to which we will refer as vertex-connectedness
in order to avoid any confusion, we will heavily rely on the similar concept of face-connectedness. While the
former focuses on incidence relations between lines and vertices, the latter puts the emphasis on incidence
relations between lines and faces.

Definition 2. (i) The face-connected components of a subgraph H are defined as the subsets of lines of
the maximal factorized rectangular blocks of its εef incidence matrix.

5

Feynman amplitudes have “lattice gauge theory” structure


