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2D continuum quantum gravity

Integral over 2D Riemannian metrics + matter fields
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A fairly well understood theory
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Functional integral over 2d Riemannian metrics, conformal gauge

Jab =— §ab €¢ A. Polyakov 1981

Faddeev-Popov ghost systems leads to effective action for the
remaining conformal factor

[ Ploa) = [ Daeclol det(V7) = [ Dyl) 517
Liouville theory: conformally invariant theory

1 1 .
SLlp] = . / Vi <§(VS@)2 +- %RSD‘|‘MR 67@)

0=24+7 L =1+60Q%=26——cy
v 2

Real positive action for ¢y <1
Non-critical strings: conformal mode + tachyon background
No matter fields: pure gravity
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Relation with the critical string
1 -/ 1 - .
Spl¢) = %/\@ (2—72(V¢)2 | §R¢+MR 6¢)

For cy = 25 Q=0 ~*=-4

If matter fields taken to be 25 bosons = space coordinates X
1 |
X|=— i [ = (VX)?
SulX] = o [ Vi (5(9x0?)
The conformal mode plays the role of real time T

One recovers the critical bosonic string in the flat Minkowski
background !

S[X] = % / Vi (%(GW@XWXV>
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Discretize metric

Courtesy Nicolas Curien et al.

Also fairly well understood
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2D discrete quantum gravity

— Random planar lattices (maps)
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Discrete 2d gravity Continuous 2d gravity

recursion relations

int bilit . .
Ay, Topological gravity
Random matrices QFT
CFT
A integrability
combinatorics Liouville theory
- &
‘ Conformal field theories
Planar maps
. conformal invariance
(dlagrams) : probabilities
KPZ relations
Cori-Vauquelin- 4

Schaeffer-.... SLE, GFF and all that
biiections L

combinatorics
probabilities Y

Brownian trees
and all that
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The Koebe-Andreev-Thurston theorem

There is a bijection between triangulations and circle

packings, modulo SL(2,C) Mobius transformations
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lllustrations borrowed to Schramm & Mishenko

Quantum Gravity in Paris 2014

F David, March 17,2014

lundi 17 mars 14



A generalisation of circle packings: circle patterns

The angles of intersection of the circles are given.
Find the circle pattern and the radii.

Theorem of existence and unicity circle packing = circle patterns
(l Rivin 1994, Ann. of Math.) with ang|es 0 or 7'('/2 On|y
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angle «, o, - - - fixed
adjust theradii R, R, ...
so that angles at faces
EF,. = 27

Minimize w.rt. R, R’, ... a
conveXx functional

P{R}; {a}]
involving the hyperbolic
volumes of the triangles

(A, F, ")
(Colin de Verdiere)
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Random Delaunay triangulations

Consider an abstract triangulation of the sphere T

+ angles 0. attached to the edges e of T
such that at each vertex Z Y
e—v

Theorem: there is a unique (mod. SL(2,C)) Delaunay triangulation
in the complex plane such that the circle angles are 0. =7 — 6,
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Voronol tessellation and Delaunay triangulation in the plane

No vertex of a triangle must be inside the circumscribed circle to any
another triangle

From Wikimedia Commons
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A triangulation is Delaunay if and only if f all 6. € [0, 7)

Warning! not all planar triangulations T admit 6 = {0.}
such that ) 6. =2n

e—v

Triangulations with loops or multiple links are excluded

O U

But one expects that admissible (7',0) are generic and in
the same universality class than generic planar
triangulations and general planar maps (more later...).
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Take as initial measure on triangulations the uniform measure on
triangulations and the flat measure on the angles

w(T) = u(T,d0)) = uniform(T) [] dote) ] ¢ ( > 0(e) - 277)

eeé’(T) UGV(T) e—v

Question: which measure does this induce on Delaunay
triangulations? For this consider N+3 points, 3 fixed by SL(2, C)

Dni3 = CNT3/SL(2,C) ~ CV

d,u(z47 S 7ZN—|—3) =7
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Transition between Delaunay triangulations by edge flips

the flip of link e occurs when 6(e) =0

Moving the points allows to explore the whole space of
Delaunay triangulations and of dressed abstract triangulations
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Elementary example: the hexahedron (5 points)  °
moving the 5% point
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15t question: Which sets of edges form independent basis for the
angles?

Answer:The sets whose complementary form a cycle-rooted-
spanning-tree of the triangulation with odd length cycle
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2" question: what is the Jacobian of the change of angle variables
between two basis of edges?

Answer: Jacobian=1

1
Indeed... u(7,d0) = §unif0rm(T) X H df(e)

eeEo(T)

S0, the measure over the points is given locally (for a given
Delaunay triangulation) by a simple Jacobian

N+3

w(T,d@) = du(z) = Ild?zv ‘det(JT(z)\{LQ,g}xgo)‘

00,
Jr(z) = (8(%,2@))%5(@))
veV (T
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The matrix elements of the
Jacobian are made of simple poles

06 06
Jv,e = - 3 J@,e = _6
0z, 0z,
i [ 1 1
Jvl,e = i - \
2 \ Zvs — Zv1 Zuz — Zu; )
i 1 1
ng,e = i - \
2 \ Zus — Zv1 Zuz — Zug )
i 1 1)
g = i
2 \ Zv3 — Zvp  Zug — Zuy ) v
i 1 1) )
g = _
2 \ Zvs — Zvy 2oy — Zuy )

The determinant of the Jacobian matrix is locally a rational
function of the z,’s and 2y ’s

DT(Z)\{LQ,S} - ‘det (JT(Z)\{17273}><50)‘
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Hyperbolic volume of triangle = volume of ideal tetrahedron
above the triangle in hyperbolic Poincare half-space

Vol(f) = JI(ay) + J(aw) + JI(a3)

= Im(Liy(2)) + In(|z])Arg (1 - 2)
23 — &1

(0%}

z =
o 2o — 21

a1

Z3

<1
<2

C

Action of a triangulation = sum over volumes

AT = = Z VOl(f)
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0 0
0z, 0z,

Define the matrix D,;(z) = Ar(2)

Theorem:
|. D,zis a Kahler formon ®Dyn.3 ie. D >0
2. D, is countinuous (no discontinuity when a flip occurs)

3. The measure determinant is the Kahler volume form

- -

DT(f7«’)\{1,2,3}) = det (DM) w,v +
! {1,2,3) _

The (2N x 2N) Jacobian has been reduced to a N x N Kahler
determinant! But this is not a determinantal process!
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du(z) = d*z det(D) is a conformal point process

Independence of the 3 fixed points and SL(2, C) invariance

_ det (Dy,,.(2))

H = 2
|A3(Za7 by Zc)|

As(2a, 2y 2c) = (2o — 2b)(2a — 2c) (26 — 2¢)

is independent of the choice of points

z%w:az_l_b with ad —bc =1
cz + d
N+3 2 N+3 .

H(z) = w'(z)| H(w) = H(w)
};[1 };[1 lcz; + al|2
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Local representation of D as a sum over triangles

52
Dy 5= Dy 3 ) Dy 3 - = — I
0= Dusl) o(f) == 52 Vol()
| cot(as) + cot(as) —cot(ag) —1i —cot(ag) +1i
D(f) = SR —cot(az)+i  cot(as) + cot(ay) —cot(a) —1i
(f) —cot(ag) —1i —cot(ar)+1  cot(ay) + cot(as)
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D as a discretized Fadeev-Popov determinant!

Local derivatives from vertices — faces

B 1. O(v1)(23—22) + P(v2)(Z1 — 23) + P(v3) (22 — Z1)

Ve(f) = 2i Area(f)

D can be written as

$DW)T = % DTy = A gas) vu(s
i j vertices of f
«continuous formy» with complex functions treated as real
vector fields !
Area(f) = d*wy R(f)? = e?ls)

®-D-U = /d2w e ?W) 9.0%(w) 0,V (w)
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This is a discrete version of the Faddeev-Popov
determinant in Polyakov’s formulation of two

dimensional gravity and of non-crititical string
theory !
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Functional integral over 2d Riemannian metrics, conformal gauge
() =0 * [ Dlgu] = [ Do) det(vie)

Faddeev-Popov ghost systems

det(Vep) = / Dlc,b] eXp( / Pz % (b..(Ve)™ + bzg(vC)ZZ))
Integrating over the b’s only one gets
det(Ver) = / Dlc] exp( / Pz 00 0. ach)
D is nothing but the discretised FP determinant
D = Vgp

and ¢(f) =-21log(R([))

plays the role of a Liouville field on the Voronol lattice
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e Discrete model with exact conformal invariance!

*|s it possible to define a stress-energy tensor?
(T'(2), T(2))
Yes, but not very useful (yet) since Ciotal = 0
* Positivity and convexity properties for the measure?
Yes!
Delaunay triangulations maximize the prepotential (easy)
But also the Kahler volume form (non trivial)

* Can one find an explicit expression for the measure!?

Unclear, except in the isoradial case (curvature = Q)

* Can we derive the Liouville action as the effective action
for the (coarse-grained or exact?) local conformal factor ?

@Liouville — _zlog(Rtriangle) — 1Og(ppoints)
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* |s this model related to topological gravity?

Yes, the measure can be written in term of Chern classes
of the moduli space of punctured surfaces

But not exactly the usual ones

* Other (quasi)-conformal embeddings of planar maps?
Exact uniformization? (see e.g. N. Curien recent work)
Other representations from algebraic geometry!?
Work in progress

* Integrability?
Unclear yet.

* Coupling to background classical metric?
Yes.Work in progress.

* Surfaces with boundaries & higher genus?! Matter fields?

Not difficult to formulate, to be done.
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