Exact Quantum Black hole entropy: a macroscopic window into quantum gravity

Sameer Murthy King's College London

Quantum gravity in Paris March 20, 2014

We do not have a direct microscopic probe of quantum gravity.

(Not yet! March 17, 14.45h London)

Black hole entropy is a precious clue to understand quantum gravity

Universal law in GR

$$S_{\rm BH}^{\rm class} = \frac{1}{4} \frac{A_{\rm H}}{\ell_{\rm P}^2} = \frac{A_{\rm H} c^3}{4 \, \hbar \, G_N}$$

(Bekenstein-Hawking '74)

Deviations from GR!

Recent progress on this front

What is a good microscopic theory of quantum gravity?

String theory?

Perturbatively UV finite in flat space

Weak-strong dualities

AdS/CFT holography

However, we do not know what phase (vacuum/compactification) corresponds to the real world!

(c.f. talk of Ambjorn)

Focus on universal requirements which should hold in all phases of the theory.

Interpret a BH as a statistical ensemble of states.

Black holes in string theory are ensembles of microscopic excitations

Microscopic

Macroscopic

Strominger-Vafa '96

$$d_{\text{micro}}(N) = e^{\pi\sqrt{N}} + \cdots \quad (N \to \infty)$$

Bekenstein-Hawking '74

$$S_{\mathrm{BH}}^{\mathrm{class}} = \frac{A_H}{4\ell_{\mathrm{Pl}}^2} = \pi\sqrt{N}$$

$$\log d_{\mathrm{micro}} = S_{\mathrm{BH}}^{\mathrm{class}} + \cdots \longrightarrow S_{\mathrm{BH}}^{\mathrm{quant}}$$
(finite N)

What is new? Finite size quantum effects!

$$S_{\text{BH}}^{\text{quant}} = \frac{1}{4}A + a_0 \log(A) + a_1 \frac{1}{A} + a_2 \frac{1}{A^2} + \cdots + b_1(A)e^{-A} + \cdots$$

Questions

Exact AdS/CFT

- 1. What is the physics of these corrections?
- 2. How to compute them in a concrete model?
- 3. Can we compare them to a similar expansion in the microscopic theory?

Supersymmetric Localization

Mock modular forms

Finite size corrections arise from quantum fluctuations in the black hole

Wald Entropy formalism

- Obeys the first law of thermodynamics
- Extends Bekenstein-Hawking area law in GR
- Applicable to any local effective action of gravity
- Successfully applied to BH models in supergravity

(Cardoso, de Wit, Mohaupt '99)

We still need a good formalism to study Quantum BH entropy including non-analytic and non-local terms.

Supersymmetric black holes and AdS₂

4d extremal Reissner-Nordstrom solution

 \Longrightarrow near-horizon geometry $AdS_2 \times S^2$.

All known supersymmetric BHs develop near-horizon AdS_2 factor.

Euclidean $AdS_2 \times S^2$

Quantum BH entropy is a functional integral over AdS_2 configurations (Sen '08)

$$\exp(S_{BH}^{\text{qu}}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{\text{AdS}_2}^{\text{reg}}$$

- Boundary conditions fixed by classical BH configuration (c.f. attractor mechanism Ferrara, Kallosh, Strominger)
- $AdS_2 \Rightarrow$ microcanonical ensemble with fixed charges
- Logarithmic one-loop corrections can be computed.

(Sen + Banerjee, Gupta, Mandal, 2010-2012)

AdS/CFT correspondence has been extremely successful...

$$\mathbf{CFT_{p+1}} \equiv \begin{array}{l} \text{Quantum gravity} \\ \text{on } \mathbf{AdS_{p+2}} \end{array} \blacktriangleright \begin{array}{l} \text{Quark-gluon plasma} \\ \text{Fluid dynamics} \\ \text{Quantum phase transitions} \\ \text{Superconductivity?} \end{array}$$

Good progress in understanding the classical planar limit $(N \to \infty)$.

Dual theory for BPS BH is a collection of supersymmetric ground states

Dual CFT₁ obtained as IR limit of brane configuration that makes up the black hole.

In d=0+1, no space for long-wavelength fluctuations.

$$Z_{\text{CFT}_1}(q) = \text{Tr}_{\mathcal{H}(q)} 1 = d_{\text{micro}}(q)$$
.

AdS/CFT correspondence
$$\Rightarrow Z_{\mathrm{AdS}_2}(q) = d_{\mathrm{micro}}(q)$$

Prototype: N=8 string theory in 4d (macro)

(Cremmer, Julia '78)

Macroscopic description: d=4 supergravity coupled to 28 U(1) gauge fields + superpartner scalars + fermions.

1/8 BPS dyonic BH solutions.

(Cvetic, Youm '96)

BH Charges $(q_I, p^I), I = 1, ..., 28,$

U-duality symmetry $E_{7,7}(\mathbb{Z})$

Quartic invariant $N(q,p) = q^2p^2 - (q.p)^2$

Classical BH Entropy $S_{BH} = \pi \sqrt{N} + \cdots$

Prototype: N=8 string theory in 4d (micro)

Microscopic degeneracies $d_{\rm micro}(N)$ computed using representation as D1-D5-P-K system in Type II string theory. (Maldacena, Moore, Strominger '99)

They depend only on U-duality invariant N.

With
$$q=e^{2\pi i \tau}$$
,
$$\sum_{\rm N} d_{\rm micro}({\rm N}) \ e^{2\pi i {\rm N} \tau} = \theta(\tau)/\eta(\tau)^6$$

$$= q^{-1}+2+8q^3+12q^4+39q^7+56q^8+\cdots$$

BPS quantum black hole entropy

$$\exp(S_{BH}^{\text{qu}}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{\text{AdS}_2}^{\text{reg}}.$$

Supercharge Q with $Q^2 = L_0 - J_0$.

 \mathcal{M} : Field space of supergravity.

 $d\mu$: Measure on this field space.

O: Wilson line.

S: Action of graviton and other massless fields.

Localization

Witten '88, Duistermaat-Heckmann '82, Atiyah-Bott '84, Pestun '07

Consider a supermanifold $\mathcal M$ with an odd vector field Q and an off-shell algebra $Q^2=H$ with H a compact U(1) .

We would like to evaluate an integral of a Q-invariant operator \mathcal{O}

 $I := \int_{\mathcal{M}} d\mu \, \mathcal{O} \, e^{-\mathcal{S}} \,.$

The functional integral localizes onto the submanifold \mathcal{M}_Q of solutions of the off-shell BPS equations $Q\Psi=0$

$$I = \int_{\mathcal{M}_Q} d\mu_Q \,\mathcal{O} \, e^{-\mathcal{S}} \,.$$

How to compute the functional integral

(A.Dabholkar, J.Gomes, S.M. '10, '11)

- 1. Formalism: N=2 off-shell supergravity. (de Wit, van Holten, Van Proeyen '80)
- 2. Find all solutions of localization equations $Q_1\Psi=0$, subject to $AdS_2\times S^2$ boundary conditions. (R.Gupta, S.M. '12)

- Evaluate action on these solutions (including all higher derivative terms). Compute the measure.
- 4. Only chiral-superspace integrals in the action contribute.

 These are exactly known in string theory.

 (V.Reys, S.M. '13)

Evaluation of the functional integral

- QG path integral reduces to an 8-dimensional integral.
- 7 of the integrals are Gaussian

$$\left(e^{S_{BH}^{\text{qu}}}(N) = \int \frac{d\sigma}{\sigma^{9/2}} \exp\left(\sigma + \pi^2 N/4\sigma\right) = \widetilde{I}_{7/2}(\pi\sqrt{N})\right)$$

A quantitative test

(Classical entropy)

N	$d_{\text{micro}}(N)$	$\exp(S^{\mathrm{cl}}(\mathbf{N}))$
3	8	230.76
4	12	535.49
7	39	4071.93
8	56	7228.35
	152	33506.14
12	208	53252.29
15	513	192400.81
•••	•••	•••
10^{5}	exp(295.7)	exp(314.2)

$$\log(d_{\text{micro}}) \stackrel{\Delta \to \infty}{\longrightarrow} S_{BH}^{\text{cl}}$$
.

A quantitative test

(A.Dabholkar, J.Gomes, S.M. '11)

N	$d_{\rm micro}({ m N})$	$\exp(S^{qu}(N))$	$\exp(S^{\mathrm{cl}}(\mathrm{N}))$
3	8	7.97	230.76
4	12	12.2	535.49
7	39	38.99	4071.93
8	56	55.72	7228.35
	152	152.04	33506.14
12	208	208.45	53252.29
15	513	512.96	192400.81
•••	•••	•••	•••
10^5	exp(295.7)	exp(295.7)	exp(314.2)

$$d_{\text{micro}}(\Delta) = e^{S_{BH}^{\text{qu}}(\Delta)} \left(1 + O(e^{-\pi\sqrt{\Delta}/2}) \right)$$

Why does this work so well?

The Fourier series of the microscopic degeneracies

$$Z(\tau) \equiv \sum_{N} d_{\text{micro}}(N) e^{2\pi i N \tau} = \theta(\tau)/\eta(\tau)^{6}$$

is a modular form.

Strong-weak coupling symmetry: $Z(-1/\tau) = \tau^{5/2}Z(\tau)$

Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion

Wall-crossing and BH phase transitions

Mock modular forms provide the answer

(A.Dabholkar, S.M., D.Zagier '12)

These functions were described by Ramanujan, who gave a list of examples, but did not give a definition!

Their definition and structural properties were finally understood by S. Zwegers in 2000.

Surprisingly, this is exactly what we need to solve the BH wall-crossing problem.

For the N=4 theory, we could solve it fully (based on formula due to Dijkgraaf, Verlinde, Verlinde '96), and explicitly compute the partition function of a single BH as a function of its charges.

What is the partition function of a single-centered black hole?

We have a canonical decomposition of the partition function:

$$Z_{\rm micro}(\tau) = Z_{\rm BH}(\tau) + Z_{\rm multi}(\tau)$$

- $Z_{\mathrm{multi}}(\tau)$ contains all the wall-crossing information.
- $Z_{\rm BH}(au)$ is the partition function of the single centered BH. It is a mock modular form.

One can now use modular symmetry to make Rademacher expansions as before. (e.g. Manschot, Bringmann '13).

Many new explorations have opened up as a result. e.g. Large discrete symmetry groups (moonshine) of BHs in string theory (J. Harvey, S.M. '13)

Conclusions and outlook

- Finite size effects in BH thermodynamics can be computed.
- Localization methods give us convergent perturbation expansions for the quantum gravity partition function.
- Emergence of quantum structure from continuum gravity, inclusion of sub-leading saddle points are important.
- Mathematical structures: New mock modular symmetries seem to play a key role in the BH wall-crossing problem.
- Effective low-energy theory provides strong constraints on quantum theory of gravity.

Lunch time!