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Exact Quantum Black hole entropy:



We do not have a direct microscopic 
  probe of quantum gravity.

(Not yet! March 17, 14.45h London)



Black hole entropy is a precious clue to 
understand quantum gravity

Universal law in GR

(Bekenstein-Hawking ’74)
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Deviations from GR!

Recent progress  
    on this front



What is a good microscopic theory of 
quantum gravity?

Perturbatively UV finite in flat space  
Weak-strong dualities   
AdS/CFT holography

Focus on universal requirements which should 
hold in all phases of the theory.

Interpret a BH as a statistical ensemble of states.

String theory?

However, we do not know what phase (vacuum/
compactification) corresponds to the real world!  

(c.f. talk of Ambjorn)
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(finite N)

Black holes in string theory are ensembles 
of microscopic excitations
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What is new? Finite size quantum effects!

1. What is the physics of these corrections?

2. How to compute them in a concrete model?

3. Can we compare them to a similar  
    expansion in the microscopic theory?

Questions

Mock modular forms

Exact AdS/CFT

Supersymmetric 
Localization
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Finite size corrections arise from quantum 
fluctuations in the black hole

•Extends Bekenstein-Hawking area law in GR

We still need a good formalism to study  
Quantum BH entropy including  
non-analytic and non-local terms.

•Obeys the first law of thermodynamics
Wald Entropy formalism

•Applicable to any local effective action of gravity

(Cardoso, de Wit, Mohaupt ’99)

•Successfully applied to BH models in supergravity



Supersymmetric black holes and AdS2

4d extremal Reissner-Nordstrom solution  
        near-horizon geometry  AdS2 � S2 .

r

L0

Euclidean AdS2 � S2

J0

All known supersymmetric BHs   
develop near-horizon          factor.AdS2



Quantum BH entropy is a functional integral 
over          configurationsAdS2 (Sen ’08)
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• Boundary conditions fixed by classical BH configuration 

•              microcanonical ensemble with fixed charges AdS2 �

  (c.f. attractor mechanism Ferrara, Kallosh, Strominger)

• Saddle point evaluation         classical Wald entropy

• Logarithmic one-loop corrections can be computed.
(Sen + Banerjee, Gupta, Mandal, 2010-2012)



                 correspondence has been 
extremely successful...
AdS/CFT

Good progress in understanding the classical planar 
limit                .(N�⇥)

CFTp+1 � AdSp+2

Quantum gravity 
on

Quark-gluon plasma
Fluid dynamics
Quantum phase transitions
Superconductivity?

Quantum gravity = 1/N effects…But



Dual theory for BPS BH is a collection of 
supersymmetric ground states

Dual           obtained as IR limit of brane configuration 
that makes up the black hole.

CFT1

AdS/CFT correspondence 
� ZAdS2(q) = dmicro(q)

In d=0+1, no space for long-wavelength fluctuations.
ZCFT1(q) = TrH(q) 1 = dmicro(q) .



Prototype: N=8 string theory in 4d (macro)

Quartic invariant  

BH Charges (qI , p
I), I = 1, . . . , 28 ,

1/8 BPS dyonic BH solutions. (Cvetic, Youm ’96)

U-duality symmetry

Classical BH Entropy SBH = �
�

N + · · ·

N(q, p) = q2p2 � (q.p)2

Macroscopic description: d=4 supergravity coupled to  
28 U(1) gauge fields + superpartner scalars + fermions.

(Cremmer, Julia ’78)

E7,7(Z)



With q = e2�i⇥ ,
�

N

dmicro(N) e2�iN⇥ = ⇥(⇤)/�(⇤)6

= q�1 + 2 + 8q3 + 12q4 + 39q7 + 56q8 + · · ·

Prototype: N=8 string theory in 4d (micro)
Microscopic degeneracies                 computed using 
representation as D1-D5-P-K system in Type II  
string theory.

dmicro(N)

(Maldacena, Moore, Strominger ’99)

They depend only on U-duality invariant N. 

Modular form!



 Supercharge    with Q2 = L0 � J0 .Q

BPS quantum black hole entropy
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.

L0

Euclidean AdS2 � S2

J0: Field space of supergravity.M
dµ : Measure on this field space.

O : Wilson line.
S : Action of graviton and other massless fields.



Localization Witten ’88, Duistermaat-Heckmann ’82,   
Atiyah-Bott ’84,   Pestun ’07

Consider a supermanifold       with an odd vector field     and 
an off-shell algebra               with     a compact         .Q2 = H

Q
H U(1)

M

Q�We would like to evaluate an integral of a       invariant  
operator    O
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�

M
dµO e�S .

The functional integral localizes onto the submanifold         
of solutions of the off-shell BPS equations             
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How to compute the functional integral 
(A.Dabholkar, J.Gomes, S.M. ’10, ’11)

3. Evaluate action on these solutions (including all higher 
    derivative terms). Compute the measure. 

1. Formalism: N=2 off-shell supergravity. (de Wit, van Holten,  
           Van Proeyen ’80)

2. Find all solutions of localization equations               ,  
    subject to                  boundary conditions.

Q1� = 0
AdS2 � S2

(R.Gupta, S.M. ’12)

4. Only chiral-superspace integrals in the action contribute.  
    These are exactly known in string theory.  (V.Reys, S.M. ’13)



Evaluation of the functional integral 

• QG path integral reduces to an 8-dimensional integral. 

• 7 of the integrals are Gaussian
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3 8 230.76

4 12 535.49

7 39 4071.93

8 56 7228.35

11 152 33506.14

12 208 53252.29

15 513 192400.81

... ... ...

exp(295.7) exp(314.2)105

A quantitative test

N dmicro(N) exp
�
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⇥

(Classical entropy)

log(dmicro)
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3 8 7.97 230.76

4 12 12.2 535.49

7 39 38.99 4071.93

8 56 55.72 7228.35

11 152 152.04 33506.14

12 208 208.45 53252.29

15 513 512.96 192400.81

... ... ... ...

exp(295.7) exp(295.7) exp(314.2)105

A quantitative test (A.Dabholkar, J.Gomes, S.M. ’11)
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Why does this work so well?

Z(�1/�) = �5/2Z(�)Strong-weak coupling symmetry:

SL2(Z)
� � � + 1
� ⇥ �1/� .

Modular symmetry 
          group

Highly constraining

The Fourier series of the microscopic degeneracies

is a modular form.   
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Bekenstein- 
Hawking

One-loop 
corrections

Orbifolds of 
AdS2

(A.Dabholkar,  
J.Gomes,  
S.M. to appear)

Hardy-Ramanujan-Rademacher expansion 

Exact formula for degeneracies
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Wall-crossing and BH phase transitions

ΔS

N

Serious problem: throwing out multi-
centered BHs destroys the modular 
symmetry. (Denef-Moore 2007) 

Phase I

(Q,P)(Q,P)
+

Phase II

(Q,P)(Q,P)

Q

P



Mock modular forms provide the answer
(A.Dabholkar, S.M., D.Zagier ’12)

These functions were described by Ramanujan, who gave a 
list of examples, but did not give a definition! 

Their definition and structural properties were finally 
understood by S. Zwegers in 2000. 

Surprisingly, this is exactly what we need to solve the BH 
wall-crossing problem.

For the N=4 theory, we could solve it fully (based on formula due to 

Dijkgraaf, Verlinde, Verlinde ’96), and explicitly compute the partition 
function of a single BH as a function of its charges. 



We have a canonical decomposition of the partition function:

•                contains all the wall-crossing information.

•              is the partition function of the single centered BH.  
   It is a mock modular form.

Zmulti(�)

ZBH(�)

Zmicro(�) = ZBH(�) + Zmulti(�)

What is the partition function of a single-
centered black hole?

One can now use modular symmetry to make Rademacher 
expansions as before. 

Many new explorations have opened up as a result.  
e.g.  Large discrete symmetry groups (moonshine) of  
BHs in string theory (J. Harvey, S.M. ’13)

(e.g. Manschot, Bringmann ’13).



Conclusions and outlook
•Finite size effects in BH thermodynamics can be computed.

•Localization methods give us convergent perturbation 
expansions for the quantum gravity partition function. 

•Emergence of quantum structure from continuum gravity, 
inclusion of sub-leading saddle points are important. 

•Mathematical structures: New mock modular symmetries 
seem to play a key role in the BH wall-crossing problem. 

Lunch time!

•Effective low-energy theory provides strong constraints on 
quantum theory of gravity. 


