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Black Hole Thermodynamics
The 0th, 1st, 2nd and 3rd laws of BH

stationary
state (1)
M, J, Q

stationary 
state (2)
M �, J �, Q� 0th law: the surface gravity κ

is constant on the horizon.

1st law:
δM = κ

8π δA + ΩδJ + ΦδQ� �� �
work terms

2nd law:
δA ≥ 0

3rd law: the surface gravity value κ = 0

(extremal BH) cannot be reached by any

physical process.

Ω ≡ horizon angular velocity
κ ≡surface gravity (‘grav. force’ at horizon)
If �a =killing generator, then �a∇a�b = κ�b.

Φ ≡electromagnetic potential.

�
Some definitions



Black Hole Thermodynamics
Hawking Radiation: QFT on a BH background 

Out state: thermal flux of particles 
as we approach the point i+

In state: vacuum far 
from i-

T∞ =
κ

2π

Temperature at infinity

From the first law
δM =

κ

8π
δA + ΩδJ + ΦδQ

One gets the 
ENTROPY

S =
A

4�2p

(2)



The local laws of BH 
mechanics

BH thermodynamics from a local perspective



Black Hole entropy in LQG 
The standard definition of BH is GLOBAL

(need a quasi-local definition) 

?

Alternative Paradigm:
Ashtekar-Bojowald (2005), 

Ashtekar-Taveras-Varadarajan (2008), 
Ashtekar-Pretorius-Ramazanoglu (2011). 

Usual paradigm



Black Hole Thermodynamics
A local perspective
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χ = ξ + Ω ψ = ∂t + Ω ∂φ

ua =
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Introduce a family of 
local stationary observers

~ZAMOS 

H

WO

Singularity
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χ

a = ||ua∇aub|| =
1
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A thought experiment
throwing a test particle from infinity

Particle’s equation of motion

Conserved quantities

wa

ua

wa∇awb = q Fbcw
c

Symmetries of the background

Lξgab = Lψgab = LξAa = LψAa = 0

E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



A thought experiment
throwing a test particle from infinity

Particle at infinity

wa

ua

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



A thought experiment
throwing a test particle from infinity

wa

ua

At the local observer

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E�oc ≡ −waua ≡ local energy

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen from infinity

wa

ua

The BH readjusts parameters 

δM = E δJ = L

δQ = q

The area change from 1st law 

δM =
κ

8π
δA + ΩδJ + ΦδQ

κ

8π
δA = E − ΩL− Φq

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen by a local observer

wa

ua

At the local observer

E�oc ≡ −waua ≡ local energy

κ

8π
δA = E − ΩL− Φq

χ = ξ + Ω ψ = ∂t + Ω ∂φ ua =
χa

�χ�

E�oc = −waξa + Ωwaψa

�χ�

E�oc =
E − ΩL− qΦ

�χ�
�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



After absorption
seen by a local observer

wa

ua

κ

8π
δA = E − ΩL− Φq

E�oc =
E − ΩL− qΦ

�χ�

Eloc =
κ

8π�χ�δA

κ ≡ κ

�χ�

Eloc =
κ

8π
δA

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



Local first law
Local BH energy

H

wa

E�oc ≡ −waua ≡ local energy of the absorbed particle

δE = E�oc

The appropriate local energy notion
must be the one such that:

δE =
κ

8π
δA



H

WO

Singularity

δTab

Local first law
A refined argument 

Ja = δT a
bχb is conserved thus

�

H

dV dS δTabχ
akb =

�

WO

JbN
b

Na

ka

The Raychaudhuri equation

dθ

dV
= −8πδTabk

akb

�

H

dV dS V
dθ

dV
= −8π�χ �

κ
δE, δE =

κ

8π
δA

�

H

dV dS δTab κV ka
� �� �

χa

kb =
�

WO

�χ � δTabu
aN b

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t



δE =
κ

8π
δA

The Local first law is dynamical
Simple example: Vaidya spacetime

IH2

IH1

IH1

IH1

IH2

IH1

WO

(18)

The same holds in non symmetric situations (detailed proof in 
progress AP, O. Moreschi, E. Gallo)



Local first law
Main result

H

wa

δE =
κ

8π
δA κ ≡ κ

||χ|| =
1
�

+ o(�)

�2 << A

δM =
κ

8π
δA + Ω δJ + Φ δQ,

a = ||ua∇aub|| =
1
�

E =
A

8π�



Quantization
Chern-Simons theory with 

spin-network punctures
Alesci, Agullo, Ashtekar, Baez, Barbero, Bianchi, Borja, 
Corichi, Diaz-Polo, Domagala, Engle, Frodden, Ghosh, 

Krasnov, Kaul, Lewandowski, Livine, Majumdar, Meissner, 
Mitra, AP, Pranzetti, Rovelli, Sahlmann, Terno, Thiemann, 

Villasenor, etc.   



An important ingredient 

 Present ingredient: 
Quantum IH physical 

state

Quantum bulk state: Represented by 
a thermal bath at Unruh temperature 

as seen by stationary observers.

� ≡ arbitrary fixed proper distance to the horizon

Near horizon 
geometry

 Present ingredient: 
Quantum IH physical 

state

Missing ingredient: Quantum bulk 
semiclassical state describing a 

Schwarzschild geometry near the 
horizon

(23)

TU =
1

2π�



The AREA gap and BH 
quantum transitions

�AS |j1, j2 · · · � =

�
8πγ�2p

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

Is the number of punctures an important observable?
The area gap

amin = 4πγ
√

3

a) By a rearrangement of the spin quantum numbers labelling spin network
links ending at punctures on the horizon without changing the number of
punctures N (in the large area regime this kind of transitions allows for area
jumps as small as one would like as the area spectrum becomes exponentially
dense in R+ [Rovelli 96]

b) By the emission or absorption of punctures with arbitrary spin (such tran-
sitions remain discrete at all scales and are responsible for a modification of
the first law: a chemical potential arises and encodes the mean value of the
area change in the thermal mixture of possible values of spins j).



amin = 4πγ
√

3

a) By a rearrangement of the spin quantum numbers labelling spin network
links ending at punctures on the horizon without changing the number of
punctures N (in the large area regime this kind of transitions allows for area
jumps as small as one would like as the area spectrum becomes exponentially
dense in R+ [Rovelli 96]

b) By the emission or absorption of punctures with arbitrary spin (such tran-
sitions remain discrete at all scales and are responsible for a modification of
the first law: a chemical potential arises and encodes the mean value of the
area change in the thermal mixture of possible values of spins j).

�H|j1, j2 · · · � =
�
γ�

2
p

�

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

The scale \ell is a fiducial quantity 
(a regulator)

The regulator is natural:
York 1983, Hajicek-Israel 1980.

Is the number of punctures an important observable?
The area gap



Is the number of punctures an important observable?
So far people assumed it is not!

The usual LQG calculation was performed in the microcanonical ensemble (with
an implicit assumption of a vanishing chemical potential). The number of states
d[{sj}] associated with a configuration {sj} is

d[{sj}] =
� �

k

sk

�
!
�

j

(2j + 1)sj

sj !
.

S =
γ0

γ

A

4�2p

with γ0 solution of

log[e−σ
�

j

(2j + 1)e−2πγ0
√

j(j+1)] = 0 γ0 = 0.274067....

but this is inconsistent with

δM =
κ

2π
δA + Ω δJ + Φ δQ

unless γ = γ0.

Agullo-Barbero-Borja-DiazPolo-Villasenor, 
Meissner, Domagala-Lewandowski



Is the number of punctures an important observable?
N is observable! (Ghosh-AP 2011)

The canonical partition function is given by

Z(N, β) =
�

{sj}

�

j

N !
sj !

[(2j + 1)]sj e−βsjEj =⇒ log Z = N log[
�

j

[(2j + 1)]e−βEj ]

where Ej = �2g
�

j(j + 1)/�. A simple calculation gives For the entropy we get

S = − β2 ∂

∂β
(
1
β

log Z)
����
β=2π�

=
A

4�2p
+ log Z

more precisely

S =
A

4�2p
+ σ(γ)N where σ(γ) ≡ log[

�

j

(2j + 1)e−2πγ
√

j(j+1)].

The (thermodynamical) local first law versus the (geometric) local first law

δM =
κ

2π
δS + Ω δJ + Φ δQ + µ δN ⇐⇒ δM =

κ

2π
δA + Ω δJ + Φ δQ

µ = −T
∂S

∂N
|A = − κ

2π
σ(γ)

K. Krasnov (1999), S. Major (2001), F. Barbero E. 
Villasenor (2011)
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Is the number of punctures an important observable?
N is observable!

The canonical partition function is given by

Z(N, β) =

�

{sj}

�

j

N !

sj !
[(2j + 1)]

sj e−βsjEj =⇒ log Z = N log[

�

j

[(2j + 1)]e−βEj ]

where Ej = �2g
�

j(j + 1)/�. A simple calculation gives For the entropy we get

S = − β2 ∂

∂β
(
1

β
log Z)

����
β=2π�

=
A

4�2p
+ log Z

more precisely

S =
A

4�2p

�
1− σ(γ)

γ dσ
dγ

�
from EOS �E� = − ∂

∂β
log Z

����
β=2π�

⇐⇒ N =
−A

4�2pγ
dσ
dγ

The (thermodynamical) local first law versus the (geometric) local first law
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κ

2π
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Future...



j

−j ≤ m ≤ j

What about matter?
matter d.o.f. do not contribute to energy!

�H|j1, j2 · · · � =

�
γ�

2
p

�

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �

The canonical partition function is given by

log Z = N log[
�

j

[(2j + 1)]e−βEj ]

S = − β
2 ∂

∂β
(
1
β

log Z)
����
β=2π�

⇐⇒ S =
A

4�2p

+ σ[γ]N

where
σ[γ] ≡ log[

�

j

(2j + 1)e−2πγ
√

j(j+1)].



j

−j ≤ m ≤ j

What about matter?
matter behaves as if at infinite temperature!

M

The puncture is 
dressed by matter 

d.o.f.

�H(�)|j1, j2 · · · � = [
γ∗G∗
�G(�)

�

p

�
jp(jp + 1)]|j1, j2 · · · �

where γ∗, G∗ are the UV values. The canonical partition function is given by

logZ = N log[
�

j

[(2j + 1)gM ]e−βEj ]

where gM = gM [j, γ, · · · ; �] matter degeneracy.

S = − β
2 ∂

∂β
(
1

β
logZ)

����
β=2π�

⇐⇒ S =
A

4G(�)
+ Σ[γ, · · · ; �]N

where

Σ[γ, · · · ; �] = log[
�

j

(2j + 1)gMe
−2π γ∗G∗

G(�)

√
j(j+1)].



j

−j ≤ m ≤ j

What about matter?
matter behaves as if at infinite temperature!

M

Fixed 
dynamically: 
Hamiltonian 
constraint!!

(see Pranzetti)

�H(�)|j1, j2 · · · � = [
γ∗G∗
�G(�)

�

p

�
jp(jp + 1)]|j1, j2 · · · �

where γ∗, G∗ are the UV values. The canonical partition function is given by

logZ = N log[
�

j

[(2j + 1)gM ]e−βEj ]

where gM = gM [j, γ, · · · ; �] matter degeneracy.

S = − β
2 ∂

∂β
(
1

β
logZ)

����
β=2π�

⇐⇒ S =
A

4G(�)
+ Σ[γ, · · · ; �]N

where

Σ[γ, · · · ; �] = log[
�

j

(2j + 1)gMe
−2π γ∗G∗

G(�)

√
j(j+1)].



What about matter?
we can get the general form of BH entropy

At thermal equilibrium the average energy �E� = − ∂
∂β logZ One can obtain a

thermal equilibrium relation between the number of punctures to the area

N =
A

4G(�)a(γ, · · · ; �) .

where we have defined

a =
2π γ∗G∗

G(�)

�
j(2j + 1)gM

�
j(j + 1)e−2π γ∗G∗

G(�)

√
j(j+1)

�
j(2j + 1)gMe−2π γ∗G∗

G(�)

√
j(j+1)

.

We rewrite the entropy in the Sackur-Tetrode form

S =
A

4G(�)

�
1 +

Σ[γ, · · · ; �]
a(γ, · · · ; �)

�
.



The scaling of BH entropy
Holography and renormalization condition

log(Z) ≡ N log[
�

j

(2j + 1)gM exp(− aj
4�2p

)]

Previous quantities are well defined as long as

gM < exp (
aj

4G(�)
).

Therefore, in view of the previous physical argument we assume that

gM (j, ..., γ, �) = exp

�
aj

4G(�)

�
×

�
g0m(j, ..., γ) + g1m(j, ..., γ)

G(�)

�2
+ · · ·

�
,

S =
A

4G(�)

�
1 +

G(�)

γ∗G∗a0

�
log z0 +

G(�)

�2
K + · · ·

��

µ̄ = − log z0
2π�

− G(�)

�3
z1
2π

+ · · ·



The scaling of BH entropy
Holography and renormalization condition

There are now three ways to get Hawking entropy in the low energy limit

1. First, a0γ∗G∗ � G(�IR), and �2 � G(�). This can happen in more than

one ways:

(a) If gravity in the infrared is much weaker than in the UV, namely

G∗ � G(�IR) and a0γ∗ ∼ o(1).

(b) two G∗ � G(�IR) but a0γ∗ � 1

2. Second if z0 = 1 or more explicitly

1 =

�

j

(2j + 1)g0M(j, · · · ).



The scaling of BH entropy
Holography and renormalization condition

There are now three ways to get Hawking entropy in the low energy limit

1. First, a0γ∗G∗ � G(�IR), and �2 � G(�). This can happen in more than

one ways:

(a) If gravity in the infrared is much weaker than in the UV, namely

G∗ � G(�IR) and a0γ∗ ∼ o(1).

(b) two G∗ � G(�IR) but a0γ∗ � 1

2. Second if z0 = 1 or more explicitly

1 =

�

j

(2j + 1)g0M(j, · · · ).

The usual condition on 
the Immirzi parameter 

now involves other 
couplings



The scaling of BH entropy
The puncture chemical potential

In the UV (� ≈ �p) punctures are a relevant.

This is reflected in a nonvanishing chemical potential and

a large deviation from Bekenstein-Hawking entropy.

µ �= 0

S =
A

4�2p
+ quantum geometry corrections



The scaling of BH entropy
The puncture chemical potential

In the IR (� >> �p) punctures are no longer relevant (continuum limit).

This is reflected in a vanishing chemical potential.

BH entropy matches Bekenstein-Hawking entropy.

µ = 0

S =
A

4�2p



Conclusions
(29)

• A local definition is needed which corresponds to large semiclassical BHs:

Isolated horizons [Ashtekar et al.] provides a suitable boundary condition.

• Yet a little bit more (near horizon geometry) is necessary for dealing with

BH thermodynamics.

• New [E. Frodden, A. Ghosh and AP (arXiv:1110.4055)]: A preferred no-

tion of stationary observers can be introduced. These are the suitable

observers for local thermodynamical considerations. There is:

1. a unique notion of energy of the system described by these observers

E = A/(8π�).

2. a universal surface gravity κ = 1/�.

3. and they are related by a local fist law

δE =
κ

8π�
δA.

4. The first law is of a dynamical nature.

• In progress [E. Wilson-Ewin, AP, D. Forni]: a first law for Rindler Horizons

holds

M, J, Q

M �, J �, Q�Degeneracy of energy notion is eliminated



The area gap of LQG=an energy gap in the local formulation.

New [A. Ghosh and AP (PRL 107 2011)]: The entropy computation yields and

entropy formula that is consistent with Hawking semiclassical calculations for

all values of the Immirzi parameter γ:

δM =
κ

2π
δS + ΩδJ + ΦδQ + µδN ⇐⇒ δM =

κ

2π
δA + Ω δJ + Φ δQ

If one ignores matter degrees of freedom

S =
A

4�2p
+ σ(γ)N µ =

κ

2π
σ(γ)

where σ(γ) = log[
�

j(2j + 1) exp (−2πγ
�

j(j + 1))]. No scaling appart from

possible running of γ [Speziale et al.] If one fixes γ = γ0 then µ = 0!

If one does not ignore matter degrees of freedom

S =
A

4�2p
+ Σ[γ, · · · ; �]N ⇐⇒ S =

A

4�2p

�
1 +

Σ[γ, · · · ; �]

a[γ, · · · ; �]

�

where Σ[γ, · · · ; �] = log[
�

j(2j + 1)gM exp (−2πγ
�

j(j + 1))].

Non trivial scaling.

Convergence requires micro-holography gM < exp aj/(4�2p)

Recovering Bekenstein-Hawking entropy is a RC involving many couplings.



Thank you very much!



Entropy calculation
The old view

σ(γ) = log[
∞�

j=1/2

(2j + 1) exp−2πγ
�
j(j + 1)]

The usual LQG calculation was performed in the microcanonical ensemble (with

an implicit assumption of a vanishing chemical potential) and gives

S =
γ0
γ

A

4�2p
=

γ0
γ

2π�

�2p
E

while semiclassical considerations (Hawking radiation) imply that

T−1
U =

∂S

∂E
=

2π

κ�2p

Thermal equilibrium at Unruh temperature is achieved only if the Immirzi pa-
rameter is fine tuned according to

γ = γ0 = 0.274067...

(1)

(2)

(3)

(4)


