Tensor Models/Group Field Theories: An overview

Joseph Ben Geloun

Albert Einstein Institute Max-Planck Institute for Gravitational Physics

March 27, 2014 Quantum Gravity in Paris 2014 LPT-Orsay & IHES

Introduction: Overview of Tensor Models/Group Field Theory

2 Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

3 Tensorial Group Field Theory: Renormalization Program

- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

4 TM Combinatorics

- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

1 Introduction: Overview of Tensor Models/Group Field Theory

Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

3 Tensorial Group Field Theory: Renormalization Program

- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

TM Combinatorics

- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

Generalities: Quantizing Gravity

• Several issues. The Eistein theory of gravity is perturbatively divergent and nonrenormalizable [DeWitt PR '67, Goroff & Sagnotti, NPB '86].

• Remarkable Sakharov's idea: "An induced theory of gravity" [Sakharov, '67, SPD 68, Visser MPLA '02].

• Alternative scenarii (coupling gravity to other fields, Asymptotic Safety, ...) and more "daring" scenarii (extra-dimensions, susy, background field independent methods, ...).

• Focus on *Discrete* methods. Mid 80's: In particular, *Matrix Models* [Di Francesco et al., PR '95] prove to be a solvable framework and concrete realization of an "emergent gravity" scenario.

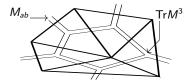
• Matrix Models and Random 2D geometry: To "replace" the sum over topologies and geometry of a 2D surface by a sum over random triangulations of surfaces.

From Matrices ...

Matrix Models (MM): Probability measures for matrices M of *large size* N and describe 2D gravity. Archetype:

$$Z_{matrix} = \int dM \ e^{-rac{1}{2} {
m Tr} M^2 + rac{\lambda}{\sqrt{N}} {
m Tr} M^3} = e^{Z_{2DQG}}$$

• A triangulated surface \equiv A Feynman ribbon graph:

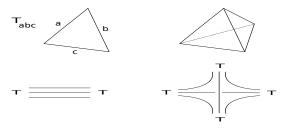


• 't Hooft's Large N limit: Planar graphs' sector \equiv surfaces of genus 0 (can be counted like trees).

• Stat. Mech.: \exists phase transition ($N \rightarrow \infty$; $\lambda \rightarrow \lambda_c$) \sim a continuum limit (infinitely refined Riemann surfaces) as a 2D theory of gravity (Liouville + CF matter).

... to Tensors

• Tensor Models (TM) of rank D: Tool for randomizing geometry in dimension D Basic building blocks (D-1)-simplexes & Interaction forms a D-simplex; For e.g. in 3D:



• Some results [Ambjorn et al. '91, Sasakura '91, Gross '92, Boulatov-Ooguri '92]

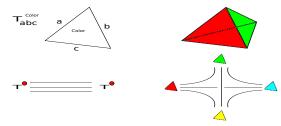
- Ambjorn et al., 91', numeric phase transition;

- Boulatov-Ooguri-type TM for 3D-4D simplicial gravity: (Topological/Lattice Field Theory like theory) 92'/93'; Related to Ponzano-Regge partition function 3D;

- Loop Quantum Gravity Connection ([Reisenberger-Rovelli, '00, Freidel, '05, Oriti, '06]) and "birth" of Group Field Theory.
- Lack of 1/N expansion \Rightarrow all nice exact results of MM cannot be extended to TM.
- TM need improvement(s): C + DT's, Boulatov-Ooguri models and GFT's;

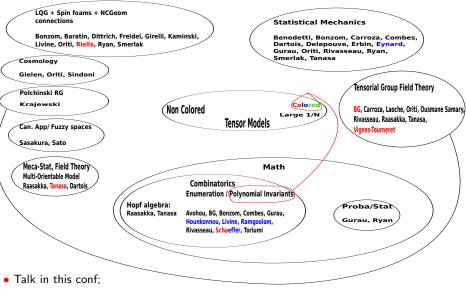
Colored Tensor Models

• '10 Gurau's 1/N expansion for colored TM [Gurau, AHP, '11] 3D:



- triangulate better objects (pseudo-manifolds) [Gurau, CMP '11]
- Leading graphs triangulate only spheres in any D [Gurau, AHP '11]
- have computable critical exponent [Bonzom, Gurau, Riello, Rivasseau, NPB, '11];
- with possible matter fields [Bonzom et al., PRD '12 ; Benedetti et al, NPB '12];
- could lead to extension of the Virasoro-DeWitt algebra [Gurau, NPB '11];
- underlie universal theory for general (ie unsymmetrized) tensors [Gurau, '11];
- Existence of a double-scaling limit [Dartois et al. '13, Gurau & Schaeffer, '13]
- Expand a natural $U(N)^{\otimes D}$ invariance [Gurau, '12, Bonzom et al. '12]
- Define renormalizable field theories;

TM People



- Recent Honorable Guest Contributors;
- Ordinary Contributors (running the program with usual/stressful deadlines);

Foundation questions:

• Tensor: Only a discretization tool or a "real" quanta of some "thing" ?

Big bang is identified with geometrogenesis, ie emergence of classical space-time through one or several phase transitions. Pre-space (analog of space-time before condensation) is treated as a physical transplanckian early phase of the universe (not just as a mathematical trick) [Oriti, '06, Konopka '08].

• What if $N = \infty$ from the beginning ? Several MM will be already divergent, worse are the behavior of TM.

• Divergences \Rightarrow Need of Renormalization. Basic axioms for a QFT with Tensors ? [Rivasseau: The Tensor Track '11, '12, '13] Renormalization group is a guiding/selecting thread in models' space.

• Does it work for matrices ? The Grosse-Wulkenhaar model: Renormalizable and Asymptotically Safe model (without any extra-symmetry required) and induces important NEW developments in Field Theory. Closed equations might be extended for higher rank tensor [Ousmane Samary, '13] but the resolution is truly challenging.

- Motto: "Randomizing Geometry = Quantum Gravity"
- Goal: Achieve a universal scenario for an emergent spacetime through one or several phase transitions.
- Tools/Methods/Motivations: At the crossroad of Matrix models (large *N* limit), Group Field Theory, QFT/Constructive renormalization, Proba/Stats.

Introduction: Overview of Tensor Models/Group Field Theory

2 Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

3 Tensorial Group Field Theory: Renormalization Program

- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

TM Combinatorics

- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

Tensor Models [Gurau, '10, '11]

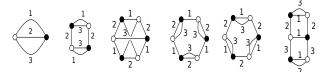
- Study of probability measures of random tensor spaces + Geometric/Topological/Physical inputs.
- A covariant complex tensor T_{p_1,\ldots,p_d} with transformation rule

$$T^{U}_{p_{1},...,p_{d}} = \sum_{q_{k}} U^{(1)}_{p_{1}q_{1}} \dots U^{(d)}_{p_{d}q_{d}} T_{q_{1},...,q_{d}}, \qquad U^{(a)} \in U(N_{a})$$
(1)

- G/T/Physics input: T is viewed as a (d-1)-simplex.
- Tensor Invariance for defining the interactions

$$S_{\mathbf{b}}^{\text{int}}(T,\bar{T}) = \operatorname{Tr}_{\mathbf{b}}(T\ldots T) = S_{\mathbf{b}}^{\text{int}}(T^{U},\bar{T}^{U})$$
(2)

b a colored graph encoding the contraction pattern; S_{b}^{int} "is" a gluing of simplexes and represents a *d*-simplex. Ex:



(courtesy of Gurau)

Action/Partition function

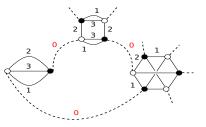
• Invariant action:

$$S[T, \overline{T}, \{\lambda_{\mathbf{b}}\}_{\mathbf{b}}] = \sum_{\mathbf{b}} \lambda_{\mathbf{b}} N^{-\omega(\mathbf{b}, d)} S_{\mathbf{b}}^{\text{int}}(T, \overline{T}), \qquad \omega(\mathbf{b}, d) \ge 0$$
(3)

• Partition function

$$Z[\{\lambda_{\mathbf{b}}\}_{\mathbf{b}}] = \int \prod_{\rho_{i}} [dT_{\rho_{1},...,\rho_{d}} d\bar{T}_{\rho_{1},...,\rho_{d}}] e^{-N^{D-1}S[T,\bar{T},\{\lambda_{\mathbf{b}}\}_{\mathbf{b}}]}$$
(4)

• Expanding the partition function: Feynman graphs



• But what is the analogue of matrix models' ribbon graphs ?

 $\label{eq:Graph Anatomy:} Graph \ \mbox{Anatomy:} \\ On the case of a \ \mbox{Colored Tensor Graph} \\$

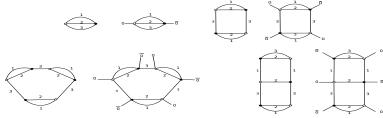
Colored Tensor Graphs I

• Colored bi-partite models (triangulations) [Gurau, CMP '11]:

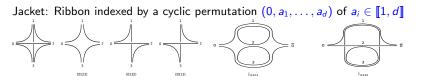
A graph can be closed or open

Other topological ingredients: Faces and bubbles

Back to tensor invariants: Labelled by colored bubbles + Interpretation as effective vertices.



Colored Tensor Graphs II



Boundary graph $\partial \mathcal{G}$: Rank d-1 graph encoding the boundary of the simplicial complex associated with \mathcal{G} .

Large N limit and critical behavior

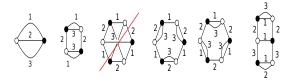
 \bullet Precise action: "Single" trace-like with weights allows to obtain, for a connected graph $\mathcal{G},$

$$A(\mathcal{G}) = N^{d - \frac{2}{(d-1)!}\omega(\mathcal{G})}, \qquad \omega(\mathcal{G}) = \sum_{J \subset \mathcal{G}} g_J$$
(5)

• $\omega(\mathcal{G})$ called the degree of \mathcal{G} . [Gurau '10, Bonzom, Gurau, Riello, Rivasseau, '12]

Model Type	Matrix	Rank <i>d</i> Colored Tensor
Expansion in	$g(\mathcal{G})$ genus	$\omega(\mathcal{G})$ degree
Amplitudes	$A(\mathcal{G}) = N^{2-2g(\mathcal{G})}$	$A(\mathcal{G}) = N^{d - \frac{2}{(d-1)!}\omega(\mathcal{G})}$
Leading graphs	$Planar \equiv S^2$	$Melon \equiv S^d$
$F_{ m Lead} \sim (\lambda_c - \lambda)^{2-\gamma}$	$\gamma_{ m planar} = -rac{1}{2}$	$\gamma_{ m melonic}=rac{1}{2}$

• "Melons" ?



• Phase transition \sim Branched Polymer phase [Gurau & Ryan, '13]: The new phase of Colored TM defines a Continuous Random Tree in the sense of Aldous (same (Hausdorf, Spectral dimension) = (2,4/3)).

More results

• The Ising model in dimension *D* [Bonzom et. al, '12] on random tensor graphs (lattices): No phase transition at finite coupling (agrees with numerics); To force a phase transition modify the models;

• Universality [Gurau, '12]: Measures on random tensors converge (in distribution, in a precise sense) to the Gaussian measure at the large N limit.

• Multi-critical behavior on random (spherical) lattices and (hard) dimers [Bonzom, '12; Bonzom & Erbin, '12]: Coupling tensors interpreted as dimer activities; Phase transition, $\gamma_m = 1 - \frac{1}{m}, m \ge 2, \sim$ hard dimers on branched polymers.

• Double scaling in a T^4 model [Dartois et al. '13; Gurau & Schaeffer, '13]: New double scaling limit for TM $N \to \infty$, $\lambda \to \lambda_c$, $N^{\alpha}(\lambda - \lambda_c) = \text{const.} \rightsquigarrow \text{Polymers}$ (6)

Using constructive techniques (loop vertex expansion), the series is Borel summable if d < 6.

• Beyond perturbations/Constructive techniques [Gurau, '13; Delpouve et al., '14]: The meaning of the 1/N-expansion, reaching the critical point by analytic continuation $\lambda \rightarrow \lambda_c < 0$; Borel summability of T^4 quartic models.

Introduction: Overview of Tensor Models/Group Field Theory

2) Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

Tensorial Group Field Theory: Renormalization Program

- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

TM Combinatorics

- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

Defining Tensor-like QFTs

"... one can define TGFT's with tensorial interactions and a soft breaking of the tensorial invariance of their propagator. ...+ desirable features + ...+ ..." (V. Rivasseau, The Tensor Track III, 1311.1461)

• Simple TM: A complex tensor $T_{p_1,...,p_d}$ with "Tensor Invariance" for defining the interactions $S_{\mathbf{b}}^{\text{int}}(\mathcal{T}, \overline{\mathcal{T}}) = \operatorname{Tr}_{\mathbf{b}}(\mathcal{T} \dots \mathcal{T}) = S_{\mathbf{b}}^{\text{int}}(\mathcal{T}^U, \overline{\mathcal{T}}^U)$ and Kinetic term

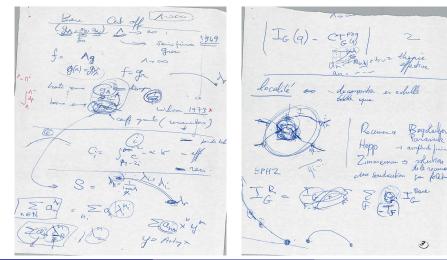
$$S^{\rm kin}(T,\bar{T}) = \sum_{p_s} \bar{T}_{p_1,\dots,p_d} (\sum_s (p_s)^{2s} + \mu) T_{p_1,\dots,p_d}$$
(7)

 $0 < a \le 1$; $(p_s^2)^a \equiv (\Delta)^a$ and $a \le 1$ might be useful to recover O.S. positivity axiom (Rivasseau, Tensor Track III, '13).

• Gauge invariant models: Imposing constraints on T (Carrozza, Oriti, Ousmane Samary, Rivasseau, Vignes-Tourneret).

• Summing over arbitrary high momenta may imply divergent amplitudes.

Renormalization à la V. Rivasseau



Jele a

3

Renormalization of TGFTs

in other words: QFT Renormalization is the "intricate" combination of a Multi-Scale Analysis, a Power-Counting Theorem and a Locality Principle.

• Consider $T: U(1)^d \to \mathbb{C}$ and its Fourier components T_{p_1,\ldots,p_d}

$$Z = \int d\nu_{\mathcal{C}}(\mathcal{T}, \bar{\mathcal{T}}) e^{-S^{\text{int}}(\mathcal{T}, \bar{\mathcal{T}})}, \quad S^{\text{int}}(\mathcal{T}, \bar{\mathcal{T}}) = \sum_{\mathbf{b}} \lambda_{\mathbf{b}} \text{Tr}_{\mathbf{b}}(\mathcal{T} \dots \mathcal{T}) \sim \sum_{n} \lambda_{n} \phi^{2n}$$
(8)

1 Multi-Scale Analysis: Slice decomposition: $C = \sum_{i=0}^{\infty} C_i$

$$C_{i} = \int_{M^{-2i}}^{M^{-2(i-1)}} d\alpha \, e^{-\alpha(\sum_{s=1}^{d} p_{s}^{2s} + \mu)}, \quad \forall i \ge 0, M > 1$$

$$\leq K M^{-2i} e^{-\delta M^{-i}(\sum_{s=1}^{d} p_{s}^{3} + \mu^{2})} \quad K > 0, \delta > 0$$
(9)

High *i* probes high *p*; Cut-off $C^{\Lambda} = \sum_{i=0}^{\Lambda} C_i$;

2 Power-Counting Theorem: $|A_{\mathcal{G},\mu}| \leq K^n M^{\omega_d(\mathcal{G})}$ where the divergence degree of a graph \mathcal{G} is given by

$$\omega_d(\mathcal{G}) = -A_d(\omega(\mathcal{G}_{color}) - \omega(\partial \mathcal{G})) - (C_{\partial \mathcal{G}} - 1) - B_d \left[N_{ext} - C_d \right] - \frac{1}{2} D_d \cdot V.$$
(10)

(a) Locality Principle: Melons with melonic boundary are dominant $\omega(\mathcal{G}_{color}) = 0$; $\omega(\partial \mathcal{G}) = 0$

Results: Several Renormalizable Models

TGFT (type)	G _D	$\Phi^{k_{max}}$	d	а	Renormalizability	UV behavior
	U(1)	Φ ⁶	4	1	Just-	AF
	U(1)	Φ^3	3	1 2	Just-	AF
	U(1)	Φ^6	3	1022103314	Just-	AF
	U(1)	Φ ⁴	4	34	Just-	AF
	U(1)	Φ ⁴	5	1	Just-	AF
	$U(1)^{2}$	Φ^4	4	1	Just-	AF
	U(1)	Φ^{2k}	3	1	Super-	-
gi-	U(1)	Φ ⁴	6	1	Just-	AF
gi-	U(1)	Φ ⁶	5	1	Just-	AF
gi-	<i>SU</i> (2) ³	Φ^6	3	1	Just-	AF
gi-	U(1)	Φ^{2k}	4	1	Super-	-
gi-	U(1)	Φ ⁴	5	1	Super-	-
Matrix	U(1)	Φ^{2k}	2	$\frac{1}{2}(1-\frac{1}{k})$	Just-	$(k = 2, AS^{(\infty)}); (k = 3, LG)$
Matrix	$U(1)^{2}$	Φ^{2k}	2	$1 - \frac{1}{k}$	Just-	$(k = 2, AS^{(1)}); (k = 3, LG)$
Matrix	$U(1)^{3}$ or $SU(2)$	Φ^6	2	1	Just-	LG
Matrix	$U(1)^{3}$ or $SU(2)$	Φ ⁴	2	<u>3</u>	Just-	AS ⁽¹⁾
Matrix	$U(1)^{4}$	φ ⁴	2	1	Just-	AS ⁽¹⁾
Matrix	U(1)	Φ^{2k}	2	$\frac{1}{2}$	Super-	-
Matrix	$U(1)^{2}$	Φ^{2k}	2	1	Super-	-

Table: Updated list of tensorial renormalizable models and their features (AF \equiv asymptotically free; LG \equiv existence of a Landau ghost; AS^(ℓ) asymptotically safe at ℓ -loops).

Introduction: Overview of Tensor Models/Group Field Theory

2 Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

3 Tensorial Group Field Theory: Renormalization Program

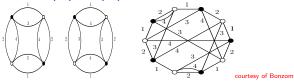
- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

4 TM Combinatorics

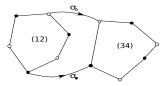
- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

Meanders [Bonzom & Combes, '13]

- Question: Computation of polynomials $P_b(T, \overline{T})$ expectation values for the Gaussian measure, in the large N but including as much corrections;
- \exists nice answer: In d = 4, if **b** has two unique faces labelled by a couple of colors, for instance, (12) and (34).

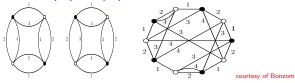


• $\mathbf{b}_{\sigma_{\circ},\sigma_{\bullet}}$ labelled by 2 permutations such that

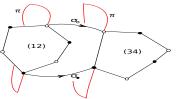


Meanders [Bonzom & Combes, '13]

- Question: Computation of polynomials $P_{\rm b}(T, \bar{T})$ expectation values for the Gaussian measure, in the large N but including as much corrections;
- \exists nice answer: In d = 4, if **b** has two unique faces labelled by a couple of colors, for instance, (12) and (34).

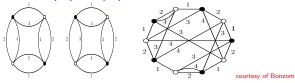


• $\mathbf{b}_{\sigma_{\circ},\sigma_{\bullet}}$ labelled by 2 permutations such that

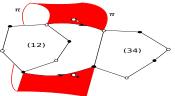


Meanders [Bonzom & Combes, '13]

- Question: Computation of polynomials $P_b(T, \overline{T})$ expectation values for the Gaussian measure, in the large N but including as much corrections;
- \exists nice answer: In d = 4, if **b** has two unique faces labelled by a couple of colors, for instance, (12) and (34).

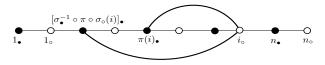


• $\mathbf{b}_{\sigma_0,\sigma_{\bullet}}$ labelled by 2 permutations such that



Meanders

 \bullet Using a nice labelling of vertices of both cycles \rightsquigarrow Meanders



• $\mathbf{b}_{\sigma_{\circ},\sigma_{\bullet}}$ such that

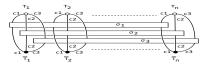
$$\langle P_{\sigma_{\circ},\sigma_{\bullet}} \rangle = \frac{1}{Z} \int e^{-N^{2}T \cdot \bar{T}} P_{\sigma_{\circ},\sigma_{\bullet}} dT d\bar{T} , = \sum_{\text{paring } \pi} N^{\Omega(\sigma_{\circ},\sigma_{\bullet},\pi)}$$

$$= N^{2} \sum_{\pi} N^{-2g_{012;\pi}-2g_{034;\pi}} =_{large \ N} N^{2} |\mathcal{M}_{\sigma_{\circ},\sigma_{\bullet}}|$$
(11)

• Subleading contributions can be evaluated in terms of irreducible meanders systems associated with polynomials labelled by stabilized-interval-free permutations.

Counting TM Observables/Permutation-TFT [JBG & Rangoolam, '13]

• Rank d = 3: Determination of possible graphs $\text{Tr}_{\mathbf{b}}(T, \overline{T})$ amounts to count 3-uples



 $(S_n \times S_n \times S_n) \ni (\sigma_1, \sigma_2, \sigma_3) \sim (\gamma_1 \sigma_1 \gamma_2, \gamma_1 \sigma_2 \gamma_2, \gamma_1 \sigma_3 \gamma_2)$ (12)

• Counting points in the double coset

 $S_3(n) = \operatorname{Diag}(S_n) \setminus (S_n \times S_n \times S_n) / \operatorname{Diag}(S_n).$ (13)

• Burnside's lemma: Permutation-TFT formulation !

$$Z_3(n) = \frac{1}{(n!)^2} \sum_{\gamma_{1,2} \in S_n} \sum_{\sigma_j \in S_n} \left(\delta(\gamma_1 \sigma_1 \gamma_2 \sigma_1^{-1}) \delta(\gamma_1 \sigma_2 \gamma_2 \sigma_2^{-1}) \delta(\gamma_1 \sigma_3 \gamma_2 \sigma_3^{-1}) \right)$$
(14)

 $a \rightarrow \sigma_1, \ b \rightarrow \sigma_2, \ c \rightarrow \sigma_3,$

• Solve one delta, say σ_1 (fixing the gauge), $\sigma_1^{-1}\sigma_i = \tau_{i-1}$, inserting $\tau_0/\tau_0\tau_1\tau_2 = 1$ and get

$$Z_{3}(n) = \frac{1}{n!} \sum_{\gamma, \gamma_{0} \in S_{n}} \sum_{\tau_{1,2} \in S_{n}} \left(\delta(\gamma \tau_{1} \gamma^{-1} \tau_{1}^{-1}) \delta(\gamma \tau_{2} \gamma^{-1} \tau_{2}^{-1}) \delta(\tau_{0} \tau_{1} \tau_{2}) \right)$$
(15)

counts equivalent classes of branched covers of $S^2 \setminus \{3 \bullet\}$! (I dunno yet why but this is important \bigcirc)

Introduction: Overview of Tensor Models/Group Field Theory

2 Tensor Models & Large N expansion

- Invariant Tensor Models
- Colored Graphs, Invariants, Jackets and all that...
- Large N limit and critical behavior
- More results

3 Tensorial Group Field Theory: Renormalization Program

- Defining Tensor-like QFTs
- Renormalization
- Overview of renormalizable models

4 TM Combinatorics

- Gaussian Moments and Meanders
- Counting TM Observables/Permutation-TFT

Open questions/Next Challenges

• Tensor models generalize matrix models and have, in a sense (after restrictions) better behavior: The double scaling limit is possible for *T*⁴ models and the series is Borel summable whereas the BP phase persists.

 \sim Open question: Determine another summable family of subleading graphs which may change this phase (triple/multiple scaling). Rinse, Repeat....

 \sim Challenge: The new phase should be not model dependent (universality).

• Field Theory: There exist several models which can be renormalizable and AF.

 \sim Open questions: \bullet Determine conditions to truncate this space of model (Renormalizability and AF seems to be too weak). \bullet Prove the OS positivity axiom and first steps towards a 4D Minkowskian spacetime; \bullet There exist certainly different types of TGFT than the one present here and Renormalization analysis works as well: Start by a matrix-vector coupling with model covariance:

 $S[M,\phi] = \text{Tr}\Big(M_{ab}(a+b+\mu)M_{ab} + \phi^{a}(\mu_{\phi}+a)\phi^{a} + M_{ab}(a+b+\mu)\phi^{a}\phi^{b}\Big) + V(M,\phi)$ (16)

 \sim Challenge: • Hunting nonperturbative and universal effects (FRG methods, recovering phase diagrams) • Make the rank *d* of tensors or the group dimension dim *G* dynamical.

Combinatorics:

 Elucidate the correspondence between equivalent classes of S² branched covers and the counting TM observables;
 Generic formula for the TM correlation functions?
 How the enumeration of TI are useful for other conjectures in Math (e.g. Gromov's on sphere triangulations)?
 Polynomials Invariant generalizing Tutte/Bollobas Riordan: Universality theorem for a 3D polynomial invariant. New polynomial invariants issued from Tensor Invariants FT (wip with R. Toriumi).