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Generalities: Quantizing Gravity

• Several issues. The Eistein theory of gravity is perturbatively divergent and
nonrenormalizable [DeWitt PR ’67, Goroff & Sagnotti, NPB ’86].

• Remarkable Sakharov’s idea: “An induced theory of gravity” [Sakharov, ’67, SPD 68,
Visser MPLA ’02].

• Alternative scenarii (coupling gravity to other fields, Asymptotic Safety, . . . ) and more
“daring” scenarii (extra-dimensions, susy, background field independent methods, . . . ).

• Focus on Discrete methods. Mid 80’s: In particular, Matrix Models [Di Francesco et
al.., PR ’95] prove to be a solvable framework and concrete realization of an “emergent
gravity” scenario.

• Matrix Models and Random 2D geometry: To “replace” the sum over topologies and
geometry of a 2D surface by a sum over random triangulations of surfaces.
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From Matrices . . .

Matrix Models (MM): Probability measures for matrices M of large size N and describe
2D gravity. Archetype:

Zmatrix =

∫
dM e

− 1
2
TrM2+ λ√

N
TrM3

= eZ2DQG

• A triangulated surface ≡ A Feynman ribbon graph:

- --

−→Mab

−→

TrM3

• ’t Hooft’s Large N limit: Planar graphs’ sector ≡ surfaces of genus 0 (can be counted
like trees).
• Stat. Mech.: ∃ phase transition (N →∞;λ→ λc) ; a continuum limit (infinitely
refined Riemann surfaces) as a 2D theory of gravity (Liouville + CF matter).
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. . . to Tensors

• Tensor Models (TM) of rank D: Tool for randomizing geometry in dimension D
Basic building blocks (D − 1)-simplexes & Interaction forms a D-simplex;
For e.g. in 3D:

a
b

c

T
abc

T T T

T

T

T

• Some results [Ambjorn et al. ’91, Sasakura ’91, Gross ’92, Boulatov-Ooguri ’92]
- Ambjorn et al., 91’, numeric phase transition;
- Boulatov-Ooguri-type TM for 3D-4D simplicial gravity: (Topological/Lattice Field
Theory like theory) 92’/93’; Related to Ponzano-Regge partition function 3D;
- Loop Quantum Gravity Connection ([Reisenberger-Rovelli, ’00, Freidel, ’05, Oriti, ’06])
and “birth” of Group Field Theory.
• Lack of 1/N expansion ⇒ all nice exact results of MM cannot be extended to TM.
• TM need improvement(s): C + DT’s, Boulatov-Ooguri models and GFT’s;
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Colored Tensor Models

• ’10 Gurau’s 1/N expansion for colored TM [Gurau, AHP, ’11]
3D:

a
b

c

T
abc

T T

Color

Color

triangulate better objects (pseudo-manifolds) [Gurau, CMP ’11]

Leading graphs triangulate only spheres in any D [Gurau, AHP ’11]

have computable critical exponent [Bonzom, Gurau, Riello, Rivasseau, NPB, ’11];

with possible matter fields [Bonzom et al., PRD ’12 ; Benedetti et al, NPB ’12];

could lead to extension of the Virasoro-DeWitt algebra [Gurau, NPB ’11];

underlie universal theory for general (ie unsymmetrized) tensors [Gurau, ’11];

Existence of a double-scaling limit [Dartois et al. ’13, Gurau & Schaeffer, ’13]

Expand a natural U(N)⊗D invariance [Gurau, ’12, Bonzom et al. ’12]

Define renormalizable field theories;
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TM People

Statistical Mechanics

Benedetti, Bonzom, Carroza, Combes, 
Dartois, Delepouve, Erbin, Eynard, 
Gurau, Oriti, Rivasseau, Ryan, 
Smerlak, Tanasa 

Tensor Models
Non Colored

Colored

Large 1/N

Tensorial Group Field Theory

BG, Carroza, Laoche, Oriti, Ousmane Samary,   
Rivasseau, Raasakka, Tanasa, 
Vignes-Tourneret

Enumeration / Polynomial Invariants

Avohou, BG, Bonzom, Combes, Gurau, 
Hounkonnou, Livine, Ramgoolam,
Rivasseau, Schaeffer, Toriumi

LQG + Spin foams + NCGeom
connections

Bonzom, Baratin, Dittrich, Freidel, Girelli, Kaminski, 
Livine, Oriti, Riello, Ryan, Smerlak

Cosmology

Gielen, Oriti, Sindoni

Can. App/ Fuzzy spaces

Sasakura, Sato

Polchinski RG

Krajewski

Proba/Stat

Gurau, Ryan

Hopf algebra:
Raasakka, Tanasa 

Meca-Stat, Field Theory
Multi-Orientable Model
Raasakka, Tanasa, Dartois 

Math

Combinatorics
  

• Talk in this conf;
• Recent Honorable Guest Contributors;
• Ordinary Contributors (running the program with usual/stressful deadlines);
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Foundation questions:

• Tensor: Only a discretization tool or a “real” quanta of some “thing” ?

Big bang is identified with geometrogenesis, ie emergence of classical space-time through
one or several phase transitions. Pre-space (analog of space-time before condensation) is
treated as a physical transplanckian early phase of the universe (not just as a
mathematical trick) [Oriti, ’06, Konopka ’08].

• What if N =∞ from the beginning ? Several MM will be already divergent, worse are
the behavior of TM.

• Divergences ⇒ Need of Renormalization. Basic axioms for a QFT with Tensors ?
[Rivasseau: The Tensor Track ’11, ’12, ’13] Renormalization group is a guiding/selecting
thread in models’ space.

• Does it work for matrices ? The Grosse-Wulkenhaar model: Renormalizable and
Asymptotically Safe model (without any extra-symmetry required) and induces important
NEW developments in Field Theory. Closed equations might be extended for higher rank
tensor [Ousmane Samary, ’13] but the resolution is truly challenging.
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The Tensor Track

• Motto: “Randomizing Geometry = Quantum Gravity”

• Goal: Achieve a universal scenario for an emergent spacetime through one or several
phase transitions.

• Tools/Methods/Motivations: At the crossroad of Matrix models (large N limit), Group
Field Theory, QFT/Constructive renormalization, Proba/Stats.
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Tensor Models [Gurau, ’10, ’11]

• Study of probability measures of random tensor spaces +
Geometric/Topological/Physical inputs.
• A covariant complex tensor Tp1,...,pd with transformation rule

TU
p1,...,pd =

∑
qk

U(1)
p1q1

. . .U(d)
pdqd Tq1,...,qd , U(a) ∈ U(Na) (1)

• G/T/Physics input: T is viewed as a (d − 1)-simplex.
• Tensor Invariance for defining the interactions

S int
b (T , T̄ ) = Trb(T . . .T ) = S int

b (TU , T̄U) (2)

b a colored graph encoding the contraction pattern; S int
b “is” a gluing of simplexes and

represents a d-simplex. Ex:

2
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2

1

2

1

3
2

1

2

1

2

1

3 3

3

2 2

2

2
1

2

1
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1
3
3
3

1

1

1
3 3

3
1

2

3

1

22
3

3

1

(courtesy of Gurau)
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Action/Partition function

• Invariant action:

S [T , T̄ , {λb}b] =
∑

b

λbN−ω(b,d)S int
b (T , T̄ ) , ω(b, d) ≥ 0 (3)

• Partition function

Z [{λb}b] =

∫ ∏
pi

[dTp1,...,pd dT̄p1,...,pd ]e−ND−1S[T ,T̄ ,{λb}b] (4)

• Expanding the partition function: Feynman graphs

2

3

1
1

1

22
3

3

1
0 0

0

2
1

• But what is the analogue of matrix models’ ribbon graphs ?
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Graph Anatomy:
On the case of a Colored Tensor Graph
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Colored Tensor Graphs I

• Colored bi-partite models (triangulations) [Gurau, CMP ’11]:
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Colored Tensor Graphs II

Jacket: Ribbon indexed by a cyclic permutation (0, a1, . . . , ad) of ai ∈ [[1, d ]]

0 2

1

3

0 2

1

3

(0123)

0 2

1

3

(0132)

0 2

1

3

(0213)

0
2

1

3

0

j 0123

0
2

1

3

0

j 0132

Boundary graph ∂G: Rank d − 1 graph encoding the boundary of the simplicial complex
associated with G.
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Large N limit and critical behavior

• Precise action: “Single” trace-like with weights allows to obtain, for a connected graph
G,

A(G) = N
d− 2

(d−1)!
ω(G)

, ω(G) =
∑
J⊂G

gJ (5)

• ω(G) called the degree of G. [Gurau ’10, Bonzom, Gurau, Riello, Rivasseau, ’12]

Model Type Matrix Rank d Colored Tensor

Expansion in g(G) genus ω(G) degree

Amplitudes A(G) = N2−2g(G) A(G) = N
d− 2

(d−1)!
ω(G)

Leading graphs Planar ≡ S2 Melon ≡ Sd

FLead ∼ (λc − λ)2−γ γplanar = − 1
2

γmelonic = 1
2

• “Melons” ?
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• Phase transition ; Branched Polymer phase [Gurau & Ryan, ’13]: The new phase of
Colored TM defines a Continuous Random Tree in the sense of Aldous (same (Hausdorf,
Spectral dimension) = (2,4/3)).
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More results

• The Ising model in dimension D [Bonzom et. al, ’12] on random tensor graphs
(lattices): No phase transition at finite coupling (agrees with numerics); To force a phase
transition modify the models;

• Universality [Gurau, ’12]: Measures on random tensors converge (in distribution, in a
precise sense) to the Gaussian measure at the large N limit.

• Multi-critical behavior on random (spherical) lattices and (hard) dimers [Bonzom, ’12;
Bonzom & Erbin, ’12]: Coupling tensors interpreted as dimer activities; Phase transition,
γm = 1− 1

m
,m ≥ 2, ; hard dimers on branched polymers.

• Double scaling in a T 4 model [Dartois et al. ’13; Gurau & Schaeffer, ’13]:

New double scaling limit for TM N →∞ , λ→ λc , Nα(λ− λc ) = const. ; Polymers (6)

Using constructive techniques (loop vertex expansion), the series is Borel summable if d < 6.

• Beyond perturbations/Constructive techniques [Gurau, ’13; Delpouve et al., ’14]: The
meaning of the 1/N-expansion, reaching the critical point by analytic continuation
λ→ λc < 0; Borel summability of T 4 quartic models.
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Defining Tensor-like QFTs

“... one can define TGFT’s with tensorial interactions and a soft breaking of the tensorial
invariance of their propagator. . . . + desirable features + . . . + . . . ” (V. Rivasseau, The
Tensor Track III, 1311.1461)

• Simple TM: A complex tensor Tp1,...,pd with “Tensor Invariance” for defining the
interactions S int

b (T , T̄ ) = Trb(T . . .T ) = S int
b (TU , T̄U) and Kinetic term

Skin (T , T̄ ) =
∑
ps

T̄p1,...,pd (
∑
s

(ps)
2a + µ)Tp1,...,pd (7)

0 < a ≤ 1; (p2
s )a ≡ (∆)a and a ≤ 1 might be useful to recover O.S. positivity axiom

(Rivasseau, Tensor Track III, ’13).

• Gauge invariant models: Imposing constraints on T (Carrozza, Oriti, Ousmane
Samary, Rivasseau, Vignes-Tourneret).

• Summing over arbitrary high momenta may imply divergent amplitudes.
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Renormalization à la V. Rivasseau
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Renormalization of TGFTs

in other words: QFT Renormalization is the “intricate” combination of a Multi-Scale Analysis, a

Power-Counting Theorem and a Locality Principle.

• Consider T : U(1)d → C and its Fourier components Tp1,...,pd

Z =

∫
dνC (T , T̄ ) e−S int (T ,T̄ ) , S int (T , T̄ ) =

∑
b

λbTrb(T . . .T ) ∼
∑
n

λnφ
2n (8)

1 Multi-Scale Analysis: Slice decomposition: C =
∑∞

i=0 Ci

Ci =

∫ M−2(i−1)

M−2i
dα e−α(

∑d
s=1 p2a

s +µ) , ∀i ≥ 0 ,M > 1

≤ KM−2ie−δM
−i (

∑d
s=1 pas +µ2) K > 0, δ > 0 (9)

High i probes high p; Cut-off CΛ =
∑Λ

i=0 Ci ;

2 Power-Counting Theorem: |AG,µ| ≤ KnMωd (G) where the divergence degree of a graph G is
given by

ωd (G) = −Ad (ω(Gcolor)− ω(∂G))− (C∂G − 1)− Bd

[
Next − Cd

]
−

1

2
Dd · V . (10)

3 Locality Principle: Melons with melonic boundary are dominant ω(Gcolor) = 0; ω(∂G) = 0
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Results: Several Renormalizable Models

TGFT (type) GD Φkmax d a Renormalizability UV behavior

U(1) Φ6 4 1 Just- AF

U(1) Φ3 3 1
2

Just- AF

U(1) Φ6 3 2
3

Just- AF

U(1) Φ4 4 3
4

Just- AF

U(1) Φ4 5 1 Just- AF

U(1)2 Φ4 4 1 Just- AF

U(1) Φ2k 3 1 Super- -

gi- U(1) Φ4 6 1 Just- AF

gi- U(1) Φ6 5 1 Just- AF

gi- SU(2)3 Φ6 3 1 Just- AF

gi- U(1) Φ2k 4 1 Super- -

gi- U(1) Φ4 5 1 Super- -

Matrix U(1) Φ2k 2 1
2

(1− 1
k

) Just- (k = 2, AS(∞)); (k = 3, LG)

Matrix U(1)2 Φ2k 2 1− 1
k

Just- (k = 2, AS(1)); (k = 3, LG)

Matrix U(1)3 or SU(2) Φ6 2 1 Just- LG

Matrix U(1)3 or SU(2) Φ4 2 3
4

Just- AS(1)

Matrix U(1)4 Φ4 2 1 Just- AS(1)

Matrix U(1) Φ2k 2 1
2

Super- -

Matrix U(1)2 Φ2k 2 1 Super- -

Table: Updated list of tensorial renormalizable models and their features (AF ≡ asymptotically

free; LG ≡ existence of a Landau ghost; AS(`) asymptotically safe at `-loops).
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Meanders [Bonzom & Combes, ’13]

• Question: Computation of polynomials Pb(T , T̄ ) expectation values for the Gaussian
measure, in the large N but including as much corrections;
• ∃ nice answer: In d = 4, if b has two unique faces labelled by a couple of colors, for
instance, (12) and (34).
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courtesy of Bonzom

• bσ◦,σ• labelled by 2 permutations such that

σ

σ

(12)
(34)

σ

σ
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(34)

π
π
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(34)
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π
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Meanders

• Using a nice labelling of vertices of both cycles ; Meanders

1• 1◦ n• n◦π(i)• i◦

[σ−1
• ◦ π ◦ σ◦(i)]•

• bσ◦,σ• such that

〈Pσ◦,σ•〉 =
1

Z

∫
e−N2T ·T̄Pσ◦,σ• dTdT̄ ,=

∑
paring π

NΩ(σ◦,σ•,π)

= N2
∑
π

N−2g012;π−2g034;π =large N N2 |Mσ◦,σ• | (11)

• Subleading contributions can be evaluated in terms of irreducible meanders systems
associated with polynomials labelled by stabilized-interval-free permutations.
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Counting TM Observables/Permutation-TFT [JBG & Rangoolam, ’13]
• Rank d = 3: Determination of possible graphs Trb(T , T̄ ) amounts to count 3-uples

c1

c2

c3 c1

c2

c3 c1

c2

c3

c1 c3

c2

c1 c3

c2

c1 c3

c2

σ3

T1 T2 Tn

T1 T2 Tn

σ1

σ2

(Sn × Sn × Sn) 3 (σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ2, γ1σ3γ2) (12)
• Counting points in the double coset

S3(n) = Diag(Sn)\(Sn × Sn × Sn)/Diag(Sn) . (13)

• Burnside’s lemma: Permutation-TFT formulation !

Z3(n) =
1

(n!)2

∑
γ1,2∈Sn

∑
σi∈Sn

(
δ(γ1σ1γ2σ

−1
1 )δ(γ1σ2γ2σ

−1
2 )δ(γ1σ3γ2σ

−1
3 )
)

(14)

a→ σ1, b → σ2, c → σ3,

• Solve one delta, say σ1 (fixing the gauge), σ−1
1 σi = τi−1, inserting τ0/ τ0τ1τ2 = 1 and get

Z3(n) =
1

n!

∑
γ,γ0∈Sn

∑
τ1,2∈Sn

(
δ(γτ1γ

−1τ−1
1 )δ(γτ2γ

−1τ−1
2 )δ(τ0τ1τ2)

)
(15)

counts equivalent classes of branched covers of S2\{3 •} ! (I dunno yet why but this is important ©)
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Open questions/Next Challenges

Tensor models generalize matrix models and have, in a sense (after restrictions) better
behavior: The double scaling limit is possible for T 4 models and the series is Borel
summable whereas the BP phase persists.

∼ Open question: Determine another summable family of subleading graphs which may
change this phase (triple/multiple scaling). Rinse, Repeat....

∼ Challenge: The new phase should be not model dependent (universality).

Field Theory: There exist several models which can be renormalizable and AF.

∼ Open questions: • Determine conditions to truncate this space of model
(Renormalizability and AF seems to be too weak). • Prove the OS positivity axiom and first
steps towards a 4D Minkowskian spacetime; • There exist certainly different types of TGFT
than the one present here and Renormalization analysis works as well: Start by a
matrix-vector coupling with model covariance:

S[M, φ] = Tr
(
Mab(a + b + µ)Mab + φa(µφ + a)φa + Mab(a + b + µ)φaφb

)
+ V (M, φ) (16)

∼ Challenge: • Hunting nonperturbative and universal effects (FRG methods, recovering
phase diagrams) • Make the rank d of tensors or the group dimension dimG dynamical.

Combinatorics: • Elucidate the correspondence between equivalent classes of S2 branched
covers and the counting TM observables; • Generic formula for the TM correlation
functions ? • How the enumeration of TI are useful for other conjectures in Math (e.g.
Gromov’s on sphere triangulations) ? • Polynomials Invariant generalizing Tutte/Bollobas
Riordan: Universality theorem for a 3D polynomial invariant. New polynomial invariants
issued from Tensor Invariants FT (wip with R. Toriumi).
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