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Revised outline

• The string-black hole correspondence & stringholes
• Stringhole production in high-energy gravitational 
scattering
• Scattering off a stringhole and quantum hair
• Stringholes and a model for the big bounce



 The String-BH correspondence
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# of physical string states  @ vanishing string coupling 
(α’M2 = N, C = central charge, c=1).

Entropy of free string states
(FV, BM, 1969)

Neglecting numerical factors this gives, at large M,

Physical interpretation of Sst: the number of “string bits” 
contained in the total length of the string, L = α’M.
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Semiclassical BH entropy

Bekenstein-Hawking formula for arbitrary D 

can be compared with previous

The two entropies look very different but can we trust both 
results everywhere in parameter space? 

Let’s assume for the moment that we can.
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The correspondence curve
SBH grows faster than Sst but latter starts higher at small M. 
Hence, the two entropies must meet at some finite value of M:

SBH wins over Sst  for R > ls, the opposite is true for R < ls. They 
coincide at R = ls (where TBH ~ THag) and take the value:

NB: at very small string coupling M* >> MP >> Ms 

SBH = Sst defines a hyperbola in the (gs, M) plane called the 
correspondence curve.
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Below the correspondence curve

Below the correspondence curve (CC) the Schwarzschild 
radius of the string is smaller than the string length scale. 
The latter is believed to be the minimal size of any string.

Hence such strings are simply NOT BHs.
Interpretation: in QST there are no BHs whose RS is smaller 

than ls, i.e. whose Hawking temperature is higher than Ms     
(T = Ms is  believed ST’s maximal temperature) 

So far, everything looks consistent!
It can even solve the problem of end-point of evaporation!



Evaporation of a BH at fixed gs (Bowick et al. 1987)

M/Ms

RS = ls  (T = THag) curve

  
gs

2

Strings 

Black Holes 

trajectory of evaporating BH

Singularity at the end of evaporation avoided?
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Approaching the correspondence curve: 
the random-walk puzzle

If we want to identify BH with FS above the CC, their 
properties should match as we approach the curve.
By definition the two entropies match (up to O(1) factors) 
but there is still a “random-walk puzzle”.
Sst can be understood in terms of a “random walk” but then 
a string on the CC being much longer (heavier) than ls (Ms),  
will have a typical size much bigger than its Schwarzschild 
radius ls. 
But then it has nothing to do with a BH!
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Size distribution of free strings
The resolution of the RW puzzle is quite simple. One has to 
compute the distribution of the string sizes for a given M 

(NB: M fixes length not size!).
This was done by T. Damour & GV (2000). The entropy of strings 

of given M and size R is given by 
(c1, c2 are positive # O(1), calculation reliable for R > RS):

Entropy is maximized for:

But there is still an S of order M/Ms in strings of size O(ls)! 
We shall call such strings lying on the CC “stringholes”
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Stringholes can also be understood as string states 
in which only oscillators with n > N1/2 are excited.
It is easy to compute the asymptotic behavior of 
such a restricted partition function and to find 
that it also gives an exponential degeneracy though 
with a smaller coefficient in the exponent.

information loss looks inevitable[2].

In this paper we will address this kind of questions using the correspondence between

strings and black holes [18, 19, 20] that occurs when the mass of the former is tuned to the

value MSH = Msg
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It is particularly appealing that, for SHs, the question of the size of quantum hair becomes

one about whether it is perturbative or not in the string coupling constant. In our case, the

role of the parameter N of [16] is played by the string coupling which, for a given string

mass, is tuned to a critical value. Unfortunately, and unlike in the simple model of [16], we

are presently unable to perform a reliable calculation when gs and/or M are parametrically

larger than their critical values.

Furthermore, in order be able to claim that strings of mass MSH = Msg
−2
s
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be seen as black holes, we have to impose that they are compact enough not to exceed in

size their own Schwarzschild radius R = O(ls), and to check that this restriction does not

invalidate the entropy estimate (1). This question was addressed in [20] (see also [19]), where
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where ci are positive constants of O(1). For M � MSH the last terms is negligible and the

first two factors give a maximal entropy for r ∼ ls

�
M

Ms
, the random-walk value. However,

there is still an entropy O(M/Ms) in “compact” strings and, furthermore, as one approaches

M = MSH , the third term in (2) helps favoring such strings.

Another way of reaching a similar result consists in counting string states at level N =

α�M2
produced by oscillators of index larger thanK. A simple argument, based on evaluating

the corresponding partition function, shows that the entropy of such states is still O(
√
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This is the kind of states we shall focus our attention on. We recall that, not only entropy,

but, qualitatively, many other properties of strings and black holes (decay rates, evaporation

time etc.) match on the correspondence line [19, 20].
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M/Ms

Stringholes if R ~ RS = ls 

  gs
2

RS > ls

RS < ls

Stringholes

1
1
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(M/Ms = gs
-2)

No BH 

BH = ?? 
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Above the correspondence curve 
It is reassuring that the string-coupling corrections 
become of O(1) just when we can reproduce BH properties 
up to factors O(1).
As we go farther and farther above the CC the 
discrepancy between free-string and BH entropy becomes 
larger and larger but also the corrections get out of hand.
In order to see whether we can have agreement there we 
would have to compute the effect of interactions when 
they become non-perturbative. 
This is a hard & unsolved problem. 
Here is a (contrived?) example of what could possibly do 
the job (see below for a different hint).



M

  gs
2

S ~ gs
2 M2 ?

S ~ M

strong gravity 
effects

weak gravity 
effects

g0s
2

D=4 Horowitz & Polchinski, ‘97, ‘98 
Damour & GV, ‘00

Gravity-induced increase in density of states
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Transplanckian-energy strings collisions:
stringhole production

(GV: 0410.166 and references therein)

A nice theoretical laboratory for studying deep 
questions about quantum string gravity. 
We can hardly imagine a simpler pure initial state 
that could lead to BH formation and whose unitary 
evolution we would like to understand/follow.
Calculations performed in flat spacetime & D =10.
An effective metric emerges at the end.
Recently extended to HE string-brane collisions 
(DDRV 2010 + ..). No time to review the subject. 



TPE (closed)string-string collisions 
(a two-loop contribution)

String colour code:
red: in, out
green: exchanged
yellow: produced
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Parameter-space 
for high-energy string-string collisions 

  3 relevant length scales (neglecting lP @ gs << 1)

NB:  Playing with s and gs we can make RD/ls arbitrary
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Collapse

lP

Critical line?

E= Eth ~ Ms/gs2 = MSH >> MP E = MP

expected phase diagram
from classical collapse criteria



The weak-gravity regime 
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Leading eikonal diagrams (crossed ladders included)
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Point-particle limit @ large b 

The integral is dominated by a saddle point at:

 Generalization of Einstein’s deflection formula to ultra-relativistic 
collisions and arbitrary D. It corresponds precisely to the relation 
between b and θ in the metric generated by a relativistic point-
particle of energy E. This is an effective metric , NOT a class. one!

• At fixed θ, larger E probe larger b (i.e. the IR). How come?
• (Gs/h) b4-D gives the average loop-number. The total q = θ E is 

shared among as many exchanged  gravitons so that:
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String-string scattering @ large b
(new effects because of imaginary part)

Graviton exchanges can excite one or both strings. Reason 
(Giddings ’06): a string moving in a non-trivial metric feels 
tidal forces as a result of its finite size. A simple 
argument gives the critical impact parameter bt  below 
which the phenomenon kicks-in (as found by direct 
calculation by ACV). It is parametrically larger than ls.
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exchanged gravi-reggeons

Tidal excitation of initial string



bb+ΔX

Xu

Xd

(E, p)

(E, -p)

These effects are neatly 
captured, at the leading eikonal 
level, by replacing the impact 
parameter b by a shifted impact 
parameter, displayed by each 
string’s  position operator 
(stripped of its zero modes) 
evaluated at τ = 0 (= collision 
time) and averaged over σ.
This leads to a unitary operator 
eikonal formula for the S-matrix
More details later...



The string-gravity regime:
approaching stringhole production



R(E)

b

ls 

ls 3

1

BH

Critical line?
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String-string scattering @ b,R < ls

Because of (good old DHS) duality even single graviton 
exchange does not give a real scattering amplitude. The 
imaginary part is due to formation of closed-strings in the 
s-channel.
It is exponentially small at large impact parameter (hence 
irrelevant in region 1, important in region 2)
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Gravi-reggeon exchanged in t-channel

Heavy closed string produced in s-channel

Im A is due to closed strings in s-channel (DHS duality)



s-channel heavy strings

Turning the previous diagram by 90o

At higher loop order many strings produced in s-channel
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At impact parameters below the string scale one starts producing 
more and more strings. Their average number grows like Gs ~ E2 (Cf. 
# of exchanged strings) so that, above E = Ms/g, the average energy 
of each final string starts decreasing as the incoming energy grows

Similar to what we expect in BH physics! 

Fast growth of <n> & consequent softening: an interesting 
signature even below the actual threshold of BH production? 

with



�nclosed� ∼
ERS

�

�
RS

ls

�D−4

⇒ �Eclosed� ∼ Ms

�
ls
RS

�D−3

∼ M2
s

g2sE

Str.-str. vs. str.-brane scattering @ b, Rs < ls

In string-string scattering:

If extrapolated to RS > ls this gives only massless string 
modes (Hawking radiation?). Can it be trusted?
 In string-brane scattering (DDRV, in progress):
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Now the calculation should be reliable even for Rp > ls. 
This is where we should be able to make contact with a 
CFT living on the brane system.



 A hint on the nature of BHs 
in String Theory?

If extrapolation to RS > ls can be qualitatively trusted it 
would indicate that above the correspondence line it 
becomes entropically preferable to break up the heavy 
string/black hole into its massless decay products.
Can these form a gravitationally bound system (~geon?)
As argued by Dvali and Gomez the number of massless 
quanta (“gravitons”) whose energies add up to the total 
mass M, and which can bind gravitationally in a region of 
size RS, is of order M RS/h, i.e. of order SBH. 
Our results appear to lend some credibility to their 
picture (not necessarily in its details).



 Stringholes are hippies! 
(GV: 1212.2606)



both projectile and target are massless) and [17] (where the target is infinitely heavy).
Studying such a process at sufficiently large impact parameters for the approximations to
be under control turns out to be sufficient to reveal whether the quantum hair of such SHs
is perturbative or not in 1/S ∼ g2s . This appears to be the string-theory counterpart to
checking whether the quantum hair is perturbative in 1/N in the approach of [8].

2 Light-heavy string collisions at high-energy

We work in flat 10-dimensional spacetime with (10 − D) dimensions compactified at the
string-length scale so that the effective large-distance physics lives in D spacetime dimen-
sions. We are also assuming to be working at very small string coupling gs so that, as already
indicated in (1), there is a large hierarchy between the string and mass scales.

Consider now a process in which a massless “probe” string collides with a well-defined
heavy (and for the moment generic) “target” string of mass M � MP � Ms. Let us also
take a high-energy limit in which the energy E of the probe string in the rest frame of the
heavy one is much larger than Ms and yet much smaller than M ,

MsM � s−M2 = −2p · P = 2EM � M2 , (4)

so that the light string does indeed act (almost) as a probe and yet we can apply a high-
energy limit in which graviton exchange dominates.

Following the logic of [11] (see also [22], [17]) we can argue that, at large-enough impact
parameter b, the scattering amplitude is given by the semiclassical eikonal formula:
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As a consistence check, we note that, when one goes back from b-space to q-space (or
deflection angle), one recovers, at the saddle point of the b-integral, the classical Einstein
relation (generalized to arbitraryD) between scattering angle θ, mass, and impact parameter:

θ =
8πGM

ΩD−2bD−3
∼
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where R is the Schwarzschild radius of the heavy string. Obviously, the above formula
satisfies the “no-hair” theorem in the sense that it is sensitive to the mass of the heavy
string state but not to its microscopic quantum numbers.

Diagrammatically, the result (6) comes from exponentiating the exchange of a single
graviton between the light and the heavy string. Both (6) (and (7)) are indeed only valid
at sufficiently large impact parameter (small deflection angle) and suffer from corrections
of higher order in R/b (θ). Such corrections will reconstruct, for instance, the deflection
formula in the full Schwarzschild metric. As shown long ago by Duff [23], they correspond,
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Scattering of a massless string on a heavy one

kinematical region:

E E’

M M’

Light string acting as a 
hair-detecting probe
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Leading eikonal generalizing ACV 
and DDRV (R. Russo private comm.)

Check of deflection angle @ saddle point
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(E, p)

(E, -p)
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Adding tidal 
excitation a la 

ACV-DDRV
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diagrammatically, to exponentiating connected graviton-tree (fan) diagrams in which a single

vertex (the trunk of the tree) is attached to the probe string while all the branches terminate

on the heavy one, giving the appropriate powers of R and b. These classical correction still

satisfy the no-hair condition as well as elastic unitarity.

However, as discussed in [11] and [17] in two different contexts, there are also “string

corrections” to the leading eikonal form. These are related to the fact that strings are

extended objects and therefore suffer tidal forces when moving in a non trivial geometry[24]
1
.

Fortunately, at least at small scattering angle, such corrections are fully under control and

lead to a unitary S-matrix. Unitarity is now satisfied in a less trivial way: different channels
couple, elastic unitarity is violated, but one still obtains a fully unitary S-matrix in the

Hilbert space of two arbitrary string states. The question is whether this non-trivial S-

matrix contains information about the actual state of the heavy string.

Building on the work of [11] and [17] we can be confident that the tidal excitation of

both the light and the heavy string are captured, at leading order in θ, by the replacement:

δ(E,M, b) → δ̂(E,M, b) = �δ(b+ X̂H − X̂L)
4−D� = 2GEM�−1cD�(b+ X̂H − X̂L)

4−D� (7)

Here X̂H and X̂L represent the heavy and light string position operators, stripped of their

zero modes (which give b), evaluated at τ = 0, and averaged over σ. These operations,

together with a normal-ordering prescription, are indicated in (8) by the brackets, i.e.
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In words, the classical phase shift is replaced by the average of a quantum phase shift in

which the impact parameter is affected by a quantum uncertainty encoded in the string

position operators.

For what concerns the excitation of the light string, further justification of the above

formula comes from the study of string-brane collision discussed in [17], specialized to the

case of a stack of 0-branes. For the excitation of the heavy string we can instead appeal to

the quantization of the heavy string in the shock-wave metric produced by the light one. A

possible derivation
2
is sketched in the Appendix.

Following [11], we now expand (8) to quadratic order in the X̂ (the linear order clearly

averages out to zero) to get the leading correction in an expansion in (ls/b)2:

2(δ̂ − δ) =
2πGEM(D − 2)

�ΩD−2bD−2
�Qij

H
+Qij

L
�b̂ib̂j (9)

1Although all calculations are performed in flat spacetime the effects of an effective non-trivial geometry
emerge from the calculation.

2This derivation is the result of discussions with G. D’Appollonio, P. Di Vecchia and R. Russo. See [25]
for some alternative derivations.
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Here Q
ij

H
is the (D−2)-dimensional (i.e. squashed into the space orthogonal to the incoming

momentum) quadrupole operator for the heavy string
3
.
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and is projected along the unit vector b̂ in the direction of the impact parameter. This

projection can also be written in the form:
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As indicated in (10), we get a similar term for the probe string. At this order in ls/b (and

actually up to order l
3
s
b
−3
) the S-matrix thus factorizes in the form:

S(E,M, b) = exp(2iδ) ΣL ΣH ; ΣL,H = exp
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where we have defined the dimensionless quantities
4
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the latter being the quadrupole measured in string-length units. Since the quadrupole oper-

ators are hermitian (see also below), each factor appearing in (13) corresponds to a unitary

operator. However, the first two factors are independent of the particular state chosen for

the heavy string. Let us therefore concentrate our attention on ΣH (dropping for simplicity

the index H). The operator appearing at the exponent in Σ can be easily written down:

Q̃
ij
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where

Using standard techniques we can get a normal ordered Σ
(useful between coherent states) as:

two annihilation operators, correspond to a quadrupole-like excitation of the original string
itself. This is hardly surprising in view of the intimate relation between tidal forces and
quadrupole moments (see e.g. [25]), and simply appears as a generalization of known facts
to an ultra-relativistic situation involving strings (our quadrupole, in particular, is a purely
geometrical object).
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At this point the explicit calculation of the S-matrix is simple, in particular between coher-
ent states. Σ(univ), being a c-number, does not depend on the internal quantum numbers of
the heavy string and, together with similar factors coming from the light string, provides
absorption and further contributions to the phase shifts, but no hair. Instead, the oper-
ator Σ(hair) generates matrix elements that feel the nature of the microstate in which the
heavy string actually is. Note that normal ordering has slightly upset the exact quadrupole
structure appearing in (11), (12) (which is however recovered for n � ∆).

Let us now specify further the process described in the previous section in order to make
contact with black-hole physics. To this purpose we shall identify the heavy string with a
“stringhole” state described in Sec. 1. The reason for choosing that precise (within factors
O(1)) value of M is twofold. Choosing M in the range MP � M � MSH leads to reliable
results, but the string, in this case, is below the correspondence curve, its size is larger than
its Schwarzschild radius and therefore is not a collapsed object [18]. On the other hand,
various approximations that can be justified for strings of mass up to MSH cease to be
valid for strings with M >> MSH , i.e. strings that would simulate “large” black holes in
string-length units.
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Obviously, even keeping θ � 1, but finite and gs-independent, we can make ∆ � 1 (yet
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) for sufficiently small gs and with E in a parametrically large region.

In order to estimate the size of quantum hair we note that the coefficients Cn(∆) ap-
pearing in (16) become O(1) at n < ∆ or of order ∆/n at n > ∆. As already discussed,
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We finally take the heavy string to be a “stringhole” the idea 
being to interpret the result now in terms of BH properties
(unfortunately we are presently unable to make reliable 
calculation much above the SH mass scale). Then:
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and there is a lot of parameter space for Δ to be large
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in our kinematical region



The resulting S-matrix has many universal (i.e. no-hair) factors 
but it also has terms that probe the quadrupole (and also 
other multipoles) of the SH. At leading order in Δ/n:

Σ(hair) =: exp

�
−i(D − 2)∆

∞�

n=1

1

n
(a†in + ãin)(a

j
n + ã†jn )Πij

�
:

This is the quantum hair of the SH as “seen” by the probe 
string via our thought experiment.
It turns out to be relatively large, possibly only a power of gs2 
smaller than the no-hair terms.
If we apply the S-BH correspondence idea, we would conclude 
that also BHs should have such a large amount of quantum hair 
in agreement with Dvali-Gomez’s recent papers, but:
Q1: Are SHs good representatives of BH?
Q2: Can the situation suddenly change above the CC?



Summarizing last part

•The string-black hole correspondence (and 
stringholes) can be useful tools for testing 
quantum-string gravity ideas in a regime still 
under control.

•Definite conclusions on the information puzzle 
will have to wait for a better understanding of 
how the correspondence works particularly much 
above the correspondence curve.  



Thank you!


