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• In general relativity, the gravitational field encoded in the very geometry
of space-time ⇒ space-time itself ends at singularities. General
expectation: theory is pushed beyond its domain of applicability. Must
incorporate quantum physics. Singularities are our gateways to physics
beyond Einstein.
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• In general relativity, the gravitational field encoded in the very geometry
of space-time ⇒ space-time itself ends at singularities. General
expectation: theory is pushed beyond its domain of applicability. Must
incorporate quantum physics. Singularities are our gateways to physics
beyond Einstein.

• But straightforward incorporation of quantum physics a la traditional
WDW quantum cosmology did not succeed.

• Situation very different in LQG: Physics does not stop at these
singularities. Quantum Geometry extends its life. Goal of the talk: Present
highlights, emphasizing recent developments.

• Organization:
1. Conceptual Setting
2. k=0 Models
3. LQC Vs WDW Theory
4. k=1 models
5. Extensions and Summary .
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1. Conceptual Setting

Some Long-Standing Questions expected to be answered by Quantum
Gravity Theories from first principles:

⋆ How close to the big-bang does a smooth space-time of GR make
sense? (Onset of inflation?)

⋆ Is the Big-Bang singularity naturally resolved by quantum gravity?
(answer is ‘No’ in the Wheeler-DeWitt theory)

⋆ Is a new principle/ boundary condition at the Big Bang essential?
(e.g. The Hartle-Hawking ‘no-boundary proposal’.)

⋆ Is the quantum evolution across the ‘singularity’ deterministic?
(answer ‘No’ e.g. in the Pre-Big-Bang and Ekpyrotic scenarios)

⋆ What is on the ‘other side’? A quantum foam? Another large, classical
universe? ...
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Some Long Standing Questions (contd)

⋆ How does one extract physics from solutions to the Hamiltonian
constraint (e.g. WDW equation)? dynamics from the frozen formalism?
Dirac observables? Emergent time? (Scale factor —natural candidate in the Misner

parametrization— not single-valued in closed models.)

⋆ Can one have a deterministic evolution across the singularity and
agreement with GR at low curvatures, e.g., recollpase in the closed
models? (Background dependent perturbative approaches have difficulty with the first

while background independent approaches, with second (Green and Unruh))

In LQC, these issues have been resolved for several minisuperspaces.
(Massless scalar field as internal/emergent time; Physical Hilbert space, Dirac observables,

semi-classical states, detailed dynamics.)

Emerging Scenario: Physical sector of the theory can be constructed in
detail. Continuum a good approximation till curvature attains Planck scale.
In simplest models: Vast classical regions bridged deterministically by
quantum geometry. No new principle needed.
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Merits and Limitations of Quantum Cosmology

One’s first reaction: Symmetry reduction gives only toy models! Full
theory much richer and much more complicated. But examples can be
powerful.
• Full QED versus Dirac’s hydrogen atom.
• Singularity Theorems versus first discoveries in simple models.
• BKL behavior: homogeneous Bianchi models. (Henneaux’s talk)

Do not imply that behavior found in examples is necessarily generic.
Rather, they can reveal important aspects of the full theory and should not
be dismissed a priori.

One can work one’s way up by considering more and more complicated
cases. (e.g. recent work of the Madrid group on Gowdy models which have infinite

degrees of freedom). At each step, models provide important physical checks
well beyond formal mathematics. Can have strong lessons for the full
theory. For example, LQC has taught us that loopy techniques do capture
sectors with good semi-classical behavior but only if the Hamiltonian
constraint is quantized in a certain way.
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2. The k=0 FLRW Model

FRW, k=0 Model coupled to a massless scalar field φ. Instructive because
every classical solution is singular. Provides a foundation for more
complicated models.
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k=0 LQC
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k=0 LQC
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k=0 Results

Assume that the quantum state is semi-classical at a late time and evolve
backwards and forward. Then: (AA, Pawlowski, Singh)

• The state remains semi-classical till very early and very late times,
i.e., till R ≈ 1/lp2 or ρ ≈ 0.02ρPl. ⇒ We know ‘from first principles’ that
space-time can be taken to be classical during the inflationary era.

• In the deep Planck regime, semi-classicality fails. But quantum
evolution is well-defined through the Planck regime, and remains
deterministic unlike in other approaches. No new principle needed.

• The situation is the same if we include a cosmological constant
(AA, Bentevigna, Pawlowski) or an inflationary potential (AA, Pawlowski, Singh).

In all cases, the quantum space-time is vastly larger than what general
relativity had us believe.
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k=0 Results
• Big bang replaced by a quantum bounce. The Friedmann equation
replaced by
(ȧ/a)2 = (8πGρ/3)[1 − ρ/ρcrit] where ρcrit ∼ 0.82ρPl.

• The matter density operator ρ̂ = 1
2 (V̂φ)−1 p̂2

(φ) (V̂φ)−1 has an absolute

upper bound on the physical Hilbert space (AA, Cirichi, Singh):
ρsup =

√
3/16π2γ3G2~ ≈ 0.82ρPl!

Provides a precise sense in which the singularity is resolved.
(Brunnemann & Thiemann)

• Bounce universal: for any physical state Ψ we have:

(Ψ, V̂φΨ)Phy = V+e
√

12πGφ + V−e−
√

12πGφ

where V± are determined by the ‘initial data’ Ψ(v, φo) at any φo.
Vmin =

√

(V−V+)

• Quantum geometry creates a brand new repulsive force in the Planck
regime, replacing the big-bang by a quantum bounce. Physics does not
end at singularities.
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Bousso’s Covariant Entropy Bound
• Conjecture ( Simplest Version): The matter entropy flux across L(B) is
bounded by

S :=
∫

L(B)
SadAa ≤ AB/4ℓ2Pl.

• Curious features:
i) Requires a notion of entropy current;
ii) Refers to quantum gravity;
iii) Requires a classical geometry.
Consequently, quite difficult to test in practice!

• In classical GR:
If we consider k=0 FRW models filled with radiation,

S

AB
=

ℓ2Pl

6
(

2

45π
)1/4

√
ℓPl√
τf

(

1 −
√

τi

τf

)

For round B, the bound holds if τf > 0.1ℓPl but
arbitrarily large violations near the singularity.
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• LQC provides an ideal arena:
i) Singularity is resolved by quantum gravity;
ii) The wave function is sharply peaked about a mean metric, a smooth
field (although coefficients involve ~).

• Answer: S
AB

< 0.244/ℓ2Pl (AA, Wilson-Ewing)

The bound is satisfied in LQC!
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3. Contrasting LQC and WDW Quantum Cosmology

• Why was LQC able to resolve the Big Bang singularity when the WDW
theory had failed in these models?

• In the WDW quantum cosmology, one did not have guidance from a full
quantum gravity theory. Therefore, in quantum cosmology, one just
followed standard QM and constructed the Schrödinger representation of
the fundamental Weyl algebra.

• By contrast, quantum kinematics of LQG has been rigorously
developed. Background independence ⇒ unique representation of the
kinematic algebra (Lewandowski, Okolow, Sahlmann, Thiemann; Fleishhack)

Provides the arena to formulate quantum Einstein equations.

• In LQC we could mimic this framework step by step. One of the
assumptions of the von Neumann uniqueness theorem for quantum
mechanics is bypassed. In LQC we are led to a new presentation of the
Weyl algebra, i.e., new quantum mechanics. WDW theory and LQC are
distinct already kinematically!
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Contrasting LQC and WDW Quantum Cosmology

• The LQC kinematics cannot support the WDW dynamics. The LQC
dynamics is based on quantum geometry. The WDW differential equation
is replaced by a difference equation.

C+(v) Ψ(v+4, φ)+Co(v) Ψ(v, φ)+C−(v)Ψ(v−4, φ) = γℓ2P ĤφΨ(v, φ) (⋆)

• In quantum geometry, basic geometrical observables such as areas of
physically defined surfaces and volumes of physically defined regions are
quantized. The area operator has a smallest eigenvalue, the area gap ∆.

• It turns out that the step size in (⋆) is governed by the smallest
eigenvalue of the area operator in LQG. Good agreement with the WDW
equation at low curvatures but drastic departures in the Planck regime
precisely because the WDW theory ignores quantum geometry.
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Precise relation between LQC and the WDW Theory

Question analyzed in detail for the k=0 model. (Corichi, Singh, AA). Expect
the answer to be the same for others.

Start with the ‘same physical state at time φ = φo’ and evolve using LQC
or WDW theory. Then:

Certain predictions of LQC approach those of the WDW theory as the
area gap λ goes to zero:
Given a semi-infinite ‘time’ interval ∆φ and ǫ > 0, there exists a δ > 0
such that ∀λ < δ, ‘physical predictions of the two theories are within ǫ
of each other.’

However, approximation is not uniform. The WDW theory is not the
limit of sLQC:
Given N > 0 however large, there exists a φ such that
〈V̂φ〉sLQC − 〈V̂φ〉WDW > N .
LQC is fundamentally discrete.
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4. The k=1 Model

Another Example: k = 1 FRW model with a massless scalar field φ.
Instructive because again every classical solution is singular; scale factor
not a good global clock; More stringent tests because of the classical
re-collapse. Provides a foundation for more complicated models.
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k=1 Model: WDW Theory
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k=1 Model: LQC
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k=1: Domain of validity of classical GR
(AA, Pawlowski, Singh, Vandersloot)

• Classical Re-collapse: The infra-red issue.
ρmin = (3/8πGa2

max)
(
1 + O(ℓ4Pl/a

4
max)

)

So, even for a very small universe, amax ≈ 23ℓPl, (i.e. p(φ) = 5 × 103~),
agreement with the classical Friedmann formula to one part in 105.
Classical GR an excellent approximation between a ∼ 8ℓPl and a ∼ 23ℓPl.
For macroscopic universes, LQC prediction on recollapse
indistinguishable from the classical Friedmann formula.

• Quantum Bounces: The ultra-violet issue
For a universe which attains vmax ≈ 1 Mpc3, vmin ≈ 6 × 1016cm3 ≈
10115ℓ3Pl! What matters is curvature which enters Planck regime at this
volume.
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5. Summary

• Quantum geometry creates a brand new repulsive force in the Planck
regime, replacing the big-bang by a quantum bounce. Repulsive force
rises and dies very quickly but makes dramatic changes to classical
dynamics. (Origin: Planck scale non-locality of quantum Einstein’s equations.) Physics
does not end at singularities.

• In k = 1 and k = 0 FRW models with or without Λ, complete control on
the physical sector of the theory. LQC evolution deterministic across the
classical big bang and big crunch for all quantum states. For the k = 0
model, ρ̂ bounded above on the physical Hilbert space and ρsup attained
arbitrarily closely by ρboun in semi-classical states.

• In Bianchi I models (Recall BKL!) numerics not as detailed. But main
features the same, and again ρsup. But there is a ‘bounce’ whenever a
curvature invariant enters the Planck regime (Chiou, Vandersloot, AA).

• Challenge to background independent theories: Detailed recovery of
classical GR at low curvatures/densities (Green and Unruh). Met in
cosmological models.
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k=0 Model with Positive Λ
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k=0 Model with Negative Λ
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SUPPLEMENT: LQC Kinematics
• Recall the canonically conjugate variables of LQG:
Ai

a, SU(2) gravitational connections and, Ea
i , orthonormal triads.

Spatial homogeneity and isotropy implies
⋆ Aa = c ω̊i

aσi
︸︷︷︸

fixed

, Ea = p e̊a
i σi

︸︷︷︸

fixed

⋆ c ∼ ȧ
⋆ holonomy: he(c) = cosµc 1 + sinµc ėaω̊i

aσi

(Almost periodic in c )
⋆ |p| = a2 .
⋆ p → −p changes only the orientation of the triad.
Large gauge transformation; leaves physics invariant.

⋆ Canonically conjugate pairs:
c, p for gravity φ, pφ for matter

• Loop quantum cosmology:
Key strategy:
Do not naively set H = L2(R, dc) and ĉΨ(c) = cΨ(c); p̂Ψ(c) = −i~dΨ

dc .
Rather, Follow full theory. âΨ(a, φ) = aΨ(a, φ) etc.
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SUPPLEMENT: New Quantum Mechanics

• States: Ψ(p) =
∑

i Ψi |pi〉 ||Ψ||2 =
∑

i |Ψi|2
Note: < pi|pj >= δij (Kronecker delta, not Dirac!)
Hilbert space: H = L2(R̄Bohr, dµBohr) 6= L2(R, dp)

• In full LQG, Quantum configuration space is larger than the classical
configuration space: A −→ Ā.
Trickles down to the symmetry reduced sector: R −→ R̄Bohr.

• Operators: p̂Ψ(p) = pΨ(p) (self-adjoint);

ĥµΨ(p) ≡ êxp iµc Ψ(p) = Ψ(p + µ) (unitary)

But no connection operator ĉ ! Reason: ĥµ fails to be continuous in µ.

• Von-Neumann theorem bypassed. New Quantum Mechanics possible.
Representation indeed inequivalent to Schrödinger’s, i.e. to the WDW
theory already kinematically. This kinematic structure mimics that of the
full LQG.
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SUPPLEMENT
How is the Hamiltonian constraint handled in LQC?
• Form of the constraint CH ∼ (ǫij

kEa
i Eb

j/
√

q)
︸ ︷︷ ︸

Thiemann

F k
ab

︸︷︷︸

holonomy

• Classically: F k
ab = −2 limAr�→0

(
Tr(h�ab

− 1)τk/Ar�

)

Quantum Theory: Limit does not exist because there is no local operator
corresponding to the connection or curvature. Different from full LQG: Diff
constraint handled by gauge fixing.

• LQC View (Bojowald, Lewandowski, AA): Quantum geometry ⇒ should not
shrink the loop to zero but only till the area enclosed Ar� w.r.t. the fiducial
metric equals the lowest eigenvalue ∆ = 2

√
3πγℓ2Pl of the area operator.

So, the fundamental operator has Planck scale non-locality; Familiar local
expression emerges only in the classical limit. (µo-Scheme)

• Singularity resolved. But the resulting quantum Hamiltonian constraint
had a serious limitation: Predicted deviations from the classical theory
even in certain ‘tame’ situations. (More later). Physically motivated,
improved constraint remedies this drawback while retaining all desirable
features.
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SUPPLEMENT

• New idea (Pawlowski, Singh, AA): Do this with Physical area of � (which is
state dependent). The resulting operator mimics certain features of the full
theory. Idea subtle to implement but important physical consequences:
Overcomes problems with the older LQC dynamics. (µ̄-Scheme).
(more later)

• Hamiltonian constraint: Use a representation in which geometry (i.e.
V̂ ∼ â3) and matter field (i.e., φ̂) are diagonal : Ψ(v, φ)

Then the Wheeler DeWitt equation is replaced by a difference equation:

C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v)Ψ(v − 4, φ) = ĤφΨ(v, φ)

Fundamentally, a constraint equation. Selects physical states. However,
this equation also dictates quantum dynamics.

• The ‘lattice’ has uniform spacing in v ∼ a3 (not p or µ which ∼ a2).
Dynamics cannot be supported by a Vehlino type quantum kinematics.
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SUPPLEMENT

How do you extract dynamics/physics from the ‘frozen formalism’?

To extract physics, we need to:

• Isolate ‘time’ to give meaning to ‘evolution’.

• Solutions to the constraint: Physical states. Introduce a physical inner
product and suitable Dirac observables.

• Construct states which represent the actual universe at late time.
‘Evolve back’ towards the big bang.

• Is the classical singularity ‘resolved’? In what sense? (Brunnemann and

Thiemann) ‘Wave function vanishes at the singularity’ not enough; Physical
inner product may be non-local. Need to analyze the behavior of the Dirac
observables.

• What is on the ‘other side’ of the classical big-bang? (Quantum foam??
Another classical universe??)
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SUPPLEMENT

• The quantum Hamiltonian constraint takes the form:
−Θ Ψ(v, φ) = ∂2

φΨ(v, φ) (⋆)

where Θ is a positive, self-adjoint difference operator independent of φ :
Θ Ψ(v, φ) = C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ).
Suggests φ could be used as ‘emergent time’ also in the quantum theory.
Relational dynamics.

• Physical states: solutions to (⋆), invariant under v → −v. Observables:
p̂φ and V̂ |φ=φo

. Inner product: Makes these self-adjoint or, equivalently,
use group averaging. Analogy with KG equation in a static space-time.
Semi-classical states: Generalized coherent states.

• Physical states:
Ψ(v, φ) satisfying −i~∂φΨ(v, φ) =

√
Θ Ψ(v, φ)

Dirac observables:
p̂(φ)Ψ(v, φ) = −i~∂φ Ψ(v, φ) ≡

√
ΘΨ(v, φ)

V̂ |φ Ψ(v, φ) = ei
√

Θ(φ−φo) |v|Ψ(v, φo). Similarly ρ̂|φ.
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SUPPLEMENT

What are the differences between the older, µo evolution of (Bojowald,

Lewandowski, AA) and the µ̄ framework (Pawlowski, Singh, AA) in these models?

Differences are very significant with lessons for full LQG.

• In the k=0 model on R3, scale factor a refers to a fiducial metric:
qab = a2(t) qo

ab. If qo
ab → α2 qo

ab, a → α−1a. Physics should not depend on
qo
ab or the value of a(t). (So, claims such as quantum effects are important for a < a⋆ in

the older literature (based on the spectrum of d1/V ) are physically unsound.).

• Further, in this case every quantization requires an additional structure:
An elementary Cell C. We absorb factors of the volume Vo of C w.r.t. qo

ab in
the definition of canonical variables c, p so that the symplectic structure is
independent of the qo

ab choice. So, the classical Hamiltonian theory
depends only C and not on qo

ab. Same is true of quantum kinematics.
Thus, e.g., p3/2 is the physical volume of C.

• i) In µo quantization, the Hamiltonian constraint operator depends on
qab
o again. In the µ̄ quantization, it does not.
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SUPPLEMENT
• ii) For each choice of C we get a quantum theory. In the µo evolution,
the density at the bounce point goes as: ρb ∝ 1/pφ. So, a Gaussian
peaked at a classical phase space point can bounce with ρb = density of
water! Major departures from the classical theory also away from the
bounce: in presence of a cosmological constant, large deviations occur
when Λa2 ≥ 1 although the space-time curvature is low. In µ̄ evolution,
ρb ≈ 0.82ρpl always. No departures from GR at low curvatures.

• iii) Physical results should be independent of the choice of C. In µ̄
evolution they are. Not in the µo scheme. Ex: Given a classical solution
(a(t), φ(t)) when do quantum effects become important? Answer in the µo

scheme depends on the choice of the cell! Answer not ‘gauge invariant’.
In the µ̄ scheme it is.

• Lessons:
a) LQC: Although it seems natural at first, detailed considerations show
that the µo quantization of the Hamiltonian constraint is physically
incorrect;
b) LQG: Whether a quantization of the Hamiltonian constraint has a ‘good
infra-red behavior’ is likely to be very subtle.
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