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Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity 
theories leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one 
expects             . In dimensional regularization, only 
logarithmic divergences are seen (      poles,                    ), 
so 8 powers of momentum would have to come out onto 
the external lines of such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations

In 1948 Schwinger dealt with one-loop three-
point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations

Over the years, an intensive effort has gone
into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.

∆ = (D−2)L+2

∆ = 8
1
ε

ε = D−4
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Local supersymmetry implies that the pure curvature 
part of such a D=4, 3-loop divergent structure must be 
built from the square of the Bel-Robinson tensor

This is directly related to the        corrections in the 
superstring effective action, except that in the string 
context such contributions occur with finite coefficients. 
The question remains whether such string theory 
contributions develop poles in              as one takes the 
zero-slope limit               and how this bears on the 
ultraviolet properties of the corresponding field theory.

Deser, Kay & K.S.S
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The consequences of supersymmetry for the ultraviolet 
structure are not restricted, however, simply to  the 
requirement that counterterms be supersymmetric 
invariants.

There exist more powerful “non-renormalization 
theorems,” the most famous of which excludes infinite 
renormalization within D=4, N=1 supersymmetry of chiral 
invariants, given in N=1 superspace by integrals over half 
the superspace:

Z
d2θW (φ(x,θ, θ̄)) , D̄φ = 0
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Key tools in proving non-renormalization theorems are 
superspace formulations and the background field .

For example, the Wess-Zumino model in N=1, D=4 
supersymmetry is formulated in terms of a chiral 
superfield                                       ;                                           .

In the background field method, one splits the superfield 
into “background” and “quantum” parts,

The chiral constraint on                   can be solved by  
introducing a “prepotential”:

φ = ϕ+Q

Q(x,θ, θ̄)

Q = D̄2X
5

(D̄3 ≡ 0)

background quantum

φ(x,θ, θ̄) : D̄φ = 0 D̄α̇ =− ∂
∂θ̄α̇− iθα ∂

∂xαα̇



Although the Wess-Zumino action requires chiral 
superspace integrals                                                                         
when written in terms of the total field    , the parts involving 
the quantum field      which appears inside loop diagrams 
can be re-written as                                              full superspace 
integrals using the “integration=differentiation” property of 
Berezin integrals. 

Upon expanding into background and quantum parts, one 
finds that the chiral interaction terms can be re-written as 
full superspace integrals, e.g.

Thus all counterterms written using the background field      
must be writable as full-superspace integrals.

Z
d4xd4θ =

Z
d4xd2θd2θ̄

I =
Z

d4xd4θφ̄φ+Re
Z

d4xd2θφ3

Q

ϕ

φ
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Z
d4xd2θQ2ϕ =

Z
d4xd4θXD̄2Xϕ



The strength of such supersymmetric non-renormalization 
theorems  depends on the extent of linearly realizable, or 
“off-shell” supersymmetry. This is the extent of 
supersymmetry for which the algebra can close without use 
of the equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, 

and may involve formulations (e.g. harmonic superspace) 
with infinite numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the linearly realizable supersymmetry has been 
known since the 80’s to be at least half the full 
supersymmetry of the theory. This was used to show the 
finiteness of D=4, N=4 SYM theory. 7

Howe, K.S.S. & Townsend



The key point about non-renormalization theorems is that 
allowed counterterms have to be written as full                

superspace integrals for the linearly realized M-extended 
supersymmety, where the integrands must be written using a 
clearly defined set of basic objects (analogous to the WZ 
background field     ), and where the integrated 
counterterms have to satisfy all applicable gauge symmetries 

and also must be locally constructed (i.e. written without 
using such operators as         ).

The full extent of a theory’s supersymmetry, even though it 
may be non-linear, also restricts the infinities since the 
leading counterterms have to be invariant under the original 
unrenormalized supersymmetry transformations.

!−1

Z
d4Mθ

ϕ
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Assuming that 1/2 supersymmetry is linearly realizable and 
requiring gauge and supersymmetry invariances, together 
with other relevant automorphism symmetries, one derives 
predictions for the first divergent loop orders in maximal  
(N=4 ↔ 16 supercharge) SYM and (N=8 ↔ 32 sc.) SUGRA:

The two D=10 and D=6 max supergravity    cases are peculiar: 
one might have thought there could be          counterterms 

one loop earlier. But these are cases where on-shell 
supersymmetry and automorphism symmetries rule this out.   

Max. SYM first divergences, 
assuming half SUSY off-shell 
(8 supercharges)

Max. SUGRA first divergences, 
assuming half SUSY off-shell 
(16 supercharges)

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

1

Howe, K.S.S & Townsend
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Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 3
Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1

* *

∂2R4

*

Drummond, Heslop, Howe & Kerstan



Within the last decade, there have been significant 
advances in the computation of loop corrections in 
quantum field theory.

These developments include the organization of 
amplitudes into a new kind of perturbation theory 
starting with maximal helicity violating amplitudes (MHV), 

then next-to-MHV (NMHV), etc.

They also incorporate a specific use of dimensional 
regularization together with a clever use of unitarity 
cutting rules.

Unitarity-based calculations
Bern, Dixon, Dunbar, Kosower, Perelstein, Rozowsky et al.
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Normally, one thinks of unitarity relations such as the 
optical theorem as giving information only about the 
imaginary parts of amplitudes. However, if one keeps all 
orders in an expansion in                     then loop integrals 
like                   require integrands to have an additional 

momentum dependence                              , where s is a 
momentum invariant. Then, since                                         
and                                           , one can learn about the real 
parts of an amplitude by retaining imaginary terms at 
order     . 

This gives rise to a procedure for the cut construction of 
higher-loop diagrams.

Z
d(4−ε)p

ε

f (s)→ f (s)s−ε/2

s−ε/2 = 1− (ε/2) ln(s)+ . . .

ln(s) = ln(|s|)+ iπΘ(s)

ε = 4−D
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Another key element in the unitarity-based analysis of 
amplitudes is the Passarino-Veltman procedure for the 
reduction of Feynman-diagram propagators, replacing 
numerator factors like            where              by                         
and then canceling corresponding denominators.

This procedure can yield a variety of resulting irreducible 
configurations in the reduced diagram, including boxes, 
triangles and bubbles.

Important simplifications occur if one can show there are 
ultimately no bubbles or triangles in the reduced 
amplitude.

2k · p (k + p)2− k2p2 = 0
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For maximal supergravity amplitudes, another specific 
relation allowing amplitudes to be evaluated is the Kawai-
Lewellen-Tye relation between open- and closed-string 
amplitudes. This gives rise to tree-level relations between 

max. SUGRA and max. SYM field-theory amplitudes, e.g.

Combining this with unitarity-based calculations, in which 
all amplitudes are ultimately reduced to integrals of 
products of tree amplitudes, one has a way to obtain 
higher-loop supergravity amplitudes from SYM 
amplitudes.

2.1 KLT Relations

The KLT relations are between tree-level amplitudes in closed and open string theories, and arise
from the representation of any closed-string vertex operator as a product of open-string vertex
operators,

V closed(zi, z̄i) = V open
left (zi) V

open
right(z̄i) . (2.1)

The left and right string oscillators appearing in Vleft and V right are distinct, but the zero mode mo-
mentum is shared. In the open-string tree amplitude, the zi are real variables, to be integrated over
the boundary of the disk, while in the closed-string tree amplitude the zi are complex and integrated
over the sphere. The closed-string integrand is thus a product of two open-string integrands. This
statement holds for any set of closed-string states, since they can all be written as tensor products of
open-string states. KLT evaluated the (n − 3) two-dimensional closed-string world-sheet integrals,
via a set of contour-integral deformations, in terms of the (n− 3) open-string integrals, and thereby
related the two sets of string amplitudes.

After taking the field-theory limit [7, 8], α′ki · kj → 0, the KLT relations for four-, five- and
six-point amplitudes are [4],

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4) Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5) Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5) Atree

5 (3, 1, 4, 2, 5) ,

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45A

tree
6 (1, 2, 3, 4, 5, 6)[s35A

tree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35)Atree
6 (2, 1, 5, 4, 3, 6)]

+ P(2, 3, 4) .

(2.2)

Here the Mn’s are the amplitudes in a gravity theory stripped of couplings, the An’s are the color-
ordered amplitudes in a gauge theory [27, 28], sij ≡ (ki + kj)2, and P(2, 3, 4) instructs one to sum
over all permutations of the labels 2, 3 and 4. The n arguments of Mn and An are the external
states j, which have momentum kj . The n-point generalization of eq. (2.2) [1, 4] is presented in
appendix A.

Each gravity state j appearing in Mn is the tensor product of the corresponding two gauge theory
states appearing in the An’s on the right-hand side of the equation. In particular, each of the 256
states of the N = 8 supergravity multiplet, consisting of 1 graviton, 8 gravitinos, 28 gauge bosons,
56 gauginos, and 70 real scalars, can be interpreted as a tensor product of two sets of the 16 states of
the N = 4 super-Yang-Mills multiplet, consisting of 1 gluon, 4 gluinos and 6 real scalars. (In string
theory, this correspondence may be understood in terms of the factorization of the closed string
vertex operator for each N = 8 state into a product of N = 4 open string vertex operators.) Thus
a sum over the N = 8 supergravity states can be interpreted as a double sum over a tensor product
of N = 4 super-Yang-Mills states.

4
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In this way, a different set of anticipated first loop 
orders for ultraviolet divergences has arisen from the 
unitarity-based approach:

These anticipations are based on iterated 2-particle 
cuts, however. Full calculations can reveal different 
behavior.

Max. SYM first divergences, 
unitarity-based predictions

Max. SUGRA first 
divergences, unitarity-
based predictions

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1

14

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂6R4 ∂4R4

2



The main recent development is the completion of the 3-loop 
calculation:

Diagrams (a-g) can be evaluated using iterated two-particle 
cuts, but diagrams (h) & (i) cannot. The result is finite at L=3 
in D=4, but the surprize is that the finite parts have an 
unexpected six powers of momentum that come out onto the 
external lines: a          leading effective action correction.

2

FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

harmonic superspace [2]. Explicit computations show
that it is saturated through four loops [11, 13, 18, 20].

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is a
shorthand for the supersymmetrization of a particular
contraction of four Riemann tensors [4], and D denotes a
generic covariant derivative. The stronger bound (2), if
applied to N = 8 supergravity, would differ from eq. (1)
beginning at L = 3. It corresponds to a three-loop effec-
tive action beginning with D6R4, not D4R4. As the su-
pergravity finiteness bound (1) is based on only a limited
set of unitarity cuts [11], additional (stronger) cancella-
tions may be missed [13].

To study this issue, we use the unitarity method [12,
18] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai, Lewellen, Tye (KLT) [21]
tree-level relations between gravity and gauge theory am-
plitudes [11], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [15]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [22] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [11, 18], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [23]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various

3

4

3

4

3
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22 2
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1 4
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1 4
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1 4
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2
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FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.

Our computation proceeds in two stages. In the first
stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [11, 18]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.

In the second stage we use the KLT relations to
write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [11], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I(c) + 1

4I(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I(h) + 2I(i)

]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

∂6R4
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What can one say about the possibility of yet higher-order 
cancelations? The hints of this depend on the no-triangle 

hypothesis for the end result of the Passarino-Veltman graph 
reduction procedure. This structure been argued to follow 

directly from N=8 supersymmetry at one loop for the non-
local effective action. This argument follows closely the 

known local structure of supersymmetric ultraviolet 
counterterms.

This result can be read two ways: either as an indication of 
the validity of the no-triangle hypothesis, or as a warning 
that the simple box-only form of the reduced diagrams may 
apply only up to a limited order, similar to the ostensible 
finite reach of the non-renormalization theorems.

Kallosh

Kallosh
Howe, K.S.S. & Townsend
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The 3-loop N=8 supergravity calculation is a remarkable tour 
de force, but does it indicate that there are “miracles” that 
cannot be understood from non-renormalization theorems?

All known SYM divergences in the various dimensions D can 
be understood using non-renormalization theorems.

Moreover, these SYM results extend to counterterms that 
have not yet been calculated using the unitarity-based 
methods. Examples are the full D=7, L=2 results for max. 
SYM. Here, there are both single- and double-trace 
structures for the Yang-Mills gauge group.

Counterterms counterattack

17

Marcus & Sagnotti



Recently it has been realized that N=4 SYM can be quantized 
with 9=8+1 off-shell supersymmetries, at the price of manifest 
Lorentz invariance.

The usual problem with finding an off-shell formalism for 
SYM is the imbalance between the number of non-gauge 
bosonic and fermionic degrees of freedom. In D=10, there 
are 9 bosonic and 16 fermionic propagating fields, giving a 
deficit of 7 bosonic. This doesn’t fit into any finite 
combination of SO(9,1) representations. However, it will fit 
into SO(1,1)xSpin7 representations. One first makes a 
decomposition into SO(1,1)xSO(8) reps, separating the D=10 
Majorana-Weyl spinor into two SO(8) chiral spinors. Then, under 
the SO(8) ➔ Spin7 decomposition, one chirality remains an 8 while 
the other splits into 7+1. 8+1 SUSYs can then be taken off-shell.

Baulieu, Berkovits, Bossard & Martin
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This construction can also be viewed from a Kaluza-Klein 
perspective after reduction to D=2, where the                
SO(1,1)xSO(8) decomposition is natural. The 8+1 
formalism then natually corresponds to (8,1) D=2 SUSY.

This might be considered similar to SO(1,1)xSO(8) light-
cone reductions. The latter, however, do not respect all 
D=10 gauge symmetries, while the SO(1,1)xSpin7 
formalism does.

A similar formulation for maximal supergravity exists with 
17=16+1 off-shell supersymmetries in D=2. This 
corresponds to off-shell (16,1) supersymmetry in D=2.

Lifting the 17-SUSY D=2 maximal SG formulation to 
higher dimensions remains complicated, however.

Bossard, Howe & K.S.S (WIP)
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A minimalist perspective on the 8+1 max. SYM and the     
16+1  max. SG formalisms focuses on their usefulness in 
attacking the eligibility of counterterms involving 

integration over half the corresponding full on-shell 
superspaces, i.e. 8 integrations for SYM and 16 for SG. 
These two “half SUSY” counterterms have similar 
structures in D=4:

The implications of gauge invariance are not yet resolved, 
but it seems likely that the “half SUSY +1” formalisms will 
be just enough to rule out the       SYM and       SG 
counterterms.

F4 R4

Howe, K.S.S. & Townsend

∆ISG =
Z

(d8θd8θ̄)232848(W 4)232848

∆ISY M =
Z

(d4θd4θ̄)105 tr(φ4)105

4 5 6  P.S. H o w e  et al. / Superact ions  

&,, subject to the constraint (5.7). This constraint now implies the full non-linear 

field equations. Although the constraint on ~b~ i is non-linear, the constraint on the 

kernel remains linear because it has no free YM indices; this follows from the 

properties of covariant derivatives. Therefore,  the action (5.6) is an invariant. The 

off-shell action is still unknown; indeed, were we to relax the constraint on ~h~j to 

go off-shell, the action (5.6) would no longer be invariant. This suggests that no 

such off shell action exists in the absence of central charges. Other  arguments to 

this effect have previously been given in ref. [10]. 

As a warm up for N = 8 supergravity we will now consider an invariant quartic 

in ~b~ i. This is an on-shell counter term that can arise in gravity matter  systems. By 

using the special form of the action formula (4.6) we can construct the following 

invariant: 

f l'~[iil.lkt]lr~[pql.lr.*lt 
/" = d 4 x  ~ ~ L.ihkt.pq.rs , 

(5.8) 
t i i .k l .e , . rs  ~- (t~ii~kl~C)pqq~r~)ltl5 • 

The kernel is in the 105 representation of SU(4) and satisfies the required 

constraints as a consequence of (5.2): 

L-  ~ ; 0C- ~ .  (5.9) 

(ii) 8 > N >I 4 supergravity: for N = 4, 5 and 6 supergravity, (N = 7 actually has 

eight supersymmetries),  the on-shell theory is described by the complex superfield 

Wqkl which is in a totally antisymmetric representation of U(N),  and whose first 

components  are the physical scalars. They are subject to the constraints [11, 12] 

D, , iWik t , .  = 6(r~,.kt., 1, 

9, , ,  w,~,,,, = 9,~r, wi~,,~ ~, 
(5.10) 

which also imply the linearized field equations. The three loop counter term for 

these theories can be expressed as an action with a kernel of the form W 4, which 

contains the square of the BeI-Robinson tensor in its 0 expansion thus generalizing 

the result for N<~4 [13, 11, 5]. It is more convenient to use instead the spinor 

fields A,,~ik which also appear  in the superspace torsions of the full non-linear theories 

[11]. We can summarize the results by means of a single action formula 

I J 4  !'~1 ! .i i .i.~j.~r~ r...k I .k~12. kJ~  l 2 2 . . . . .  . . . .  ~] x l.J L.Iklll.k212.k313l~- ttll.1212.t313 (5.11) 

for which the kernel has the form, 

Kkf,~.ik~5"~'., '~ = ~,-rta~,,2,~--,,,,,2,~,,..~a ~t~ k,k2k~"~'d~+symmetrizations]. .  , . (5.12) 
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construct the N = 8 analogue of ( 5 . 8 ) :  

1" : f dax D[ir"i4]'[ir"i , t] l~lkt '"k4],[tr"14 ] 

>( t i  a...i4,h ...i4,k a ...k4,l l...14 • 

The kernel is 

Lil...i4dl.../4,kl...k4,tl...t 4 ~" ( Wil . . . i  4 Wjl.. . j4 Wkl . . . k  4 Wll. . .I  a )232848, 

and is in the 232848 representation of SU(8), 

L ~ 

(5.16) 

(5.17) 

The constraint to be satisfied by L, 

D L ~  

is guaranteed by the constraint (5.10) o n  Wiikl. An N = 8 three-loop counter term 

was previously constructed by Kallosh [5], but without manifest SU(8) invariance. 

An obvious question is now whether this counter term can be written in such a 

way that all scalars are covered by derivatives. Such a counter term is then a 

candidates for a linearized E(7) invariant counter term of the full non-linear theory 

[14]. Although the invariance W--* W + constant is not manifest in the way it was 

for N < 8 it is still there, as one can see by performing the 0 integrations (differenti- 

ations) in (5.16). The counter term is the square of the N = 8 Bel-Robinson superfield 

Bi~k~.~,., [15] 

Bqkl.pqr.* = ( Wijkl  Wpqrs ) 1764, ( 5 , 1 8 )  

which is in the 1764 representation of SU(8) 

13 ~ 

Therefore  on dimensional grounds the scalars must appear  in the x-space action 

in the form W2U]4W ~, (WDW)[]3(WDW), etc. By checking all such terms one 

can show that, up to total derivatives, all of them can be written such that the 

scalars appear  only as ~ W if the equations of motion are used. For example,  the term 

[( Wiikl  Wpqrs )1764r-[4 ( Wi' j 'k  'l' Wp,q,r,s, )176411 ( 5 . 1 9 )  

can be put in the form (c9 W) 4 by use of [] W = 0 and integration by parts. 

105 

232848 

20

φi j

Wi jkl

6 of SU(4)

70 of SU(8)



The “half SUSY +1” formalisms appear to be the largest 
possible finite-component formalisms for max. SYM and 
max. SG. But there exist also harmonic superspace 
formalisms with infinite numbers of ordinary component 
fields. The largest known example of this is the N=3 (i.e.12-
supercharge) off-shell formulation of N=4 SYM.

The N=3 harmonic superspace SYM action has a Chern-
Simons type integrand:

Lifting such harmonic superspace formulations to higher 
dimensions is tricky, but if it can be lifted, it would also rule 
out the             L=4, D=5 half-SUSY counterterm.

Galperin, Ivanov, Kalitzin, Ogievetsky & Sokatchev
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ISY M =
Z

d4xdu
(
D2 D3 D̄1 D̄2)2 Q(3)

dQ(3) = tr(F ∧F) u ∈ (U(1)×U(1)×U(1))\U(3)

tr(F4)



One kind of invariant which would be allowed by 12 
supercharge Feynman rules is known to occur in D=7, L=2 
max. SYM and is of the generic form                                 . 
The full 16 supercharge on-shell invariant form of this 
counterterm is given by the full superspace integral of 
the Konishi operator                 .

For on-shell fields, the full superspace integral of this 
operator vanishes for abelian groups, but is non-
vanishing for non-abelian groups.

However, there are also known D=7, L=2 counterterms of 
the general form                      . These appear to require a 
more delicate treatment to preserve gauge invariance.

∂2tr(F4)+ tr(F5)

tr(φ̄i jφi j)

Marcus & Sagnotti

∂2(tr(F2))2

Marcus & Sagnotti
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Another approach to analyzing the divergences in 
supersymmetric gauge theories starts from the Callan-
Symanzik equation for the renormalization of the 
Lagrangian as a operator insertion, e.g. governing mixing 
with the half-SUSY operator                         . Letting the 
classical action be         , the C-Z equation in dimension D 
is                                                                                            ,

where                           for                       .

From this one learns that                                    so the beta 
function for the                         operator is determined by 
the anomalous dimension        . 

Algebraic Renormalization
Dixon
Piguet & Sorella
Hennaux
Stora
Baulieu & Bossard

S(4) = tr(F4)
S(2)

µ
∂
∂µ

[S(2) · Γ] = (4−D)[S(2) · Γ]+ γ(4)g2n(4)[S(4) · Γ]+ · · ·

n(4) = 4, 2, 1 D = 5, 6, 8

S(4) = tr(F4)
γ(4)
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(n(4)−1)β(4) = γ(4)



Combining the supersymmetry generator with a commuting 
spinor parameter to make a scalar operator                , the 
expression of SUSY invariance for a D-form density in D-
dimensions is                                   . Combining this with the 
SUSY algebra                                 and using the Poincaré 
Lemma, one finds                                                                .

Hence one can consider the cocycles of the extended 
nilpotent differential                                 acting on formal 
sums                                             .

The supersymmetry Ward identities then imply that the 
whole cocycle is renormalized in a coherent way. In order 
for an operator like        to mix with the classical action       , 
their cocycles need to have the same structure.

Q = ε̄Q

Q LD +dLD−1 = 0

Q 2 =−i(ε̄γµε)∂µ

ii(ε̄γε)LD +S(Q )|ΣLD−1 +dLD−2 = 0

d +S(Q )|Σ + ii(ε̄γε)

LD +LD−1 +LD−2 + · · ·

S(4) S(2)
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Note that the cocycle of the classical SYM Lagrangian 
density (viewed as a top form       )admits only 5 forms, with 
the last one being proportional to the BPS composite 
operator                                           whose half-superspace 
integral gives the on-shell action.

On the other hand, the cocycle of the operator        is 
longer, admitting non-trivial components of all form 
degrees.

Thus, the half-SUSY operator                         cannot mix 
under renormalization with the classical action        . 

It is expected that the Konishi operator cocycle will pass 
these cohomological tests, and thus be admitted as a 
counterterm   

LD

tr(φiφ j− 1
10−D

δi jφkφk)

S(4)

S(4) = tr(F4)
S(2)

Bossard, Howe & K.S.S. (WIP)
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Thus, from the analysis of counterterms and their 
supersymmetry properties from a variety of points of view, 
the renormalization of max. SYM theory in dimensions 4 
and higher agrees fully with all unitarity-based and earlier 
Feynman-diagram calculations.

Similar agreement with known and anticipated unitarity 
calculational results are expected in supergravity.

Despite the involved nature of some of the arguments, note 
that a simple overall picture remains possible: the highest 
operators that are protected against mixing with the 
classical action under renormalization are the half-SUSY 
operators          and its supergravity counterpart      . 

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂6R4 ∂4R4

2 R4trF4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1
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So, what will be the final story for maximal supergravity: 
protection of up to the half-SUSY operators and then no 

more, or a series of truly miraculous D=4 cancelations to all 
orders? The question remains unresolved, but according to 
an old physics tradition, bets have been taken, for bottles 
of wine.

Which will be the payoff?

                                                                                 or
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