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Ultraviolet Divergences N Gravitg
® SEmPIC power counting N gravitg and supergravitg
theories leads to a naive degree of divergence

A= (D—2)L+2

in D sPacetime dimensions. So, for D=4, 1. =3, one

expects A =8 . In dimensional regularization, onl9

1

logarithmic Aivergences are seen ( — oles, e=D—4),
E

sO 8 powers omc momentum Woulcl I’wavc to come out onto

the external lines of such a cliagram.




o Local sul:)ersgmmetry implies that the pure curvature

Part of such a D=4 §~lool:> clivergent structure must be

Deser, Kay & K.5.5

built from the square of the Bel-Robinson tensor

/ V _gT,uvaT'UVpG 9 T,quG = RyavBRpocGB =+ 4 ,uocvB *RpOCGﬁ

This is clirectlg related to the of? corrections in the
5ul:>erstri ng effective action, except that in the stri ng
context such contributions occur with finite coefficients.
The c]uestion remains whether such string theorg

contributions clevelop Poles in (o))" as one takes the
zero~s|ol:>e limit o/ — 0 and how this bears on the

ultraviolet Properties of the Corresponcling field theoxy.




* Tl’l@ COHSCCIUCI’]CCS O]C suPersgmmetry 1COF t]"IC ultra\/iolet

structure are not restrictecl, however, simP Yy to the
requirement that counterterms be 5uper59mmetric

invariants.

There exist more Powem[ul “non-renormalization

theorems,” the most famous of which excludes infinite

renormalization within D=4, N=] supersymmetry of chiral

invariants, given in N=| superspace bﬂ integrals over half

the superspace:

/d26W((])(x,6,é)) o e




Kc:9 tools in Proving non-renormalization theorems are

superspace formulations and the J:)ackgrouncl field .

For example) the Wess-Zumino model in N=1, D=4

su Qersgmmetrg is formulated in terms of a chiral

field 0.0) : D6=0; Dg= E_) 'O‘a.
superfield 0(+,0,8) :  Do=0; D=0 0%

In the backgrouncl field met]*woclj one splits the superﬁelcl

into “background” and “quantum” parts,

O=0+0

backgrouncl quantum

The chiral constraint on 0(x,0,0) can be solved }39

introducing a “Prepo’tential”: 0=Dx (D’=0)




® Although the Wess-Zumino action requires chiral
superspace integrals = J d*xd*0 00 + Re L/ d*xd*0 ¢’

when written in terms of t

e total field ¢, the parts involving

the quantum field O which appears inside loop cliagrams

can be re-written as / d*xd*0 = / d*xd?0d°6 1Cu” superspace
integrals using the “integrationzcligerentiation” Propertg of

Berezin integrals.

UPon expancling into backgrouncl and quantum parts, one
finds that the chiral interaction terms can be re-written as
full superspace integrals) e.g.

/ d*xd*00° ¢ = / d*xd*0XD*X ¢

° Thus a” counterterms written using the bac Kgrouncl ﬁeld ()

must be writable as 1Cu”~sul:>ersl:>ace integra S.
6



o The strengtlﬂ of such suPersgmmetric non-renormalization

theorems clepencls on the extent of linear|9 realizable) or

“off-shell” supersgmmetry. This is the extent of
suPersgmmetrg for which the algebra can close without use

of the equa’tions of motion.

Knowing the extent of this off-shell supersymmetry 1S trickg,

and may involve formulations (e.g. harmonic suPersPace)

with infinite numbers of auxiliarg fields.

For maximal N=4 SuPer Yang—-Mi ls and maximal N=8

suPergravitg, the linearlg realizable supersymmetry has been
known since the 80’s to be at least half the full
suPersgmmetry of t]’)é theorg. This was used to show the

HeawerikeSep =& Townsend

finiteness of D=4, N=4 SYM theorg.



o The keg Point about non-renormalization theorems is that

allowed counterterms have to be written as full / d*Me

superspace integrals for the |inear|9 realized M-extended
supersymmety, where the integrancls must be written using a
clear|9 defined set of basic objects (analogous to the WZ
backgrouncl field ©), and where the integrate&

counterterms have to satis% all applicable gauge sgmmetries

and also must be loca”y constructed (i.e. written without

using such oPerators o

1

o The full extentof at

may be non-linear, also restricts the infinities since the

1@0:‘3’5 sul:)ersgmmetrg, evern thoug}w it

leading counterterms have to be invariant under the original

unrenormalized sul:)ersgmmetrg transtormations.



* Assuming that 1/2 suPersgmmetrg IS linearlg realizable and

requiring gauge and supersymmetry invariances, toget]’)er

with other relevant automorl:)hism symmetries, one derives

Prcdic‘tions for the first di\/ergent looP orders in maximal

FlowelKeSaS' G Townsend

(N=4 < 16 suPerclﬁarge) SYM and (N=8 & 32 sc.) SUGRA:

Max. SYM first clivergences,
assuming half susy off-shell
(8 suPercharges)

Max. SUGRA first divergencesj
assuming half susyY off-shell

Dimension D

10

8

7

6 5

Loop order L

1

1

2

3

Gen. form

82 F4

F4

82 F4

0°F* | F*

*

Dimension D

1

10

8

i’

Loop order L

2

2

1

2

Gen. form

812R4

alORél

R4

o R

O°R*

(16 suPercharges)

o The two D=10 and D=6 max suPergravit9 * cases are Peculiar:

one miglﬁt have thouglﬁt there coulcl be 9°R* counterterms

one loo: earlier. But these are cases where on-shell

Drummond) Heslop Howe & Kerstan

superst mmetzy and automorl:)hism sgmmetries rule tlwis out.

]



Unitaritg—-—based calculations

Bern X o Dunbar) Kosower, Perelstein) Rozowskg et al.

» Within the last clccacle, there have been signhqcant

|

advances in the comPutation of |ooP corrections in

quantum ﬁcld theory.

o These cJeveloPments include the organization of
amplitucles into a new kind of Perturbation theorg
starting with maximal helicitg Violating amplitucles (MHV)

then next-to-MHV (NMHV), efc.

* Tl’weg also incorporate a SPeciﬁc use of dimensional

regularization together with a clever use of unitarity

cutts ng rules.




» Norma”g, one thinks of unitarity relations such as the

oPtical theorem as giving information onlg about the

imaginarg Parts of amplituc

orders in an exl:)ansion N €

es. However, if one keeps all

— 4D then looP integrals

like / =t p rec]uire integrancls to have an additional

momentum clepenclcnce f(s)—f (S)S_g/ ? where s is a

momentum invariant. Then,

and In(s) = In(|s|) + in®(s) , one can learn about the rea

since s %2 =1—(g/2)In(s) +...

Parts of an amplitude bﬂ retaining imaginarg terms at

order v

o This gives rise to a Procedure for the cut construction of

highe:uloop cliagrams.




+ Another keg e

ement in the unitaritg—-—basecl analgsis of

amplitudes is t

he Passarino-Veltman Proceclure for the

reduction of f:egnman‘-ciiagram propagators, replacing

numerator factors like 2k p where p* =0 bﬂ (k—Fp)2 =l

and then canceling correspon&ing denominators.

This Proceclure G Hicld 2 varietg of resulting irreducible

confi gu rations

triangles and bubbles.

in the reduced cliagram) inclucling boxes,

R
Y X

l mPortant 5iml:>|iﬁcations occur iF one can show there are

ultimatelg no b
ampli’cucﬂe.

ubbles or triangles in the reduced




* For maximal sul:)ergravitg amplitudcs, another speciﬁc

relation al owing amplitucles to be evaluated is the Kawai-

Lewe”en:ye relation between open- and Closeci—-string

amplitucles. This gives rise to tree-level relations between

max. SUGRA and max. SYM ﬁelclﬁc]’weorg anml:)li‘tuclesJ e.g.

LS R e ISR,

SRl (e as A0

Combining this with unitarit3~baseci calculations, in which

all amplitudcs are ultimately reduced to integrals of

Proclucts of tree amplitucles, one

nas a way to obtain

higheﬁloop 5ul:>ergravitg amplitudes from SYM

amplitudes.




* Inthis way, a ditferent set of anticipatecl first looP
orders for ultraviolet cli\/ergences has arisen from the

unitaritg~basecl aPProach:

Max. SYM first clivergences, Dimension D

Loop order L
Gen. form

unitarit9~basecl Preclictions

Max. SUGRA first Dimension D
Loop order L

Gen. form

clivergences) unitarity-

based Preclictions

o These anticipations are based on iterated Z~Partic|e

cuts, however. Full calculations can reveal different

behavior.




+ The main recent development is the completion of the §~loop

Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

calculation:

X

5t
(e)

2 L I
llv l6+15 Y

Ly l4| LioY

’
(h)

7S Diagrams (a—-g) can be evaluated using iterated two-Particle

cuts, but cliagrams (h) & () cannot. The result is finite at |
in D=4, but the surl:)rize is that the finite parts have an

unexPectecl SIX powers omc momentum that cemeobonto the

external lines: a 9°R? leading etHective action correction.




» What can one say about the Possibility of yet higher»-orcler
cancelations? The hints of this clel:)encl on the no~triang|e

hypothesis for the end result of the Passarino-Veltman graph

reduction Proceciure. This structure been arguecJ to follow

chrectl From N=8 supersymmetry at one loo For the non-
9 Kallosh P 9 9 P

local eHective action. This argument follows CIOSCIH the

known local structure of sul:)ersgmmetric ultraviolet

Kallosh
cOou ﬂtértérms & Howe, K.5.5. & Townsend

This result can be read two ways: either as an indication of
tl
.t
apply onlg up to a limited order, similar to the ostensible

ne Valiclitg of the no~triang|e hg Pothesis, or as a warning
1

hat the simple box—-onlg form of the reduced cliagrams may

finite reach of the non-renormalization theorems.



Counterterms counterattack

o The §~looP N=8 supergravitg calculation is a remarkable tour

de force, but does it indicate that there are “miracles” that

cannot be unclerstood From non~renorma|ization theorems‘?

o All known SYM clivergences in the various dimensions D can

be understood using non-renormalization theorems.

+* Moreover, these SYM results extend to counterterms that

have not yet been calculated usingtﬂe unitarity~basecl
- Marcus & Sagnotti

methods. fixaml:)les are the full D=7 1=2 results for max.
ShVEeie there are both sing|e~ and double-trace

structures for the Yang~Mi”5 gauge group.




o Recent y it has been realized that N=4- SYM can be quantize
with 9=8+1 oft-s

| orentz invariance.

hell suPersgmmetries, at the Price of manitest

Baulieu, Berkovits, Bossard & Martin

The usual Problem with ﬁn&ing an off-shell formalism for
SYM is the imbalance between the number of non-gauge

bosonic and fermionic degrees of freedom. In D=10, there

are 9 bosonic and 16 fermionic Prol:)agating fields, gving a

deficit of 7 bosonic. This doesr’t fit into any finite
combination of SO (9,1) rel:)resentations. However, it will fit
into SO(,1) XSPi n, representations. One first makes a
decomposition into SO 1,DxSO(8) reps, separating the D=10
Majoranaa-chl spinor into two SO(8) chiral sl:)inors. Then, under

the SO(8) =» 5|:>iﬂ7 clecomposition) one chirality remains an 8 while
the other splits into 7+1. 8+1 SUSYs can then be taken off-shell.




& This construction can also be viewed trom a Kaluza-Klein
pers bective after reduction to D=2, where the

SO1,DxSO8) cJecomPosition is natural. The 8+1
formalism then natua”g corresponcls o8 P2 SEISY

o This miglﬁt be considered similar to SO, DxSO(8) light—-

cone reductions. The latter, however, do not resl:)ect all

D=10 gauge symmetries, while the SO (U)XSP”V

formalism does.
Bossard, Howe & K.5.5 (WIP)

o A similar formulation for maximal supergravitg exists with

17=16+1 oft-shel supersymmetries in D=2. This
corresponcls to ott-shell (16,1) suPersgmmetrg in D=2.

T._.hcting the 17-SUSY D=2 maximal SG formulation to

ﬁiglﬁer dimensions remains comp icated, however.




+ A minimalist Persl:)ective on the 8+1 max. SYM and the
16+1 max. SG formalisms focuses on their usefulness in

attacking the eligibilitg of counterterms in\/olving

integration over half the corresl:)oncling full on-shell
superspaces, .e. 8 integrations for SYM and 16 for SG.
These two “half SUSY? counterterms have similar

Structu res in D:4” FOWC RIS NG S Townsend

Alsyy = / (d*0d*0)1p5tr(0) 105 105 0;; [ 6ofsu

Algq = / (d89d86)232848(W4)232848 232848 Wik E 70 of SU(8)

The implications of gauge invariance are not yet resolved,
but it seems |; Kelg that the “half sUsy +1” formalisms will
):)ejus’t enougH to rule out the F* SYM and R*SG

counterterms.




o The “half susy +1” formalisms appear to be the largest

Possiole ﬁnit&component formalisms for max. SYM and
max. SG. but there exist also ]ﬂarmonic superspace

formalisms with infinite numbers of or&inarg component

fields. The largest known example of this is the N=% (.e.12~-

SUP@FCHBF%G) offt-shell formulation of N=4 SYM.

Galperin) lvanov, KalitzinJ Ogievetskg & Sokatchev

* The Nz harmonic superspace SYM action has a Chern-

Simons tgpe integrancl:
ISYM — / d4Xdl/t (D2D3D1D2)2 Q(3)

dO¥) =t(FAF) ue (U1)xU((1)xU((1))\U(3)
S Lhcting such harmonic superspace formulations to ]ﬁigher

dimensions is trickg, but if it can be litted, it would also rule
out the tr(F 4) | =4 D=5 half-sUSY counterterm. ?




* One kind of invariant which would be allowed by 12

Marcus & Sagnott
sul:)ercharge Feynman rules is known to occur in D=7, 1.=2

max. SYM and is of the generic form o*tr(F*) +tr(F°) .
The full 16 suPercharge on-shell invariant form of this
counterterm is gjven bg the full superspace integral of
the Konishi operator tr(0Vd; ;) .

+ For on-shell fields, the full superspace integral of this

operator vanishes for abelian groups, but is non-

vanishing for non-abelian eroups.
2 group
Marcus éSagnotti

l
However, there are also known D=7, 1 =2 counterterms of

the genera form 9*(tr(F?))?. These appear to require a

more delicate treatment to preserve gauge invariance.




Algebraic Renormalization

+ Another aPProaclﬁ to analyzing the clivergences In

suPersgmmetric gauge theories starts from t

Dixon

Piguet & Sorella
Hennaux

Stora

Baulieu & Bossard

he Callan-

nganzik equation for the renormalization o

Zthe

| agrangjan as a operator insertion, e.g. governing mixing
with the half-susy operator SW = tr(F%). | etting the

classical action be §@  the C-Z ec]uation in dimension D

; %,
IS ‘u%[g@ .T] = (4 — D) [5(2) T+ v g2 [5(4) SR

where Ny =4,2, 1 for D = S, 6, 8.

From this one learns that (n@g) — 1)Bu) = Y s

the anomalous dimension ) .

O the beta

Lunction for the s@¥ — tr(F4) oPerator is determined bg




* Combining the sul:)ersgmmetrg generator with a Commuting

sPinor Parameter to make a scalar oPerator Q =¢20, the

exl:)ression of SUSY invariance for a D-form clensitg in D~
dimensionsis QLp+dLp_1=0. Combining this with the
SEIS)Y algebra Q2 = —i(Ey%e)d, and using, the Poincaré

| emma, one finds L)L +S(QsLp-1+dLp =0 .

Hence one can COﬂSiClCr thé cocgcles O1C the extenc]eci
nilpotent differential d + S Q)= T lizye) acting on formal
SUmsalp=rpifF Lp > o8

l

The suPer59mmetr9 Ward identities then implg that the

whole cocycle is renormalized in a coherent way. In order

for an o[:)erator like SWto mix with the classical action S <2),

tlﬁeir cocgcles neecl e ha\/e t]’we same structure.



+ Note that the cocgcle of the classical SYM f._.agrangian

censitg (viewed as a toP form Lp) admits onlg 5 Forms with

the last one bemg Proportnonal to the BPS composfce

operator tr(¢' ¢’ : 01 5" ") whose halmc—-sul:)erspace

mtc—:gral glves ‘me on-~s e” action.

On the other hancl, the cocgcle of the oPerator SWis
longer, aclmitting non-~trivial components of all form

CICgI”CCS x

Bossard, Howe & K.5.5. (WIP)

Thus, the halt-suUsy operator § 4 = tr(F*) cannot mix

under renormalization with the classical action §@.

It1s exPec’ced that the Konishi oPerator cocgcle will pass

these cohomological tests, and thus be admitted as a

counterterm



\ Thus, from the analgsis of counterterms and their
supersymmetry Prol:)erties from a variety of Points of view,

, 5 F | : » :
th@ renormallzatlon ot max. SYM ’meorg i dlmCHSlOﬂS <5

and higher agrees fu y with all uni‘:aritg—-based and earlier

l:egnmamcliagram calculations.

Similar agreement with known anc anticipatecl unitarity

calculational results are expectec 18 suPergravitg.

Dimension D | 10 8 i 6 2 4 Dimension D ik} 10 8 fk 6 5 4
Loop order L 1 1 2 3 6 00 Loop order L 2 9 1! 2 3 4 5
Gen. form e = e e A N e T s A el S S Gen. form SR I R NN R e R O R S e

Despite the involved nature of some of the arguments, note

that a 5imP|e overall l:)icture remains Possible: the Highest

ol:)erators that are Protectecl against mixing with the

classical action under renormalization are the half-susy

operators trF*and its su ergravitg counterpart R*.



S0, what will be the final story for maximal supergravitgz

Protection of up to the half-sUsy oPerators and then no

more, or a series of truly miraculous D=4 cancelations to all

orders? The question remains unresolved, but accorcling to

an old Phgsics tradition, bets have been taken, for bottles

of wine. Py
il

|

\

Which will be the Pagog?




