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Starting Point:

Well posed (causal) initial value formulation for geometry and matter

⇒ Globally hyperbolic spactimes (M, g)

⇒ Topological restriction: M ∼= R × σ [Geroch, 60’s]

No classical topology change, possibly quantum?
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Consequences: [ADM 60’s]

Consider arbitrary foliations Y : R × σ → M

Require spacelike leaves of foliation Σt := Y(t, σ)

Pull all fields on M back to R × σ

Obtain velocity phase space of spatial fields (e.g. 3 – metric qab and
extrinsic curvature Kab ∝ ∂qab/∂t)

Legendre transform Kab 7→ pab singular (due to Diff(M) invariance):
Spatial diffeomorphism and Hamiltonian constraints ca, c

Canonical Hamiltonian

Hcanon =

Z

σ

d3x n c + va ca =: c(n)+~c(v)
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Remarks:

Algebraic structure of c, ca Foliation independent

Symplectic structure of geometry and matter fields Foliation
independent

Foliation dependence encoded in lapse, shift n, va

Foliation independence (Diff(M) invariance) ⇒ Hcanon ≈ 0

10 Einstein Equations equivalent to

∂tqab = {Hcanon, qab}, ∂tp
ab = {Hcanon, p

ab}, c = 0, ca = 0

In particular, building gµν , nµ from qab, n, va one obtains
qµν = gµν + nµnν and

{Hcanon, qµν} = [Luq]µν , uµ = nnµ+(~v)µ

recovery of Diff(M) (on shell).
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Consistency:

First class (Dirac) hypersurface deformation algebra D

{~c(v),~c(v′)} = −~c([v, v′])
{~c(v), c(n)} = −c(v[n])

{c(n), c(n′)} = −~c(q−1[n dn′ − n′ dn])

Universality: purely geometric origin, independent of matter content
[Hojman, Kuchař, Teitelboim 70’s]

spatial diffeos generate subalgebra but not ideal

D no Lie algebra (structure functions)
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Problem of Time

Interpretation:

Hcanon constrained to vanish, no true Hamiltonian

Hcanon generates gauge transformations, not physical evolution

qab, pab, ... not gauge invariant, not observable

{Hcanon,O} = 0 for observable, gauge invariant O

Problem of time: Dynamical interpretation?
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Solution: Deparametrisation [Brown & Kuchař 90’s]

In GR, gauge invariant definition of curvature etc. only relative to
geodesic test observers [Wald 90’s]

Test observers = mathematical idealisation

Brown – Kuchař dust action: 4 scalar fields T,SJ minimially coupled
however: geometry backreaction taken seriously

Natural: Superposition of ∞ # of point particle actions

EL Equations: Dust particles move on unit geodesics, T(x) = proper
time along geodesic trough x, SJ(x) labels geodesic

Dark matter candidate (NIMP)
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In GR, gauge invariant definition of curvature etc. only relative to
geodesic test observers [Wald 90’s]

Test observers = mathematical idealisation
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Deparametrisation:

c := cD + cND, ca = cD
a + cND

a ⇒ c̃ = P + h, h =
q

[cND]2 − qabcND
a cND

b

For close to flat geometry h ≈ cND ≈ hSM hard to achieve!

Remarkably {c̃(n), c̃(n′)} = 0 [Brown & Kuchař 90’s]

⇒ Explicit relational solution [Bergmann 60’s, Rovelli 90’s, Dittrich 00’s]

First symplectic reduction wrt ca [Kuchař 90’s] e.g.

qab(x) → qJK(s) := [qab(x)Sa
J(x)S

b
K(x)]SJ(x)=sJ , Sa

JSJ
,b = δa

b , Sa
JSK

,a = δK
J

For any spatially diffeo inv., dust indep. f get observable

Of(τ ) := exp({Hτ , .}) · f, Hτ :=

Z

σ

d3x (τ − T(x)) hND(x)

Physical time evolution

d
dτ

Of(τ ) = {Hphys,Of(τ )}, Hphys :=

Z

σ

d3x hND(x)

Thomas Thiemann Loop Quantum Gravity (LQG)
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qab(x) → qJK(s) := [qab(x)Sa
J(x)S

b
K(x)]SJ(x)=sJ , Sa

JSJ
,b = δa

b , Sa
JSK

,a = δK
J

For any spatially diffeo inv., dust indep. f get observable

Of(τ ) := exp({Hτ , .}) · f, Hτ :=

Z

σ

d3x (τ − T(x)) hND(x)

Physical time evolution

d
dτ

Of(τ ) = {Hphys,Of(τ )}, Hphys :=

Z

σ

d3x hND(x)

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Classical Canonical Formulation
Problem of Time
Canonical Quantisation Strategies

Closed observable algebra due to automorphism property of
Hamiltonian flow

{Of(τ ),Of′(τ )} = O{f,f′}(τ )

Reduced phase space Q’ion conceivable since e.g.

QJK(s) := OqJK(s)(0), PJK(s) := OpJK(s)(0)

⇒ {PJK(s),QLM(s′)} = δ
(J
L δ

K)
M δ(s, s

′)
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Physics of the Dust:

Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons

Conservative Hamiltonian system w/o constraints but true Hamiltonian

Hamiltonian EOM wrt Hphys of physical Non-Dust dof agree with Gauge
Transformations wrt Hcanon of unphysical Non-Dust dof under proper
field substitutions, e.g. qab(x) ↔ Qjk(s)

No constraints but energy – momentum current conservation law

{Hphys,OhND(s)} = 0, {Hphys,OcND
j (s)} = 0,

Effectively reduces # of propagating dof by 4, hence in agreement with
observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00’s]

In terms of c̃ dust fields are perfect (nowhere singular) clocks
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Canonical Quantisation Strategies

Objective: Irreducible representation of the ∗−algebra (or C∗) Aphys of
Dirac observables supporting bHphys

Strategy 1: Constraint Q’ion (CQ) = Q’ion before reduction

Strategy 2: Reduced phase space Q’ion (RQ) = Q’ion after reduction

Complementary Advantages and Disadvantages

CQ+: Reps. of Akin easy to find
CQ-: Phys. HS = Kernel(constraints) construction
complicated (group averaging)
RQ+: Directly phys. HS w/o redundant dof in Akin

RQ-: Reps. of Aphys often difficult to find

With dust, reduced phase space q’ion simpler, avoid difficult
representation of D
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Algebra of Kinematical Functions

Gauge Theory Formulation:

Due to fermionic dof need to start with Palatini/Holst action [Ashtekar 80’s],

[Barbero, Holst, Immirzi 90’s]

After solving 2nd class (simplicity) constraints obtain

{Ea
j (x),A

k
b(y)} = κδa

bδ
k
j δ(x, y)

Non-dust, gravitational contributions to the constraints

cgeo
j = DaEa

j

cgeo
a = Tr

`
FabEb

´

cgeo =
Tr(Fab [Ea,Eb])√

| det(E)|
+ ....
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Algebra of Physical Observables

Simply define (similar for EI
j(s))

Aj
I(s) := O

aj
I(s)

(0), aj
I(s) := [Aj

aSa
I ](x)S(x)=s,

Then
{EI

j(s),A
k
J(s

′)} = κδk
j δ

I
J δ(s, s

′)

No constraints but phys. Hamiltonian (Σ = S(σ))

H =

Z

Σ

p
| − ηµν Tr (τµ F ∧ {A,V}) Tr (τν F ∧ {A,V}) | =:

Z
d3s H(s)

Physical total volume

V =

Z

Σ

p
| det(E)|

Symmetry group of H: S = N ⋊ Diff(Σ)

N : Abelian normal subgroup generated by H(s), active Diff(Σ)
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Physical Hilbert Space

Lattice – inspired canon. gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli,

Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

Z

e
A)

Electr. dof: flux

Ej(S) =

Z

S
ǫabc Ea

j dxb ∧ dxc

Poisson – brackets:

{Ej(S),A(e)} = G A(e1) τj A(e2); e = e1 ◦ e2, e1 ∩ e2 = e ∩ S

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Algebra of Kinematical Functions
Algebra of Physical Observables
Physical Hilbert Space
Physical coherent states
Physical Hamiltonian
Semiclassical Limit

Physical Hilbert Space

Lattice – inspired canon. gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli,

Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

Z

e
A)

Electr. dof: flux

Ej(S) =

Z

S
ǫabc Ea

j dxb ∧ dxc

Poisson – brackets:

{Ej(S),A(e)} = G A(e1) τj A(e2); e = e1 ◦ e2, e1 ∩ e2 = e ∩ S

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Algebra of Kinematical Functions
Algebra of Physical Observables
Physical Hilbert Space
Physical coherent states
Physical Hamiltonian
Semiclassical Limit

Physical Hilbert Space

Lattice – inspired canon. gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli,

Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

Z

e
A)

Electr. dof: flux

Ej(S) =

Z

S
ǫabc Ea

j dxb ∧ dxc

Poisson – brackets:

{Ej(S),A(e)} = G A(e1) τj A(e2); e = e1 ◦ e2, e1 ∩ e2 = e ∩ S

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Algebra of Kinematical Functions
Algebra of Physical Observables
Physical Hilbert Space
Physical coherent states
Physical Hamiltonian
Semiclassical Limit

���
���
���

���
���
���

e

S

e

+

1

2

e    S

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Algebra of Kinematical Functions
Algebra of Physical Observables
Physical Hilbert Space
Physical coherent states
Physical Hamiltonian
Semiclassical Limit

Lattice – inspired gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

Z

e
A)

Electr. dof: flux

Ef(S) =

Z

S
ǫabc Ea

j dxb ∧ dxc

Poisson – brackets:

{Ej(S),A(e)} = G A(e1) τj A(e2); e = e1 ◦ e2, e1 ∩ e2 = e ∩ S

Reality conditions:

A(e) = [A(e−1)]T, Ej(S) = Ej(S)

Defines abstract Poisson∗−algebra Aphys.

Bundle automorphisms G ∼= G ⋊ Diff(Σ) act by Poisson automorphisms
on Aphys e.g. αg = exp({

R
λjcj, .}), g = exp(λjτj)

αg(A(e)) = g(b(e)) A(e)g(f(e))−1, αϕ(A(e)) = A(ϕ(e))
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HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(Σ) inv. states on hol. – flux algebra Aphys unique.

wave functions of Hphys

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[Â(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Êj(S) ψ](A) := i~ {Ej(S), ψ(A)}
Scalar product

< ψ,ψ′ >:=

Z

SU(2)N
dµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)
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Does rep. support bH with correct semiclassical limit?

Gauss constraint solved by restriction of intertwiners I

Hphys not separable

Hphys = ⊕γ Hγ , Hγ = span{Tγ,j,I; j 6= 0, I}
Diff(Σ) does not downsize it since symmetry group, not gauge group

Unitary representation U(ϕ)Tγ,j,I := Tϕ(γ),j,I

If U(ϕ) F U(ϕ)−1 = F (e.g. F = H; all operationally defined
observables) then “superselection” (subgraph preservation)

F Hγ ⊂ Hγ ⇒ F = ⊕γ Fγ

This imposes strong constraints on regularisation of bH and removes
most ambiguities usually encountered for bC !

Task:

1. Construct Ĥγ ∀ γ
2. Compute < ψγ ,Hψγ >=< ψγ ,Hγψγ > f. semiclass. ψγ

Thomas Thiemann Loop Quantum Gravity (LQG)
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2. Compute < ψγ ,Hψγ >=< ψγ ,Hγψγ > f. semiclass. ψγ

Thomas Thiemann Loop Quantum Gravity (LQG)



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

Algebra of Kinematical Functions
Algebra of Physical Observables
Physical Hilbert Space
Physical coherent states
Physical Hamiltonian
Semiclassical Limit

Physical coherent states

Choose cell complex γ∗, dual graph γ s.t. e ↔ Se

Choose classical field configuration (A0(x),E0(x)), compute

ge := exp(iτjE
j
0(Se)) A0(e) ∈ GC

Define [Hall 90’s], [Sahlmann, T.T., Winkler 00’s]

ψA0,E0 := ⊗e ψe, ψe(he) :=
X

π

dim(π) e−teλπ χπ(geh−1
e )

Minimal uncertainty states, that is, ∀ e ∈ E(γ)

1.

< ψA0,E0,Â(e)ψA0,E0 >= A0(e), < ψA0,E0 ,Êj(Se)ψA0,E0 >= Ej0(Se)

2.

<∆̂A(e)> < ̂∆Ej(Se))>=
1
2
| < [Â(e), Êj(Se))]> |
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< ψA0,E0,Â(e)ψA0,E0 >= A0(e), < ψA0,E0 ,Êj(Se)ψA0,E0 >= Ej0(Se)
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Remarks:

Notice: Σ just differential manifold, no Riemannian space!

No a priori meaning to how densely γ embedded

In particular, final operator bH cannot depend on short distance regulator
used at intermediate stages of construction

Notice: Operator family (bHγ) defines Continuum operator

Expect that good semiclassical states depend on graphs which are very
densely embedded wrt background metric to be approximated

Choose graph to be countably infinite (for compact Σ large finite graph
sufficient)
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Physical Hamiltonian

Example: Cubic graph
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Comparison with YM theory on cubic lattice

Yang – Mills on (R4, η) [Kogut & Susskind 74]
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Lattice spacing ǫ disappears, automat. UV finite.

In a precise sense: ǫ replaced by ℓP
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Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A0,E0), suff. large γ

1. Exp. Value < ψA0,E0 ,
bHψA0,E0 >= H(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,
bH2ψA0,E0 > − < ψA0,E0 ,

bHψA0,E0 >
2= O(~)

Corollary

i. Quantum Hamiltonian correctly implemented

ii. For sufficiently small τ

eiτbH/~ ψA0,E0 ≈ ψA0(τ),E0(τ)
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Summary

LQG dynamically severly constrained (uniqeness result)

correct semiclassical limit of bH established

Final picture equivalent to background independent, Hamiltonian
“floating” lattice gauge theory
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Open Questions

Proposal for removing graph dependence (preservation), non
separability, controlling fluctuations of all dof:
Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]

Implementation of classical N symmetry
bH stable coherent states?

Better understanding of validity/physics of dust, other types of matter?

Scrutinise LQG/AQG by further consistency checks
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Outlook

If LQG/AQG pass consistency tests then:

All LQG techniques developed so far can be imported to phys. HS level!

Physical semiclassical techniques to make contact with standard model

phys. Hamiltonian defines S – Matrix, scattering theory, Feynman rules

conservative system, hence possible improvement of vacuum problem
in QFT on time dep. backgrounds (cosmology)
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