Loop Quantum Gravity Reduced Phase Space Approach

Thomas Thiemann^{1,2}

¹ Albert Einstein Institut, ² Perimeter Institute for Theoretical Physics

Bad Honnef 2008

Contents

Conceptual Foundations

- Reduced Phase Space Quantisation
- Summary, Open Questions & Outlook

Contents

- Conceptual Foundations
- Reduced Phase Space Quantisation
- Summary, Open Questions & Outlook

Contents

- Conceptual Foundations
- Reduced Phase Space Quantisation
- Summary, Open Questions & Outlook

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Classical Canonical Formulation

Canonical formulation: $M \cong R \times \sigma$

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Well posed (causal) initial value formulation for geometry and matter
- \Rightarrow Globally hyperbolic spactimes (M, g)
- \Rightarrow Topological restriction: M \cong $\mathbb{R} imes \sigma$ [Geroch, 60's]
- No classical topology change, possibly quantum?

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Well posed (causal) initial value formulation for geometry and matter
- \Rightarrow Globally hyperbolic spactimes (M, g)
- \Rightarrow Topological restriction: M \cong $\mathbb{R} imes \sigma$ [Geroch, 60's]
- No classical topology change, possibly quantum?

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Well posed (causal) initial value formulation for geometry and matter
- \Rightarrow Globally hyperbolic spactimes (M, g)
- \Rightarrow Topological restriction: $M \cong \mathbb{R} \times \sigma$ [Geroch, 60's]
- No classical topology change, possibly quantum?

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Well posed (causal) initial value formulation for geometry and matter
- \Rightarrow Globally hyperbolic spactimes (M, g)
- \Rightarrow Topological restriction: $M \cong \mathbb{R} \times \sigma$ [Geroch, 60's]
- No classical topology change, possibly quantum?

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation $\Sigma_t := Y(t, \sigma)$
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab}\propto\partial q_{ab}/\partial t)$
- Legendre transform $K_{ab} \mapsto p^{ab}$ singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a , c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x n c + v^a c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation Σ_t := Y(t, σ)
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab}\propto \partial q_{ab}/\partial t)$
- Legendre transform $K_{ab} \mapsto p^{ab}$ singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a , c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x n c + v^a c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation Σ_t := Y(t, σ)
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab}\propto \partial q_{ab}/\partial t)$
- Legendre transform $K_{ab} \mapsto p^{ab}$ singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a , c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x \ n \ c + v^a \ c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation Σ_t := Y(t, σ)
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab}\propto \partial q_{ab}/\partial t)$
- Legendre transform $K_{ab} \mapsto p^{ab}$ singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a , c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x n c + v^a c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation Σ_t := Y(t, σ)
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab} \propto \partial q_{ab}/\partial t$)
- Legendre transform K_{ab} → p^{ab} singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a, c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x n c + v^a c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Consider arbitrary foliations $Y : \mathbb{R} \times \sigma \to M$
- Require spacelike leaves of foliation Σ_t := Y(t, σ)
- Pull all fields on M back to $\mathbb{R} \times \sigma$
- Obtain velocity phase space of spatial fields (e.g. 3 metric q_{ab} and extrinsic curvature $K_{ab} \propto \partial q_{ab}/\partial t$)
- Legendre transform $K_{ab} \mapsto p^{ab}$ singular (due to Diff(M) invariance): Spatial diffeomorphism and Hamiltonian constraints c_a , c
- Canonical Hamiltonian

$$H_{canon} = \int_{\sigma} d^3x \ n \ c + v^a \ c_a =: c(n) + \vec{c}(v)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, c_a Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- I0 Einstein Equations equivalent to

$$\partial_t q_{ab} = \{H_{canon}, q_{ab}\}, \ \ \partial_t p^{ab} = \{H_{canon}, p^{ab}\}, \ \ c=0, \ c_a=0$$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon},q_{\mu\nu}\}=[\mathcal{L}_uq]_{\mu\nu},\ u^{\mu}=nn^{\mu}+(\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, ca Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- I0 Einstein Equations equivalent to

$$\partial_t q_{ab} = \{H_{canon}, q_{ab}\}, \ \ \partial_t p^{ab} = \{H_{canon}, p^{ab}\}, \ \ c=0, \ c_a=0$$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon}, q_{\mu\nu}\} = [\mathcal{L}_u q]_{\mu\nu}, \ u^{\mu} = nn^{\mu} + (\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, ca Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- 10 Einstein Equations equivalent to

$$\partial_t q_{ab} = \{H_{canon}, q_{ab}\}, \ \ \partial_t p^{ab} = \{H_{canon}, p^{ab}\}, \ \ c=0, \ c_a=0$$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon},q_{\mu\nu}\}=[\mathcal{L}_uq]_{\mu\nu},\ u^{\mu}=nn^{\mu}+(\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, ca Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- I0 Einstein Equations equivalent to

 $\partial_t q_{ab} = \{H_{canon}, q_{ab}\}, \ \ \partial_t p^{ab} = \{H_{canon}, p^{ab}\}, \ \ c=0, \ c_a=0$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon},q_{\mu\nu}\}=[\mathcal{L}_uq]_{\mu\nu},\ u^{\mu}=nn^{\mu}+(\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, ca Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- 10 Einstein Equations equivalent to

$$\partial_t q_{ab} = \{H_{\text{canon}}, q_{ab}\}, \ \partial_t p^{ab} = \{H_{\text{canon}}, p^{ab}\}, \ c=0, \ c_a=0$$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon},q_{\mu\nu}\}=[\mathcal{L}_uq]_{\mu\nu},\ u^{\mu}=nn^{\mu}+(\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Remarks:

- Algebraic structure of c, c_a Foliation independent
- Symplectic structure of geometry and matter fields Foliation independent
- Foliation dependence encoded in lapse, shift n, v^a
- Foliation independence (Diff(M) invariance) \Rightarrow H_{canon} \approx 0
- 10 Einstein Equations equivalent to

$$\partial_t q_{ab} = \{H_{\text{canon}}, q_{ab}\}, \ \ \partial_t p^{ab} = \{H_{\text{canon}}, p^{ab}\}, \ \ c=0, \ c_a=0$$

• In particular, building $g_{\mu\nu}$, n^{μ} from q_{ab} , n, v^{a} one obtains $q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$ and

$$\{H_{canon},q_{\mu\nu}\}=[\mathcal{L}_uq]_{\mu\nu},\ u^{\mu}=nn^{\mu}{+}(\vec{v})^{\mu}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Consistency:

- Universality: purely geometric origin, independent of matter content [Hojman, Kuchař, Teitelboim 70's]
- spatial diffeos generate subalgebra but not ideal
- D no Lie algebra (structure functions)

 Conceptual Foundations
 Classification

 Reduced Phase Space Quantisation
 Pr

 Summary, Open Questions & Outlook
 Ca

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Consistency:

- Universality: purely geometric origin, independent of matter content [Hojman, Kuchař, Teitelboim 70's]
- spatial diffeos generate subalgebra but not ideal
- D no Lie algebra (structure functions)

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Consistency:

- Universality: purely geometric origin, independent of matter content [Hojman, Kuchař, Teitelboim 70's]
- spatial diffeos generate subalgebra but not ideal
- D no Lie algebra (structure functions)

Conceptual Foundations Classical C Reduced Phase Space Quantisation Problem of Summary, Open Questions & Outlook Canonical

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Consistency:

- Universality: purely geometric origin, independent of matter content [Hojman, Kuchař, Teitelboim 70's]
- spatial diffeos generate subalgebra but not ideal
- D no Lie algebra (structure functions)

 Conceptual Foundations
 Classical Canonical Formulation

 Reduced Phase Space Quantisation
 Problem of Time

 Summary, Open Questions & Outlook
 Canonical Quantisation Strategies

Problem of Time

- H_{canon} constrained to vanish, no true Hamiltonian
- H_{canon} generates gauge transformations, not physical evolution
- q_{ab}, p^{ab},... not gauge invariant, not observable
- {H_{canon}, O} = 0 for observable, gauge invariant O
- Problem of time: Dynamical interpretation?

Conceptual Foundations Reduced Phase Space Quantisation Summary, Open Questions & Outlook Canonical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Problem of Time

- H_{canon} constrained to vanish, no true Hamiltonian
- H_{canon} generates gauge transformations, not physical evolution
- q_{ab}, p^{ab},... not gauge invariant, not observable
- {H_{canon}, O} = 0 for observable, gauge invariant O
- Problem of time: Dynamical interpretation?

Conceptual Foundations Reduced Phase Space Quantisation Summary, Open Questions & Outlook Canonical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Problem of Time

- H_{canon} constrained to vanish, no true Hamiltonian
- H_{canon} generates gauge transformations, not physical evolution
- q_{ab}, p^{ab}, ... not gauge invariant, not observable
- {H_{canon}, O} = 0 for observable, gauge invariant O
- Problem of time: Dynamical interpretation?

Conceptual Foundations Reduced Phase Space Quantisation Summary, Open Questions & Outlook Canonical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Problem of Time

- H_{canon} constrained to vanish, no true Hamiltonian
- H_{canon} generates gauge transformations, not physical evolution
- q_{ab}, p^{ab}, ... not gauge invariant, not observable
- {H_{canon}, O} = 0 for observable, gauge invariant O
- Problem of time: Dynamical interpretation?

Conceptual Foundations Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Problem of Time

- H_{canon} constrained to vanish, no true Hamiltonian
- H_{canon} generates gauge transformations, not physical evolution
- q_{ab}, p^{ab}, ... not gauge invariant, not observable
- $\{H_{canon}, O\} = 0$ for observable, gauge invariant O
- Problem of time: Dynamical interpretation?

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic
- Dark matter candidate (NIMP)

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic
- Dark matter candidate (NIMP)

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic
- Dark matter candidate (NIMP)

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic
- Dark matter candidate (NIMP)

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Solution: Deparametrisation [Brown & Kuchař 90's]

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic

Dark matter candidate (NIMP)

Reduced Phase Space Quantisation Summary, Open Questions & Outlook Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- In GR, gauge invariant definition of curvature etc. only relative to geodesic test observers [Wald 90's]
- Test observers = mathematical idealisation
- Brown Kuchař dust action: 4 scalar fields T, S^J minimially coupled however: geometry backreaction taken seriously
- Natural: Superposition of ∞ # of point particle actions
- EL Equations: Dust particles move on unit geodesics, T(x) = proper time along geodesic trough x, S^J(x) labels geodesic
- Dark matter candidate (NIMP)
Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^D+c^{ND},\ c_a=c^D_a+c^{ND}_a\ \Rightarrow\ \tilde{c}=P+h,\ h=\sqrt{[c^{ND}]^2-q^{ab}c^{ND}_ac^{ND}_b}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's]
- First symplectic reduction wrt Ca [Kuchař 90's] e.g.

 $q_{ab}(x) \rightarrow q_{JK}(s) := [q_a b(x) S^a_J(x) S^b_K(x)]_{S^J(x) = s^J}, \ S^a_J S^J_{,b} = \delta^a_b, \ S^a_J S^K_{,a} = \delta^K_J$

For any spatially diffeo inv., dust indep. f get observable

$$O_{f}(\tau) := \exp(\{H_{\tau},.\}) \cdot f, \ \ H_{\tau} := \int_{\sigma} d^{3}x \left(\tau - T(x)\right) h^{ND}(x)$$

$$\frac{d}{d\tau}O_{f}(\tau) = \{H_{phys}, O_{f}(\tau)\}, \ \ H_{phys} := \int_{\sigma} d^{3}x \ h^{ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^{\mathsf{D}}+c^{\mathsf{N}\mathsf{D}},\ c_{\mathsf{a}}=c^{\mathsf{D}}_{\mathsf{a}}+c^{\mathsf{N}\mathsf{D}}_{\mathsf{a}}\ \Rightarrow\ \tilde{c}=\mathsf{P}+\mathsf{h},\ \mathsf{h}=\sqrt{[c^{\mathsf{N}\mathsf{D}}]^2-q^{\mathsf{a}\mathsf{b}}c^{\mathsf{N}\mathsf{D}}_{\mathsf{b}}c^{\mathsf{N}\mathsf{D}}_{\mathsf{b}}}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's
- First symplectic reduction wrt Ca [Kuchař 90's] e.g.

 $q_{ab}(x) \rightarrow q_{JK}(s) := [q_a b(x) S^a_J(x) S^b_K(x)]_{S^J(x) = s^J}, \ S^a_J S^J_{,b} = \delta^a_b, \ S^a_J S^K_{,a} = \delta^K_J$

For any spatially diffeo inv., dust indep. f get observable

$$O_f(\tau) := \text{exp}(\{H_\tau,.\}) \cdot f, \ \ H_\tau := \int_\sigma \ d^3x \ (\tau - T(x)) \ h^{\text{ND}}(x)$$

$$\frac{d}{d\tau}O_f(\tau) = \{H_{phys}, O_f(\tau)\}, \ \ H_{phys} := \int_{\sigma} \ d^3x \ h^{ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^D+c^{ND}, \ c_a=c^D_a+c^{ND}_a \ \Rightarrow \ \tilde{c}=P+h, \ h=\sqrt{[c^{ND}]^2-q^{ab}c^{ND}_ac^{ND}_b}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's]
- First symplectic reduction wrt ca [Kuchař 90's] e.g.

 $q_{ab}(x) \rightarrow q_{JK}(s) := [q_a b(x) S^a_J(x) S^b_K(x)]_{S^J(x) = s^J}, \ S^a_J S^J_{,b} = \delta^a_b, \ S^a_J S^K_{,a} = \delta^K_J$

For any spatially diffeo inv., dust indep. f get observable

$$O_f(\tau) := \text{exp}(\{H_\tau,.\}) \cdot f, \ \ H_\tau := \int_\sigma \ d^3x \ (\tau - T(x)) \ h^{\text{ND}}(x)$$

$$\frac{d}{d\tau}O_f(\tau) = \{H_{phys}, O_f(\tau)\}, \ \ H_{phys} := \int_{\sigma} \ d^3x \ h^{ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^{\mathsf{D}}+c^{\mathsf{N}\mathsf{D}},\ c_{\mathsf{a}}=c^{\mathsf{D}}_{\mathsf{a}}+c^{\mathsf{N}\mathsf{D}}_{\mathsf{a}}\ \Rightarrow\ \tilde{c}=\mathsf{P}+\mathsf{h},\ \mathsf{h}=\sqrt{[c^{\mathsf{N}\mathsf{D}}]^2-q^{\mathsf{a}\mathsf{b}}c^{\mathsf{N}\mathsf{D}}_{\mathsf{b}}c^{\mathsf{N}\mathsf{D}}_{\mathsf{b}}}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's]
- First symplectic reduction wrt C_a [Kuchař 90's] e.g.

 $q_{ab}(x) \rightarrow q_{JK}(s) := [q_ab(x)S^a_J(x)S^b_K(x)]_{S^J(x)=s^J}, \ S^a_JS^J_{,b} = \delta^a_b, \ S^a_JS^K_{,a} = \delta^K_J$

For any spatially diffeo inv., dust indep. f get observable

$$O_{f}(\tau) := \exp(\{H_{\tau},.\}) \cdot f, \ \ H_{\tau} := \int_{\sigma}^{\tau} d^{3}x \ (\tau - T(x)) \ h^{\mathsf{ND}}(x)$$

$$\frac{d}{d\tau}O_f(\tau) = \{H_{phys}, O_f(\tau)\}, \ \ H_{phys} := \int_{\sigma} d^3x \ h^{ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^D+c^{ND}, \ c_a=c^D_a+c^{ND}_a \ \Rightarrow \ \tilde{c}=P+h, \ h=\sqrt{[c^{ND}]^2-q^{ab}c^{ND}_ac^{ND}_b}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's]
- First symplectic reduction wrt C_a [Kuchař 90's] e.g.

$$q_{ab}(x) \rightarrow q_{JK}(s) := [q_a b(x) S^a_J(x) S^b_K(x)]_{S^J(x) = s^J}, \ S^a_J S^J_{,b} = \delta^a_b, \ S^a_J S^K_{,a} = \delta^K_J$$

For any spatially diffeo inv., dust indep. f get observable

$$\mathsf{O}_{\mathsf{f}}(\tau) := \mathsf{exp}(\{\mathsf{H}_{\tau},.\}) \cdot \mathsf{f}, \ \ \mathsf{H}_{\tau} := \int_{\sigma} \, \mathsf{d}^{3} \mathsf{x} \left(\tau - \mathsf{T}(\mathsf{x})\right) \, \mathsf{h}^{\mathsf{ND}}(\mathsf{x})$$

$$\frac{d}{d\tau}O_{f}(\tau) = \{H_{phys}, O_{f}(\tau)\}, \ \ H_{phys} := \int_{\sigma} d^{3}x \ h^{ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Deparametrisation:

$$c:=c^D+c^{ND}, \ c_a=c^D_a+c^{ND}_a \ \Rightarrow \ \tilde{c}=P+h, \ h=\sqrt{[c^{ND}]^2-q^{ab}c^{ND}_ac^{ND}_b}$$

- For close to flat geometry $h \approx c^{ND} \approx h^{SM}$ hard to achieve!
- Remarkably $\{\tilde{c}(n), \tilde{c}(n')\} = 0$ [Brown & Kuchař 90's] \Rightarrow Explicit relational solution [Bergmann 60's, Rovelli 90's, Dittrich 00's]
- First symplectic reduction wrt C_a [Kuchař 90's] e.g.

$$q_{ab}(x) \rightarrow q_{JK}(s) := [q_ab(x)S^a_J(x)S^b_K(x)]_{S^J(x)=s^J}, \ S^a_JS^J_{,b} = \delta^a_b, \ S^a_JS^K_{,a} = \delta^K_J$$

For any spatially diffeo inv., dust indep. f get observable

$$O_{f}(\tau) := \exp(\{H_{\tau},.\}) \cdot f, \ \ H_{\tau} := \int_{\sigma} \ d^{3}x \left(\tau - T(x)\right) h^{ND}(x)$$

$$\frac{d}{d\tau}O_{\rm f}(\tau) = \{ {\rm H}_{\rm phys}, {\rm O}_{\rm f}(\tau) \}, \ \ {\rm H}_{\rm phys} := \int_{\sigma} \ {\rm d}^3 x \ {\rm h}^{\rm ND}(x)$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

 Closed observable algebra due to automorphism property of Hamiltonian flow

 $\{\mathsf{O}_{\mathsf{f}}(\tau),\mathsf{O}_{\mathsf{f}'}(\tau)\}=\mathsf{O}_{\{\mathsf{f},\mathsf{f}'\}}(\tau)$

Reduced phase space Q'ion conceivable since e.g.

$$Q_{JK}(s) := O_{q_{JK}(s)}(0), \ P^{JK}(s) := O_{p^{JK}(s)}(0)$$

 $\Rightarrow \{\mathsf{P}^{\mathsf{JK}}(\mathsf{s}), \mathsf{Q}_{\mathsf{LM}}(\mathsf{s}')\} = \delta^{(\mathsf{J}}_{\mathsf{L}} \delta^{\mathsf{K})}_{\mathsf{M}} \delta(\mathsf{s}, \mathsf{s}')$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

 Closed observable algebra due to automorphism property of Hamiltonian flow

$$\{O_{f}(\tau), O_{f'}(\tau)\} = O_{\{f, f'\}}(\tau)$$

Reduced phase space Q'ion conceivable since e.g.

$$\begin{split} \mathsf{Q}_{\mathsf{JK}}(\mathbf{s}) &:= \mathsf{O}_{\mathsf{q}_{\mathsf{JK}}(\mathbf{s})}(0), \ \ \mathsf{P}^{\mathsf{JK}}(\mathbf{s}) := \mathsf{O}_{\mathsf{P}^{\mathsf{JK}}(\mathbf{s})}(0) \\ \\ &\Rightarrow \ \{\mathsf{P}^{\mathsf{JK}}(\mathbf{s}), \mathsf{Q}_{\mathsf{LM}}(\mathbf{s}')\} = \delta_{\mathsf{L}}^{(\mathsf{J}} \delta_{\mathsf{M}}^{\mathsf{K})} \delta(\mathbf{s}, \mathbf{s}') \end{split}$$

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

$$\{H_{phys},O_{h^{ND}(s)}\}=0,\ \{H_{phys},O_{c_{i}^{ND}(s)}\}=0,$$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

$$\{H_{phys},O_{h^{ND}(s)}\}=0,\ \{H_{phys},O_{c_{i}^{ND}(s)}\}=0,$$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Physics of the Dust:

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

 $\{H_{phys},O_{h^{ND}(s)}\}=0,\;\{H_{phys},O_{c_{i}^{ND}(s)}\}=0,\;$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

$$\{H_{phys},O_{h^{ND}(s)}\}=0,\;\{H_{phys},O_{c_{i}^{ND}(s)}\}=0,\;$$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

$$\{H_{phys},O_{h^{ND}(s)}\}=0,\;\{H_{phys},O_{c_{i}^{ND}(s)}\}=0,\;$$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

- Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
- Conservative Hamiltonian system w/o constraints but true Hamiltonian
- Hamiltonian EOM wrt H_{phys} of physical Non-Dust dof agree with Gauge Transformations wrt H_{canon} of unphysical Non-Dust dof under proper field substitutions, e.g. $q_{ab}(x) \leftrightarrow Q^{jk}(s)$
- No constraints but energy momentum current conservation law

$$\{H_{phys},O_{h^{ND}(s)}\}=0,\;\{H_{phys},O_{c_{i}^{ND}(s)}\}=0,\;$$

- Effectively reduces # of propagating dof by 4, hence in agreement with observation (gravitational waves) [Giesel,Hofmann,T.T.,Winkler 00's]
- In terms of c dust fields are perfect (nowhere singular) clocks

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) Aphys of Dirac observables supporting Hphys
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of ସkin easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in ସkin RQ-: Reps. of ସconvs often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) Aphys of Dirac observables supporting Hphys
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of ସkin easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in ସkin RQ-: Reps. of ସconvs often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RQ-: Reps. of \mathfrak{A}_{ohvs} often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RQ-: Reps. of \mathfrak{A}_{phys} often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RO-: Reps. of 2 kms of the difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RQ-: Reps. of \mathfrak{A}_{phys} often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RQ-: Reps. of \mathfrak{A}_{phys} often difficult to find

Classical Canonical Formulation Problem of Time Canonical Quantisation Strategies

Canonical Quantisation Strategies

- Objective: Irreducible representation of the *-algebra (or C*) A_{phys} of Dirac observables supporting H_{phys}
- Strategy 1: Constraint Q'ion (CQ) = Q'ion before reduction
- Strategy 2: Reduced phase space Q'ion (RQ) = Q'ion after reduction
- Complementary Advantages and Disadvantages

CQ+: Reps. of \mathfrak{A}_{kin} easy to find CQ-: Phys. HS = Kernel(constraints) construction complicated (group averaging) RQ+: Directly phys. HS w/o redundant dof in \mathfrak{A}_{kin} RQ-: Reps. of \mathfrak{A}_{phys} often difficult to find

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Kinematical Functions

Gauge Theory Formulation:

- Due to fermionic dof need to start with Palatini/Holst action [Ashtekar 80's], [Barbero, Holst, Immirzi 90's]
- After solving 2nd class (simplicity) constraints obtain

 $\{\mathsf{E}^{\mathsf{a}}_{\mathsf{j}}(\mathsf{x}),\mathsf{A}^{\mathsf{k}}_{\mathsf{b}}(\mathsf{y})\} = \kappa \delta^{\mathsf{a}}_{\mathsf{b}} \delta^{\mathsf{k}}_{\mathsf{j}} \delta(\mathsf{x},\mathsf{y})$

Non-dust, gravitational contributions to the constraints

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Kinematical Functions

Gauge Theory Formulation:

- Due to fermionic dof need to start with Palatini/Holst action [Ashtekar 80's], [Barbero, Holst, Immirzi 90's]
- After solving 2nd class (simplicity) constraints obtain

 $\{\mathsf{E}^{\mathsf{a}}_{\mathsf{j}}(\mathsf{x}),\mathsf{A}^{\mathsf{k}}_{\mathsf{b}}(\mathsf{y})\} = \kappa \delta^{\mathsf{a}}_{\mathsf{b}} \delta^{\mathsf{k}}_{\mathsf{j}} \delta(\mathsf{x},\mathsf{y})$

Non-dust, gravitational contributions to the constraints

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Kinematical Functions

Gauge Theory Formulation:

- Due to fermionic dof need to start with Palatini/Holst action [Ashtekar 80's], [Barbero, Holst, Immirzi 90's]
- After solving 2nd class (simplicity) constraints obtain

$$\{\mathsf{E}_{j}^{\mathsf{a}}(\mathsf{x}),\mathsf{A}_{\mathsf{b}}^{\mathsf{k}}(\mathsf{y})\} = \kappa \delta_{\mathsf{b}}^{\mathsf{a}} \delta_{j}^{\mathsf{k}} \delta(\mathsf{x},\mathsf{y})$$

Non-dust, gravitational contributions to the constraints

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$\mathsf{A}^{j}_{\mathsf{I}}(s):=\mathsf{O}_{\mathsf{a}^{j}_{\mathsf{I}}(s)}(0),\;\mathsf{a}^{j}_{\mathsf{I}}(s):=[\mathsf{A}^{j}_{\mathsf{a}}\mathsf{S}^{\mathsf{a}}_{\mathsf{I}}](x)_{\mathsf{S}(x)=s},$$

Then

$$\{\mathsf{E}_{\mathsf{j}}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{\mathsf{j}}^{\mathsf{k}} \, \delta_{\mathsf{J}}^{\mathsf{I}} \, \delta(\mathsf{s},\mathsf{s}')$$

• No constraints but phys. Hamiltonian ($\Sigma = S(\sigma)$)

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A}, \mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A}, \mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: $\mathfrak{S} = \mathcal{N} \rtimes \mathsf{Diff}(\Sigma)$
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$A^{j}_{I}(s):=O_{a^{j}_{I}(s)}(0),\;a^{j}_{I}(s):=[A^{j}_{a}S^{a}_{I}](x)_{S(x)=s},$$

Then

$$\{\mathsf{E}_{j}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{j}^{\mathsf{k}} \; \delta_{\mathsf{J}}^{\mathsf{I}} \; \delta(\mathsf{s},\mathsf{s}')$$

• No constraints but phys. Hamiltonian ($\Sigma = S(\sigma)$)

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: $\mathfrak{S} = \mathcal{N} \rtimes \text{Diff}(\Sigma)$
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$\mathsf{A}^{j}_{\mathsf{I}}(s):=\mathsf{O}_{\mathsf{a}^{j}_{\mathsf{I}}(s)}(0),\;\mathsf{a}^{j}_{\mathsf{I}}(s):=[\mathsf{A}^{j}_{\mathsf{a}}\mathsf{S}^{\mathsf{a}}_{\mathsf{I}}](x)_{\mathsf{S}(x)=s},$$

Then

$$\{\mathsf{E}_{j}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{j}^{\mathsf{k}} \, \delta_{\mathsf{J}}^{\mathsf{I}} \, \delta(\mathsf{s},\mathsf{s}')$$

No constraints but phys. Hamiltonian (Σ = S(σ))

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: $\mathfrak{S} = \mathcal{N} \rtimes \mathsf{Diff}(\Sigma)$
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$\mathsf{A}^{j}_{\mathsf{I}}(s):=\mathsf{O}_{\mathsf{a}^{j}_{\mathsf{I}}(s)}(0),\;\mathsf{a}^{j}_{\mathsf{I}}(s):=[\mathsf{A}^{j}_{\mathsf{a}}\mathsf{S}^{\mathsf{a}}_{\mathsf{I}}](x)_{\mathsf{S}(x)=s},$$

Then

$$\{\mathsf{E}_{j}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{j}^{\mathsf{k}} \, \delta_{\mathsf{J}}^{\mathsf{I}} \, \delta(\mathsf{s},\mathsf{s}')$$

No constraints but phys. Hamiltonian (Σ = S(σ))

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: G = N × Diff(Σ)
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$\mathsf{A}^{j}_{\mathsf{I}}(s):=\mathsf{O}_{\mathsf{a}^{j}_{\mathsf{I}}(s)}(0),\;\mathsf{a}^{j}_{\mathsf{I}}(s):=[\mathsf{A}^{j}_{\mathsf{a}}\mathsf{S}^{\mathsf{a}}_{\mathsf{I}}](x)_{\mathsf{S}(x)=s},$$

Then

$$\{\mathsf{E}_{\mathsf{j}}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{\mathsf{j}}^{\mathsf{k}} \, \delta_{\mathsf{J}}^{\mathsf{I}} \, \delta(\mathsf{s},\mathsf{s}')$$

No constraints but phys. Hamiltonian (Σ = S(σ))

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: $\mathfrak{S} = \mathcal{N} \rtimes \text{Diff}(\Sigma)$
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Algebra of Physical Observables

Simply define (similar for E^I_j(s))

$$A^{j}_{l}(s):=O_{a^{j}_{l}(s)}(0),\;a^{j}_{l}(s):=[A^{j}_{a}S^{a}_{l}](x)_{S(x)=s},$$

Then

$$\{\mathsf{E}_{\mathsf{j}}^{\mathsf{I}}(\mathsf{s}),\mathsf{A}_{\mathsf{J}}^{\mathsf{k}}(\mathsf{s}')\} = \kappa \delta_{\mathsf{j}}^{\mathsf{k}} \, \delta_{\mathsf{J}}^{\mathsf{I}} \, \delta(\mathsf{s},\mathsf{s}')$$

• No constraints but phys. Hamiltonian ($\Sigma = S(\sigma)$)

$$\mathsf{H} = \int_{\Sigma} \sqrt{|-\eta^{\mu\nu} \operatorname{Tr} (\tau_{\mu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\}) \operatorname{Tr} (\tau_{\nu} \mathsf{F} \land \{\mathsf{A},\mathsf{V}\})|} =: \int \mathsf{d}^{3} \mathsf{s} \mathsf{H}(\mathsf{s})$$

$$V = \int_{\Sigma} \sqrt{|\det(E)|}$$

- Symmetry group of H: $\mathfrak{S} = \mathcal{N} \rtimes \text{Diff}(\Sigma)$
- N: Abelian normal subgroup generated by H(s), active Diff(Σ)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical Hilbert Space

Lattice – inspired canon. gauge theory Variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$\mathsf{A}(e) = \mathcal{P} \ \, \text{exp}(\int_e \, \mathsf{A})$$

Electr. dof: flux

$$\mathsf{E}_{\mathsf{j}}(\mathsf{S}) = \int_{\mathsf{S}}^{\cdot} \epsilon_{\mathsf{abc}} \; \mathsf{E}^{\mathsf{a}}_{\mathsf{j}} \; \mathsf{dx}^{\mathsf{b}} \wedge \mathsf{dx}^{\mathsf{c}}$$

Poisson – brackets:

 $\{\mathsf{E}_{\mathsf{j}}(\mathsf{S}),\mathsf{A}(\mathsf{e})\}=\mathsf{G}\;\mathsf{A}(\mathsf{e}_1)\;\tau_{\mathsf{j}}\;\mathsf{A}(\mathsf{e}_2);\quad \mathsf{e}=\mathsf{e}_1\circ\mathsf{e}_2,\;\mathsf{e}_1\cap\mathsf{e}_2=\mathsf{e}\cap\mathsf{S}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical Hilbert Space

Lattice – inspired canon. gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$\mathsf{A}(e) = \mathcal{P} \ \, \text{exp}(\int_e \, \mathsf{A})$$

Electr. dof: flux

$$\mathsf{E}_{\mathsf{j}}(\mathsf{S}) = \int_{\mathsf{S}} \ \epsilon_{\mathsf{abc}} \ \mathsf{E}^{\mathsf{a}}_{\mathsf{j}} \ \mathsf{dx}^{\mathsf{b}} \wedge \mathsf{dx}^{\mathsf{c}}$$

Poisson – brackets:

 $\{\mathsf{E}_{\mathsf{j}}(\mathsf{S}),\mathsf{A}(\mathsf{e})\}=\mathsf{G}\;\mathsf{A}(\mathsf{e}_1)\;\tau_{\mathsf{j}}\;\mathsf{A}(\mathsf{e}_2);\quad\mathsf{e}=\mathsf{e}_1\circ\mathsf{e}_2,\;\mathsf{e}_1\cap\mathsf{e}_2=\mathsf{e}\cap\mathsf{S}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical Hilbert Space

Lattice – inspired canon. gauge theory Variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$\mathsf{A}(e) = \mathcal{P} \ \, \text{exp}(\int_e \, \mathsf{A})$$

Electr. dof: flux

$$\mathsf{E}_{\mathsf{j}}(\mathsf{S}) = \int_{\mathsf{S}} \ \epsilon_{\mathsf{abc}} \ \mathsf{E}^{\mathsf{a}}_{\mathsf{j}} \ \mathsf{dx}^{\mathsf{b}} \wedge \mathsf{dx}^{\mathsf{c}}$$

Poisson – brackets:

 $\{\mathsf{E}_j(S),\mathsf{A}(e)\}=G\;\mathsf{A}(e_1)\;\tau_j\;\mathsf{A}(e_2);\quad e=e_1\circ e_2,\;e_1\cap e_2=e\cap S$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Thomas Thiemann Loop Quantum Gravity (LQG)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Lattice - inspired gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$A(e) = \mathcal{P} exp(\int_e A)$$

Electr. dof: flux

$$\mathsf{E}_\mathsf{f}(\mathsf{S}) = \int_\mathsf{S} \ \epsilon_\mathsf{abc} \ \mathsf{E}_j^\mathsf{a} \ \mathsf{dx}^\mathsf{b} \wedge \mathsf{dx}^\mathsf{c}$$

Poisson – brackets:

 $\{E_j(S),A(e)\} = G\;A(e_1)\;\tau_j\;A(e_2); \ \ e = e_1\circ e_2,\; e_1\cap e_2 = e\cap S$

Reality conditions:

$$\overline{A(e)} = [A(e^{-1})]^T, \ \overline{E_j(S)} = E_j(S)$$

- Defines abstract Poisson^{*}-algebra \mathfrak{A}_{phys} .
- Bundle automorphisms 𝔅 ≅ 𝔅 ⋊ Diff(Σ) act by Poisson automorphisms on 𝔅_{phys} e.g. α_g = exp({∫ λ^jc_j, .}), g = exp(λ^jτ_j)

 $\alpha_{g}(A(e)) = g(b(e)) A(e)g(f(e))^{-1}, \ \alpha_{\varphi}(A(e)) = A(\varphi(e))$
Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Lattice - inspired gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$A(e) = \mathcal{P} exp(\int_e A)$$

Electr. dof: flux

$$\mathsf{E}_\mathsf{f}(\mathsf{S}) = \int_\mathsf{S} \ \epsilon_\mathsf{abc} \ \mathsf{E}_j^\mathsf{a} \ \mathsf{dx}^\mathsf{b} \wedge \mathsf{dx}^\mathsf{c}$$

Poisson – brackets:

 $\{E_j(S),A(e)\} = G\;A(e_1)\;\tau_j\;A(e_2); \ \ e = e_1\circ e_2,\; e_1\cap e_2 = e\cap S$

Reality conditions:

$$\overline{A(e)} = \left[A(e^{-1})\right]^T, \ \overline{E_j(S)} = E_j(S)$$

- Defines abstract Poisson^{*}-algebra \mathfrak{A}_{phys} .

 $\alpha_{g}(A(e)) = g(b(e)) A(e)g(f(e))^{-1}, \ \alpha_{\varphi}(A(e)) = A(\varphi(e))$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Lattice - inspired gauge theory variables [Gambini & Trias 81], [Jacobson, Rovelli, Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

$$A(e) = \mathcal{P} exp(\int_e A)$$

Electr. dof: flux

$$\mathsf{E}_\mathsf{f}(\mathsf{S}) = \int_\mathsf{S} \ \epsilon_\mathsf{abc} \ \mathsf{E}_j^\mathsf{a} \ \mathsf{d} x^\mathsf{b} \wedge \mathsf{d} x^\mathsf{c}$$

Poisson – brackets:

 $\{E_j(S),A(e)\} = G\;A(e_1)\;\tau_j\;A(e_2); \ \ e = e_1\circ e_2,\; e_1\cap e_2 = e\cap S$

Reality conditions:

$$\overline{A(e)} = [A(e^{-1})]^{T}, \ \overline{E_j(S)} = E_j(S)$$

- Defines abstract Poisson*-algebra Applys.
- Bundle automorphisms 𝔅 ≅ 𝔅 ⋊ Diff(Σ) act by Poisson automorphisms on 𝔅_{phys} e.g. α_g = exp({∫ λⁱc_j, .}), g = exp(λⁱτ_j)

 $\alpha_{g}(\mathsf{A}(\mathsf{e})) = \mathsf{g}(\mathsf{b}(\mathsf{e})) \mathsf{A}(\mathsf{e})\mathsf{g}(\mathsf{f}(\mathsf{e}))^{-1}, \ \alpha_{\varphi}(\mathsf{A}(\mathsf{e})) = \mathsf{A}(\varphi(\mathsf{e}))$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

• HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04] Diff(Σ) inv. states on hol. – flux algebra 𝔐_{phys} unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}),..,\mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma}: \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$\widehat{[\mathsf{A}(\mathsf{e})} \ \psi](\mathsf{A}) := \mathsf{A}(\mathsf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$\widetilde{\mathsf{E}}_{j}(\widetilde{\mathsf{S}}) \psi](\mathsf{A}) := \mathsf{i}\hbar \{\mathsf{E}_{j}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{\mathrm{SU}(2)^{N}}\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{1})\;..\;\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{N})\;\overline{\psi_{\gamma}(\mathrm{h}_{1},..,\mathrm{h}_{N})}\;\psi_{\gamma}'(\mathrm{h}_{1},..,\mathrm{h}_{N})$$

Algebra of Kinematical Functions Algebra of Physical Observables **Physical Hilbert Space** Physical coherent states Physical Hamiltonian Semiclassical Limit

• HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

 $\mathsf{Diff}(\Sigma)$ inv. states on hol. – flux algebra $\mathfrak{A}_{\mathsf{phys}}$ unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}), .., \mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma} : \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$[\widehat{\mathsf{A}(\mathsf{e})} \ \psi](\mathsf{A}) := \mathsf{A}(\mathsf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$\widetilde{\mathsf{E}}_{\mathsf{j}}(\widetilde{\mathsf{S}}) \; \psi](\mathsf{A}) := \mathsf{i}\hbar \; \{\mathsf{E}_{\mathsf{j}}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{\mathrm{SU}(2)^{N}}\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{1})\;..\;\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{N})\;\overline{\psi_{\gamma}(\mathrm{h}_{1},..,\mathrm{h}_{N})}\;\psi_{\gamma}'(\mathrm{h}_{1},..,\mathrm{h}_{N})$$

Algebra of Kinematical Functions Algebra of Physical Observables **Physical Hilbert Space** Physical coherent states Physical Hamiltonian Semiclassical Limit

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

 $\text{Diff}(\Sigma)$ inv. states on hol. – flux algebra $\mathfrak{A}_{\text{phys}}$ unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}), .., \mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma}: \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$[\widehat{\mathsf{A}}(\mathbf{e}) \ \psi](\mathsf{A}) := \mathsf{A}(\mathbf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$\widetilde{\mathsf{E}}_{j}(\widetilde{\mathsf{S}}) \psi](\mathsf{A}) := \mathsf{i}\hbar \{\mathsf{E}_{j}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{\mathrm{SU}(2)^{N}}\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{1})\;..\;\mathrm{d}\mu_{\mathrm{H}}(\mathrm{h}_{N})\;\overline{\psi_{\gamma}(\mathrm{h}_{1},..,\mathrm{h}_{N})}\;\psi_{\gamma}'(\mathrm{h}_{1},..,\mathrm{h}_{N})$$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

• HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

 $\mathsf{Diff}(\Sigma)$ inv. states on hol. – flux algebra $\mathfrak{A}_{\mathsf{phys}}$ unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}), .., \mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma}: \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$\widehat{[\mathsf{A}(\mathsf{e})} \ \psi](\mathsf{A}) := \mathsf{A}(\mathsf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$[\widetilde{\mathsf{E}_{\mathsf{j}}}(\widetilde{\mathsf{S}}) \; \psi](\mathsf{A}) := \mathsf{i}\hbar \; \{\mathsf{E}_{\mathsf{j}}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{SU(2)^N}d\mu_H(h_1)\;..\;d\mu_H(h_N)\;\overline{\psi_\gamma(h_1,..,h_N)}\;\psi_\gamma'(h_1,..,h_N)$$

Algebra of Kinematical Functions Algebra of Physical Observables **Physical Hilbert Space** Physical coherent states Physical Hamiltonian Semiclassical Limit

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

 $\text{Diff}(\Sigma)$ inv. states on hol. – flux algebra $\mathfrak{A}_{\text{phys}}$ unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}), .., \mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma}: \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$\widehat{[\mathsf{A}(\mathsf{e})} \ \psi](\mathsf{A}) := \mathsf{A}(\mathsf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$\widehat{[\mathsf{E}_{\mathsf{j}}(\mathsf{S})} \psi](\mathsf{A}) := \mathsf{i}\hbar \{\mathsf{E}_{\mathsf{j}}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{SU(2)^N}d\mu_H(h_1)\ldots d\mu_H(h_N)\ \overline{\psi_\gamma(h_1,..,h_N)}\ \psi_\gamma'(h_1,..,h_N)$$

Algebra of Kinematical Functions Algebra of Physical Observables **Physical Hilbert Space** Physical coherent states Physical Hamiltonian Semiclassical Limit

• HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar, Isham, Lewandowski 92-93], [Sahlmann 02], [L., Okolow, S., T.T. 03-05], [Fleischhack 04]

 $\mathsf{Diff}(\Sigma)$ inv. states on hol. – flux algebra $\mathfrak{A}_{\mathsf{phys}}$ unique.

wave functions of H_{phys}

$$\psi(\mathsf{A}) = \psi_{\gamma}(\mathsf{A}(\mathsf{e}_{1}), .., \mathsf{A}(\mathsf{e}_{\mathsf{N}})), \ \psi_{\gamma}: \ \mathsf{SU}(2)^{\mathsf{N}} \to \mathsf{C}$$

Holonomy = multiplication – operator

$$\widehat{[\mathsf{A}(\mathsf{e})} \ \psi](\mathsf{A}) := \mathsf{A}(\mathsf{e}) \ \psi(\mathsf{A})$$

Flux = derivative – operator

$$[\widehat{\mathsf{E}_{\mathsf{j}}(\mathsf{S})} \psi](\mathsf{A}) := \mathsf{i}\hbar \{\mathsf{E}_{\mathsf{j}}(\mathsf{S}), \psi(\mathsf{A})\}$$

$$<\psi,\psi'>:=\int_{SU(2)^{N}}d\mu_{H}(h_{1})..d\mu_{H}(h_{N})\overline{\psi_{\gamma}(h_{1},..,h_{N})}\psi_{\gamma}'(h_{1},..,h_{N})$$

Algebra of Kinematical Function: Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Spin Network ONB $T_{\gamma,j,l}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

 $\mathcal{H}_{phys} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{span\{T_{\gamma,j,l}; \ j \neq 0, l\}}$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

 $\begin{array}{ll} & \mathbb{C} \text{onstruct} \ \widehat{\mathsf{H}}_{\gamma} \ \forall \ \gamma \\ & \mathbb{C} \text{ompute} \ < \psi_{\gamma}, \mathsf{H} \psi_{\gamma} > = < \psi_{\gamma}, \mathsf{H}_{\gamma} \psi_{\gamma} > \mathsf{f. semiclass.} \end{array}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

Construct $H_{\gamma} \forall \gamma$ Compute $< \psi_{\alpha}$, $H\psi_{\alpha} > = < \psi_{\alpha}$, $H_{\alpha}\psi_{\alpha}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation $U(\varphi)T_{\gamma,j,l} := T_{\varphi(\gamma),j,l}$
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

Construct $H_{\gamma} \forall \gamma$ Compute $< \psi_{\gamma} H_{2}\psi_{\gamma} > = < \psi_{\gamma} H_{2}\psi_{\gamma}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

 $\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

 $\begin{array}{l} \square \mbox{ Construct } \mathsf{H}_\gamma \forall \ \gamma \\ \square \mbox{ Compute } < \psi_\gamma, \mathsf{H}\psi_\gamma > = < \psi_\gamma, \mathsf{H}_\gamma\psi_\gamma > \mathsf{f. semiclass.} \end{array}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

Thomas Thiemann Loop Quantum Gravity (LQG)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:
 - 1. Construct $\widehat{H}_{\gamma} \forall \gamma$
 - Compute $<\psi_{\gamma}, \mathsf{H}\psi_{\gamma}>=<\psi_{\gamma}, \mathsf{H}_{\gamma}\psi_{\gamma}>$ f. semiclass. ψ_{γ}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Does rep. support \widehat{H} with correct semiclassical limit?

- Gauss constraint solved by restriction of intertwiners I
- H_{phys} not separable

$$\mathcal{H}_{\text{phys}} = \oplus_{\gamma} \ \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma} = \overline{\text{span}\{\text{T}_{\gamma,j,\text{I}}; \ j \neq 0,\text{I}\}}$$

- Diff(Σ) does not downsize it since symmetry group, not gauge group
- Unitary representation U(φ)T_{γ,j,l} := T_{φ(γ),j,l}
- If U(φ) F U(φ)⁻¹ = F (e.g. F = H; all operationally defined observables) then "superselection" (subgraph preservation)

$$\mathsf{F} \ \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma} \ \Rightarrow \ \mathsf{F} = \oplus_{\gamma} \mathsf{F}_{\gamma}$$

- This imposes strong constraints on regularisation of H and removes most ambiguities usually encountered for C !
- Task:
 - 1. Construct $\widehat{H}_{\gamma} \forall \gamma$
 - 2. Compute $\langle \psi_{\gamma}, H\psi_{\gamma} \rangle = \langle \psi_{\gamma}, H_{\gamma}\psi_{\gamma} \rangle$ f. semiclass. ψ_{γ}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical coherent states

- Choose cell complex γ^* , dual graph γ s.t. e \leftrightarrow S_e
- Choose classical field configuration $(A_0(x), E_0(x))$, compute $g_e := exp(i\eta E_0^i(S_e)) A_0(e) \in G^{\mathbb{C}}$

Define [Hall 90's], [Sahlmann, T.T., Winkler 00's]

$$\psi_{\mathsf{A}_0,\mathsf{E}_0} := \otimes_{\mathsf{e}} \psi_{\mathsf{e}}, \ \psi_{\mathsf{e}}(\mathsf{h}_{\mathsf{e}}) := \sum_{\pi} \ \mathsf{dim}(\pi) \ \mathsf{e}^{-\mathsf{t}_{\mathsf{e}}\lambda_{\pi}} \ \chi_{\pi}(\mathsf{g}_{\mathsf{e}}\mathsf{h}_{\mathsf{e}}^{-1})$$

• Minimal uncertainty states, that is, $\forall e \in E(\gamma)$

 $<\psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{A}(e)}\psi_{\mathsf{A}_0,\mathsf{E}_0}>=\mathsf{A}_0(e), \ <\psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{E}_j(\mathsf{S}_e)}\psi_{\mathsf{A}_0,\mathsf{E}_0}>=\mathsf{E}_{j0}(\mathsf{S}_e)$

$|\langle \widehat{\Delta A(e)} \rangle | \langle \widehat{\Delta E_j(S_e)} \rangle \rangle = \frac{1}{2} | \langle [\widehat{A(e)}, \widehat{E_j(S_e)} \rangle] \rangle$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical coherent states

- Choose cell complex γ^* , dual graph γ s.t. e \leftrightarrow S_e
- Choose classical field configuration (A₀(x), E₀(x)), compute $g_e := exp(i_{\mathcal{T}_j} E_0^j(S_e)) \ A_0(e) \in G^{\mathbb{C}}$

Define [Hall 90's], [Sahlmann, T.T., Winkler 00's]

$$\psi_{\mathsf{A}_0,\mathsf{E}_0} := \otimes_{\mathsf{e}} \psi_{\mathsf{e}}, \ \psi_{\mathsf{e}}(\mathsf{h}_{\mathsf{e}}) := \sum_{-} \dim(\pi) \ \mathsf{e}^{-\mathsf{t}_{\mathsf{e}}\lambda_{\pi}} \ \chi_{\pi}(\mathsf{g}_{\mathsf{e}}\mathsf{h}_{\mathsf{e}}^{-1})$$

• Minimal uncertainty states, that is, $\forall e \in E(\gamma)$

 $<\psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{A}(e)}\psi_{\mathsf{A}_0,\mathsf{E}_0}>=\mathsf{A}_0(e), \ <\psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{E}_j}(\widehat{\mathsf{S}_e})\psi_{\mathsf{A}_0,\mathsf{E}_0}>=\mathsf{E}_{j0}(\mathsf{S}_e)$

$<\!\!\widehat{\Delta A(e)}\!> <\!\!\widehat{\Delta E_j(S_e)})\!\!>= \frac{1}{2}|<[\widehat{A(e)},\widehat{E_j(S_e)})]\!>$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical coherent states

- Choose cell complex γ^* , dual graph γ s.t. e \leftrightarrow S_e
- Choose classical field configuration $(A_0(x), E_0(x))$, compute $g_e := exp(i\tau_i E_0^j(S_e)) A_0(e) \in G^{\mathbb{C}}$
- Define [Hall 90's], [Sahlmann, T.T., Winkler 00's]

$$\psi_{\mathsf{A}_0,\mathsf{E}_0} := \otimes_{\mathsf{e}} \psi_{\mathsf{e}}, \ \psi_{\mathsf{e}}(\mathsf{h}_{\mathsf{e}}) := \sum_{\pi} \ \mathsf{dim}(\pi) \ \mathsf{e}^{-\mathsf{t}_{\mathsf{e}}\lambda_{\pi}} \ \chi_{\pi}(\mathsf{g}_{\mathsf{e}}\mathsf{h}_{\mathsf{e}}^{-1})$$

• Minimal uncertainty states, that is, $\forall e \in E(\gamma)$

 $<\psi_{A_{0},E_{0}},\bar{A}(e)\psi_{A_{0},E_{0}}>=A_{0}(e),\ <\psi_{A_{0},E_{0}},\bar{E}_{j}(S_{e})\psi_{A_{0},E_{0}}>=E_{j0}(S_{e})$

$<\!\!\widehat{\Delta A(e)}\!> <\!\!\widehat{\Delta E_j(S_e)})\!>= \frac{1}{2}|<[\widehat{A(e)},\widehat{E_j(S_e)})]\!>$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical coherent states

- Choose cell complex γ^* , dual graph γ s.t. e \leftrightarrow S_e
- Choose classical field configuration $(A_0(x), E_0(x))$, compute $g_e := exp(i\tau_i E_0^j(S_e)) A_0(e) \in G^{\mathbb{C}}$

$$\psi_{\mathsf{A}_0,\mathsf{E}_0} := \otimes_{\mathsf{e}} \psi_{\mathsf{e}}, \ \psi_{\mathsf{e}}(\mathsf{h}_{\mathsf{e}}) := \sum_{\pi} \ \mathsf{dim}(\pi) \ \mathsf{e}^{-\mathsf{t}_{\mathsf{e}}\lambda_{\pi}} \ \chi_{\pi}(\mathsf{g}_{\mathsf{e}}\mathsf{h}_{\mathsf{e}}^{-1})$$

Minimal uncertainty states, that is, ∀ e ∈ E(γ)
 1.

$$<\psi_{\mathsf{A}_{0},\mathsf{E}_{0}},\widehat{\mathsf{A}(\mathsf{e})}\psi_{\mathsf{A}_{0},\mathsf{E}_{0}}>=\mathsf{A}_{0}(\mathsf{e}),\ <\psi_{\mathsf{A}_{0},\mathsf{E}_{0}},\widehat{\mathsf{E}_{j}(\mathsf{S}_{\mathsf{e}})}\psi_{\mathsf{A}_{0},\mathsf{E}_{0}}>=\mathsf{E}_{j0}(\mathsf{S}_{\mathsf{e}})$$

$$<\!\widehat{\Delta A(e)}\!> <\!\widehat{\Delta E_j(S_e)})\!> = \frac{1}{2}|<[\widehat{A(e)},\widehat{E_j(S_e)})]\!>$$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical coherent states

- Choose cell complex γ^* , dual graph γ s.t. e \leftrightarrow S_e
- Choose classical field configuration $(A_0(x), E_0(x))$, compute $g_e := exp(i\tau_i E_0^j(S_e)) A_0(e) \in G^{\mathbb{C}}$
- Define [Hall 90's], [Sahlmann, T.T., Winkler 00's]

$$\psi_{\mathsf{A}_0,\mathsf{E}_0} := \otimes_{\mathsf{e}} \psi_{\mathsf{e}}, \ \psi_{\mathsf{e}}(\mathsf{h}_{\mathsf{e}}) := \sum_{\pi} \ \mathsf{dim}(\pi) \ \mathsf{e}^{-\mathsf{t}_{\mathsf{e}}\lambda_{\pi}} \ \chi_{\pi}(\mathsf{g}_{\mathsf{e}}\mathsf{h}_{\mathsf{e}}^{-1})$$

• Minimal uncertainty states, that is, $\forall e \in E(\gamma)$

$$<\psi_{A_0,E_0},\widehat{A(e)}\psi_{A_0,E_0}>=A_0(e), <\psi_{A_0,E_0},\widehat{E_j(S_e)}\psi_{A_0,E_0}>=E_{j0}(S_e)$$

$$<\widehat{\Delta A(e)}> \ <\widehat{\Delta F_j(S_e)})>=\frac{1}{2}|<[\widehat{A(e)},\widehat{E_j(S_e)})]>|$$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherrent states Physical Hamiltonian Semiclassical Limit

Overlap Function

Ngebra of Kinematical Functions Ngebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H
 cannot depend on short distance regulator used at intermediate stages of construction
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H
 cannot depend on short distance regulator used at intermediate stages of construction
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H cannot depend on short distance regulator used at intermediate stages of construction
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H cannot depend on short distance regulator used at intermediate stages of construction
- Notice: Operator family (\widehat{H}_{γ}) defines Continuum operator
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H cannot depend on short distance regulator used at intermediate stages of construction
- Notice: Operator family (\widehat{H}_{γ}) defines Continuum operator
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

- Notice: Σ just differential manifold, no Riemannian space!
- No a priori meaning to how densely γ embedded
- In particular, final operator H cannot depend on short distance regulator used at intermediate stages of construction
- Notice: Operator family (\widehat{H}_{γ}) defines Continuum operator
- Expect that good semiclassical states depend on graphs which are very densely embedded wrt background metric to be approximated
- Choose graph to be countably infinite (for compact Σ large finite graph sufficient)

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Physical Hamiltonian

Example: Cubic graph

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Comparison with YM theory on cubic lattice

Yang – Mills on (R⁴, η) [Kogut & Susskind 74]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{2 \ \mathsf{g}^2 \ \boldsymbol{\epsilon}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \ \sum_{\mathsf{a}=1}^3 \ \mathrm{Tr} \left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}})^2 + [2 - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}}) - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}})^{-1}]\right)$$

• Gravity on $\mathbb{R} imes\Sigma$ [T.T. 96 – 05, Giesel & T.T. 06]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{\ell_{\mathsf{P}}^4} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \left| \sqrt{\left| \sum_{\mu=0}^3 \eta^{\mu\mu} - \left[\sum_{\mathsf{a}=1}^3 \operatorname{Tr}\left(\tau_{\mu} \mathsf{A}(\alpha_\mathsf{v}^\mathsf{a}) \mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a}) \left[\mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a})^{-1}, \mathsf{V}_\mathsf{v} \right] \right) \right]^2} \right|$$

Volume operator

 $\mathsf{V}_{\mathsf{v}} = \sqrt{|\epsilon_{\mathsf{abc}} \mathrm{Tr}\left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{b}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{c}}_{\mathsf{v}})\right)|}$

• Lattice spacing ϵ disappears, automat. UV finite.

In a precise sense: ϵ replaced by ℓ_{P}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Comparison with YM theory on cubic lattice

Yang – Mills on (R⁴, η) [Kogut & Susskind 74]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{2 \, \mathsf{g}^2 \, \boldsymbol{\epsilon}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \, \sum_{\mathsf{a}=1}^3 \, \operatorname{Tr} \left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}})^2 + [2 - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}}) - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}})^{-1}]\right)$$

• Gravity on $\mathbb{R} \times \Sigma$ [T.T. 96 – 05, Giesel & T.T. 06]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{\ell_{\mathsf{P}}^{4}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \left| \sqrt{\left| \sum_{\mu=0}^{3} \eta^{\mu\mu} \left[\sum_{\mathsf{a}=1}^{3} \operatorname{Tr}\left(\tau_{\mu} \mathsf{A}(\alpha_{\mathsf{v}}^{\mathsf{a}}) \mathsf{A}(\mathsf{e}_{\mathsf{v}}^{\mathsf{a}}) \left[\mathsf{A}(\mathsf{e}_{\mathsf{v}}^{\mathsf{a}})^{-1}, \mathsf{V}_{\mathsf{v}}\right] \right) \right]^{2} \right|}$$

Volume operator

 $\mathsf{V}_{\mathsf{v}} = \sqrt{|\epsilon_{\mathsf{abc}} \mathrm{Tr}\left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{b}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{c}}_{\mathsf{v}})
ight)}|$

• Lattice spacing ϵ disappears, automat. UV finite.

In a precise sense: ϵ replaced by ℓ_{P}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Comparison with YM theory on cubic lattice

Yang – Mills on (R⁴, η) [Kogut & Susskind 74]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{2 \, \mathsf{g}^2 \, \boldsymbol{\epsilon}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \, \sum_{\mathsf{a}=1}^3 \, \operatorname{Tr} \left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}})^2 + [2 - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}}) - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}})^{-1}]\right)$$

• Gravity on $\mathbb{R} \times \Sigma$ [T.T. 96 – 05, Giesel & T.T. 06]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{\ell_{\mathsf{P}}^4} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \left| \sqrt{\left| \sum_{\mu=0}^3 \eta^{\mu\mu} \left[\sum_{\mathsf{a}=1}^3 \operatorname{Tr}\left(\tau_{\mu} \mathsf{A}(\alpha_\mathsf{v}^\mathsf{a}) \mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a}) \left[\mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a})^{-1}, \mathsf{V}_\mathsf{v} \right] \right) \right]^2} \right|$$

Volume operator

$$\mathsf{V}_{\mathsf{v}} = \sqrt{|\epsilon_{\mathsf{abc}} \mathrm{Tr}\left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{b}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{c}}_{\mathsf{v}})\right)|}$$

Lattice spacing
e disappears, automat. UV finite.

In a precise sense: ϵ replaced by ℓ_{P}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Comparison with YM theory on cubic lattice

Yang – Mills on (R⁴, η) [Kogut & Susskind 74]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{2 \, \mathsf{g}^2 \, \boldsymbol{\epsilon}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \, \sum_{\mathsf{a}=1}^3 \, \operatorname{Tr} \left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}})^2 + [2 - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}}) - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}})^{-1}]\right)$$

• Gravity on $\mathbb{R} \times \Sigma$ [T.T. 96 – 05, Giesel & T.T. 06]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{\ell_{\mathsf{P}}^4} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \left| \sqrt{\left| \sum_{\mu=0}^3 \eta^{\mu\mu} \left[\sum_{\mathsf{a}=1}^3 \operatorname{Tr}\left(\tau_{\mu} \mathsf{A}(\alpha_\mathsf{v}^\mathsf{a}) \mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a}) \left[\mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a})^{-1}, \mathsf{V}_\mathsf{v} \right] \right) \right]^2} \right|$$

Volume operator

$$\mathsf{V}_{\mathsf{v}} = \sqrt{|\epsilon_{\mathsf{abc}} \mathrm{Tr}\left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{b}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{c}}_{\mathsf{v}})\right)|}$$

• Lattice spacing ϵ disappears, automat. UV finite.

In a precise sense: ϵ replaced by ℓ_{F}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Comparison with YM theory on cubic lattice

Yang – Mills on (R⁴, η) [Kogut & Susskind 74]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{2 \ \mathsf{g}^2 \ \boldsymbol{\epsilon}} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \ \sum_{\mathsf{a}=1}^3 \ \mathrm{Tr} \left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}})^2 + [2 - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}}) - \mathsf{A}(\alpha^{\mathsf{a}}_{\mathsf{v}})^{-1}]\right)$$

• Gravity on $\mathbb{R} \times \Sigma$ [T.T. 96 – 05, Giesel & T.T. 06]

$$\mathsf{H}_{\gamma} = \frac{\hbar}{\ell_{\mathsf{P}}^4} \sum_{\mathsf{v} \in \mathsf{V}(\gamma)} \left. \sqrt{\left| \sum_{\mu=0}^3 \eta^{\mu\mu} \left[\sum_{\mathsf{a}=1}^3 \operatorname{Tr}\left(\tau_{\mu} \mathsf{A}(\alpha_\mathsf{v}^\mathsf{a}) \mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a}) \left[\mathsf{A}(\mathsf{e}_\mathsf{v}^\mathsf{a})^{-1}, \mathsf{V}_\mathsf{v} \right] \right) \right]^2} \right|$$

Volume operator

$$\mathsf{V}_{\mathsf{v}} = \sqrt{|\epsilon_{\mathsf{abc}} \mathrm{Tr}\left(\mathsf{E}(\mathsf{S}^{\mathsf{a}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{b}}_{\mathsf{v}}) \; \mathsf{E}(\mathsf{S}^{\mathsf{c}}_{\mathsf{v}})\right)|}$$

- Lattice spacing ϵ disappears, automat. UV finite.
- In a precise sense: ϵ replaced by ℓ_{P}

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A₀, E₀), suff. large γ

- 1. Exp. Value $\langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{H}}\psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle = \mathsf{H}(\mathsf{A}_0,\mathsf{E}_0) + \mathsf{O}(\hbar)$
- 2. Fluctuation $<\psi_{A_0,E_0}, \widehat{H}^2\psi_{A_0,E_0} > <\psi_{A_0,E_0}, \widehat{H}\psi_{A_0,E_0} >^2 = O(\hbar)$

Corollary

- Quantum Hamiltonian correctly implemented
- For sufficiently small au

 ${
m e}^{{
m i} au {
m H}/\hbar} \psi_{{
m A}_0,{
m E}_0} pprox \psi_{{
m A}_0(au),{
m E}_0(au)}$
Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A_0, E_0) , suff. large γ

- 1. Exp. Value $\langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathbf{H}}\psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle = \mathbf{H}(\mathsf{A}_0,\mathsf{E}_0) + \mathbf{O}(\hbar)$
- 2. Fluctuation $<\psi_{A_0,E_0}, \widehat{H}^2\psi_{A_0,E_0} > <\psi_{A_0,E_0}, \widehat{H}\psi_{A_0,E_0} >^2 = O(\hbar)$

Corollary

- Quantum Hamiltonian correctly implemented
- For sufficiently small au

 $\mathrm{e}^{\mathrm{i} au \mathrm{H}/\hbar} \psi_{\mathrm{A}_0,\mathrm{E}_0} \,pprox \,\psi_{\mathrm{A}_0(au),\mathrm{E}_0(au)}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A_0, E_0) , suff. large γ

1. Exp. Value
$$\langle \psi_{A_0,E_0}, \widehat{H}\psi_{A_0,E_0} \rangle = H(A_0,E_0) + O(\hbar)$$

2. Fluctuation
$$\langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{H}}^2 \psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle - \langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathsf{H}} \psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle^2 = \mathsf{O}(\hbar)$$

Corollary

Quantum Hamiltonian correctly implemented

 ${
m e}^{{
m i} au{
m H}/\hbar} \psi_{
m A_0, E_0} \,pprox\, \psi_{
m A_0(au), E_0(au)}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A_0, E_0) , suff. large γ

1. Exp. Value
$$\langle \psi_{\mathsf{A}_0,\mathsf{E}_0},\widehat{\mathsf{H}}\psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle = \mathsf{H}(\mathsf{A}_0,\mathsf{E}_0) + \mathsf{O}(\hbar)$$

2. Fluctuation
$$\langle \psi_{A_0,E_0}, \widehat{\mathbf{H}}^2 \psi_{A_0,E_0} \rangle - \langle \psi_{A_0,E_0}, \widehat{\mathbf{H}} \psi_{A_0,E_0} \rangle^2 = O(\hbar)$$

Corollary

- i. Quantum Hamiltonian correctly implemented
- ii. For sufficiently small au

 $\mathrm{e}^{\mathrm{i} au\widehat{\mathbf{H}}/\hbar} \psi_{\mathsf{A}_0,\mathsf{E}_0} \approx \psi_{\mathsf{A}_0(au),\mathsf{E}_0(au)}$

Algebra of Kinematical Functions Algebra of Physical Observables Physical Hilbert Space Physical coherent states Physical Hamiltonian Semiclassical Limit

Semiclassical Limit

Theorem [Giesel & T.T. 06] For any (A_0, E_0) , suff. large γ

1. Exp. Value
$$\langle \psi_{A_0,E_0}, \widehat{H}\psi_{A_0,E_0} \rangle = H(A_0,E_0) + O(\hbar)$$

2. Fluctuation
$$\langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathbf{H}}^2 \psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle - \langle \psi_{\mathsf{A}_0,\mathsf{E}_0}, \widehat{\mathbf{H}} \psi_{\mathsf{A}_0,\mathsf{E}_0} \rangle^2 = \mathcal{O}(\hbar)$$

Corollary

- i. Quantum Hamiltonian correctly implemented
- ii. For sufficiently small au

$$\mathrm{e}^{\mathrm{i}\tau\widehat{\mathbf{H}}/\hbar} \psi_{\mathrm{A}_{0},\mathrm{E}_{0}} \approx \psi_{\mathrm{A}_{0}(\tau),\mathrm{E}_{0}(\tau)}$$

Summary Open Questions Outlook

Summary

LQG dynamically severly constrained (uniqueness result)

- correct semiclassical limit of H established
- Final picture equivalent to background independent, Hamiltonian "floating" lattice gauge theory

Summary Open Questions Outlook

Summary

- LQG dynamically severly constrained (uniqueness result)
- correct semiclassical limit of H
 established
- Final picture equivalent to background independent, Hamiltonian "floating" lattice gauge theory

Summary Open Questions Outlook

Summary

- LQG dynamically severly constrained (uniqueness result)
- correct semiclassical limit of H
 established
- Final picture equivalent to background independent, Hamiltonian "floating" lattice gauge theory

Summary Open Questions Outlook

- Proposal for removing graph dependence (preservation), non separability, controlling fluctuations of all dof: Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]
- Implementation of classical $\mathcal N$ symmetry
- H
 stable coherent states?
- Better understanding of validity/physics of dust, other types of matter?
- Scrutinise LQG/AQG by further consistency checks

Summary Open Questions Outlook

- Proposal for removing graph dependence (preservation), non separability, controlling fluctuations of all dof: Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]
- Implementation of classical N symmetry
- H
 stable coherent states?
- Better understanding of validity/physics of dust, other types of matter?
- Scrutinise LQG/AQG by further consistency checks

Summary Open Questions Outlook

- Proposal for removing graph dependence (preservation), non separability, controlling fluctuations of all dof: Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]
- Implementation of classical N symmetry
- Ĥ stable coherent states?
- Better understanding of validity/physics of dust, other types of matter?
- Scrutinise LQG/AQG by further consistency checks

Summary Open Questions Outlook

- Proposal for removing graph dependence (preservation), non separability, controlling fluctuations of all dof: Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]
- Implementation of classical N symmetry
- Ĥ stable coherent states?
- Better understanding of validity/physics of dust, other types of matter?
- Scrutinise LQG/AQG by further consistency checks

Summary Open Questions Outlook

- Proposal for removing graph dependence (preservation), non separability, controlling fluctuations of all dof: Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]
- Implementation of classical N symmetry
- Ĥ stable coherent states?
- Better understanding of validity/physics of dust, other types of matter?
- Scrutinise LQG/AQG by further consistency checks

Summary Open Questions Outlook

Outlook

- All LQG techniques developed so far can be imported to phys. HS level!
- Physical semiclassical techniques to make contact with standard model
- phys. Hamiltonian defines S Matrix, scattering theory, Feynman rules
- conservative system, hence possible improvement of vacuum problem in QFT on time dep. backgrounds (cosmology)

Summary Open Questions Outlook

Outlook

- All LQG techniques developed so far can be imported to phys. HS level!
- Physical semiclassical techniques to make contact with standard model
- phys. Hamiltonian defines S Matrix, scattering theory, Feynman rules
- conservative system, hence possible improvement of vacuum problem in QFT on time dep. backgrounds (cosmology)

Summary Open Questions Outlook

Outlook

- All LQG techniques developed so far can be imported to phys. HS level!
- Physical semiclassical techniques to make contact with standard model
- phys. Hamiltonian defines S Matrix, scattering theory, Feynman rules
- conservative system, hence possible improvement of vacuum problem in QFT on time dep. backgrounds (cosmology)

Summary Open Questions Outlook

Outlook

- All LQG techniques developed so far can be imported to phys. HS level!
- Physical semiclassical techniques to make contact with standard model
- phys. Hamiltonian defines S Matrix, scattering theory, Feynman rules
- conservative system, hence possible improvement of vacuum problem in QFT on time dep. backgrounds (cosmology)