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Starting Point:
O Well posed (causal) initial value formulation for geometry and matter
@ = Globally hyperbolic spactimes (M, g)
@ = Topological restriction: M = R X ¢ [Geroch, 60]

O No classical topology change, possibly quantum?
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Consider arbitrary foliationsY : R x o — M
Require spacelike leaves of foliation X := Y(t, o)
Pull all fields on M backto R x o

Obtain velocity phase space of spatial fields (e.g. 3 — metric gap and
extrinsic curvature Kap o< 9qap/0t)

Legendre transform Kq, — p®° singular (due to Diff(M) invariance):
Spatial diffeomorphism and Hamiltonian constraints ca, ¢

Canonical Hamiltonian

-

Hecanon = / d3X nc+ a Ca =: C(n)+C(V)
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independent

@ Foliation dependence encoded in lapse, shift n, v?

©

Foliation independence (Diff(M) invariance) = Hcanon = 0
@ 10 Einstein Equations equivalent to

8tqab = {Hcanom qab}7 8lpab S {Hcanom pab}7 Cc= 07 Ca = 0

@ In particular, building g,...,, n* from gap, N, v* one obtains
Quv = Quv + NN, and

{Hcanomq;w} = [ﬁucﬂuw ut = nn”+(‘7)u

recovery of Diff(M) (on shell).
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Consistency:

@ First class (Dirac) hypersurface deformation algebra ©

{c(v),c(v)} = —¢([v, v'])
{e(v),c(n)} —c(v[n))
{c(n), c(n’)} —C(q™"[n dn" —n" dn))

@ Universality: purely geometric origin, independent of matter content

[Hojman, Kuchat, Teitelboim 70's]

O spatial diffeos generate subalgebra but not ideal

O ® no Lie algebra (structure functions)

Thomas Thiemann
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Interpretation:

©

Hcanon CONSstrained to vanish, no true Hamiltonian
O Hecanon generates gauge transformations, not physical evolution
@ Qap, P, ... not gauge invariant, not observable

@ {Hcanon, O} = 0 for observable, gauge invariant O

o

Problem of time: Dynamical interpretation?
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Solution: Deparametrisation [Brown & Kuchaf 90s]

@ In GR, gauge invariant definition of curvature etc. only relative to
geodesic test observers [wald 90s]

Q Test observers = mathematical idealisation

@ Brown — Kucha¥ dust action: 4 scalar fields T, S’ minimially coupled
however: geometry backreaction taken seriously

O Natural: Superposition of co # of point particle actions

O EL Equations: Dust particles move on unit geodesics, T(x) = proper
time along geodesic trough x, S’(x) labels geodesic

O Dark matter candidate (NIMP)
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O Deparametrisation:

c:i=c’+c", ca=ci+c” = &=P+h, h= \/[(:ND]2 — gbchPcP

@ For close to flat geometry h ~ c"P ~ h™ hard to achieve!

@ Remarkably {€(n),&(n")} = O [Brown & Kuchat 90's]
= EXp“Cit relational solution [Bergmann 60’s, Rovelli 90's, Dittrich 00's]

O First symplectic reduction wrt Ca [Kuchar 90's] €.9.
Gan(X) — Aok (S) = [Aab(X)S3(X)Sk(N)]s39-s> SIS = 5, SiS%a = 35
O For any spatially diffeo inv., dust indep. f get observable
O(r) = exp({He. ) - Hei= [ dx(r = T0) 100

@ Physical time evolution

d
470U = (Hons (), Hays = [ &Pxh(x)

Jo

Thomas Thiemann



Conceptual Foundations
Reduced Phase Space Quantisation

Summary, Open Questions & Outlook

@ Closed observable algebra due to automorphism property of
Hamiltonian flow

{O(7),Or(7)} = Oy (1)




Conceptual Foundations
Reduced Phase ¢ uantisation

Summary, Open Que: Outlook

@ Closed observable algebra due to automorphism property of
Hamiltonian flow

{O(7),Or(7)} = Oy (1)

O Reduced phase space Q’ion conceivable since e.g.
Qu(S) := Ogys)(0), P™(s) := Opu(5)(0)

= {P™(s),Qu(s)} = 676)8(s. ")

Thomas Thiemann
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Physics of the Dust:

O Dust = Gravitational Higgs, Non-Dust = Gravitational Goldstone Bosons
@ Conservative Hamiltonian system w/o constraints but true Hamiltonian

@ Hamiltonian EOM wrt Hphys Of physical Non-Dust dof agree with Gauge
Transformations wrt Heanon 0f unphysical Non-Dust dof under proper
field substitutions, e.g. qan(x) — Q*(s)

@ No constraints but energy — momentum current conservation law

{Hohys, OhND(s)} =0, {Hohys, OchD(s)} =0,

O Effectively reduces # of propagating dof by 4, hence in agreement with
observation (gravitational waves) [Giesel Hofmann, T.T. Winkler 00's]

@ Interms of ¢ dust fields are perfect (nowhere singular) clocks

Thomas Thiemann
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O Objective: Irreducible representation of the *—algebra (or C*) Apnys Of
Dirac observables supporting Hpnys

O Strategy 1: Constraint Q’ion (CQ) = Q’ion before reduction

©

Strategy 2: Reduced phase space Q’ion (RQ) = Q’ion after reduction
O Complementary Advantages and Disadvantages

CQ+: Reps. of 2, easy to find
CQ-: Phys. HS = Kernel(constraints) construction
complicated (group averaging)
RQ+: Directly phys. HS w/o redundant dof in 2,
RQ-: Reps. of 2pnys often difficult to find
@ With dust, reduced phase space g'ion simpler, avoid difficult
representation of ©

Thomas Thiemann
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ematical Functions

Gauge Theory Formulation:

@ Due to fermionic dof need to start with Palatini/Holst action [ashtekar 80s],

[Barbero, Holst, Immirzi 90's]

@ After solving 2nd class (simplicity) constraints obtain
{EF(), Ab(¥)} = r635/5(, )

@ Non-dust, gravitational contributions to the constraints

g = DJE}

cle = Tr (FabE®)

ceo Tr(Fab[Ea»Eb])
o [ det(E)|

Thomas Thiemann
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Reduced Phase Space Quantisation

sical Observables

O Simply define (similar for Ej(s))
Al(5) = 0,1 (0), al(s) := [ALST](X)s(—s:

@ Then
{E|(s), A5(s')} = wdf &) &(s,s")

@ No constraints but phys. Hamiltonian (X = S(0))

H= /z V= T (ru FA{AVY) Tr(n FA{AV])] ::/ d®s H(s)

@ Physical total volume
V= / V| det(E)|
J X
@ Symmetry group of H: & = A x Diff(X)
@ N: Abelian normal subgroup generated by H(s), active Diff(X)

Thomas Thiemann
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Lattice — inspired gauge theory variables [cambini & Trias 81], [Jacobson, Rovelli, Smolin 88]
O Magnet. dof.: Holonomy (Wilson — Loop)
Ale)="P exp(/ A)
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Q@ Electr. dof: flux
E«(S) = / cane E2X dx” A dx°
JS
O Poisson — brackets:
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Lattice — inspired gauge theory variables [cambini & Trias 81], [Jacobson, Rovelli, Smolin 88]
O Magnet. dof.: Holonomy (Wilson — Loop)
Ale)="P exp(/ A)

e

@ Electr. dof: flux
E«(S) = / cane E2X dx” A dx°
O Poisson — brackets: ”
{Ei(S),A(e)} =G A(e1) 7A(e2); e=ejoey, e1Ne;=eNns
@ Reality conditions:
Ale) = [A(e™ )", E(S) =E(S)
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Lattice — inspired gauge theory variables [cambini & Trias 81], [Jacobson, Rovelli, Smolin 88]
O Magnet. dof.: Holonomy (Wilson — Loop)

Ale)="P exp(/ A)

e

Q@ Electr. dof: flux
E«(S) = / cane E2X dx” A dx°
JS
O Poisson — brackets:
{Ei(S),A(e)} =G A(e1) 7A(e2); e=ejoey, e1Ne;=eNns
@ Reality conditions:
Ale) = (A MI", E(S) =E(S)
O Defines abstract Poisson* —algebra A pnys.

O Bundle automorphisms & = G x Diff(X) act by Poisson automorphisms
on Apnys €.9. ag = exp({ [ Nc;, .}), g = exp(Nn)

ag(A(e)) = g(b(e)) Ale)a(f(e)) ", aw(A(e)) = A(e(e))

Thomas Thiemann
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@ HS Reps.: In QFT no Stone — von Neumann Theorem!!!

Diff(X) inv. states on hol. — flux algebra 2(,nys unique.

@ wave functions of Hpnys
Y(A) = Py (Aer), .., Alen)), ¥y : SUQR)N —C
@ Holonomy = multiplication — operator

—

[Ale) PI(A) := A(e) ¥ (A)

@ Flux = derivative — operator

[Ei(S) ¢1(A) == ih {Ei(S), ¥ (A)}

@ Scalar product

< ’(/)71// >i= / d/LH(hl) .. d/LH(hN) ’(/)A/(h;h oo hN) ’L/J,,\/(hl y
SU)N

Thomas Thiemann
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Hphys NOt separable
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Diff(X) does not downsize it since symmetry group, not gauge group

Unitary representation U(o) T := Ty,

If U(p) F U(p)~! = F (e.g. F = H; all operationally defined

observables) then “superselection” (subgraph preservation)
FHyCHy = F=&,F,

This imposes strong constraints on regularisation of H and removes
most ambiguities usually encountered for C !

Thomas Thiemann



Conceptual Founda
Reduced Phase Space Quantisati

Summary, Open Questions & Outlook

Does rep. support H with correct semiclassical limit?

Qo
Qo

Gauss constraint solved by restriction of intertwiners |
Hphys NOt separable

Hphys = B My, Hy =span{T,; [ #0,1}

Diff(X) does not downsize it since symmetry group, not gauge group
Unitary representation U(o) T := Ty,
If U(p) F U(p)~! = F (e.g. F = H; all operationally defined
observables) then “superselection” (subgraph preservation)
FH,CH, = F=&,F,

This imposes strong constraints on regularisation of H and removes
most ambiguities usually encountered for C !
Task:

Construct H,, V¥ v

Thomas Thiemann



Conceptual Foundations
Reduced Phase Space Quantisati

Summary, Open Questions & Outlook

Does rep. support H with correct semiclassical limit?

Qo
Qo

Gauss constraint solved by restriction of intertwiners |
Hphys NOt separable

Hphys = B My, Hy =span{T,; [ #0,1}

Diff(X) does not downsize it since symmetry group, not gauge group

Unitary representation U(o) T := Ty,

If U(p) F U(p)~! = F (e.g. F = H; all operationally defined

observables) then “superselection” (subgraph preservation)
FHyCHy = F=&,F,

This imposes strong constraints on regularisation of H and removes
most ambiguities usually encountered for C!
Task:

Construct ﬁv vy

Compute < ., Hy, >=<v,,H 4, > f. semiclass. 1,

Thomas Thiemann
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Reduced Phase Space Quantisation

@ Choose cell complex v*, dual graph v s.t. € <« Se
@ Choose classical field configuration (Ag(x), Eo(X)), compute

ge := exp(inE,(Se)) Ao(e) € G°
O Define [Hall 90's], [Sahimann, T.T., Winkler 00s]

PVag,Ey = Qe Ve, e (he) Z dim(m et X~(gehe

Thomas Thiemann
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@ Choose cell complex v*, dual graph v s.t. € <« Se
@ Choose classical field configuration (Ag(x), Eo(X)), compute

ge := exp(inE,(Se)) Ao(e) € G°
O Define [Hall 90's], [Sahimann, T.T., Winkler 00s]

Yag By = ®e Ve, Ye(he) Z dim(r) e~ xx(gehe ™)
@ Minimal uncertainty states, that is, V e € E(7y)

— o —

< Pag,Eo A(€)Vag,E, >= Ao(€), < ag,Eq-Ej(Se)¥as,eo >= Ejo(Se)

Thomas Thiemann



Reduced Phase Space Quantisation

@ Choose cell complex v*, dual graph v s.t. € <« Se
@ Choose classical field configuration (Ao(x), Eo(x)), compute

ge = exp(inEl(Se)) Aole) € G°
O Define [Hall 90's], [Sahimann, T.T., Winkler 00s]

Yag By = ®e Ve, Ye(he) Z dim(r) e~ xx(gehe ™)
@ Minimal uncertainty states, that is, V e € E(7y)
< a0 A(B)Yag,E, >= Ao(€), < YagEqEj(Se)¥ag,E, >= Ejo(Se)

<BAE)> <AE(S)>= 5| < [A(e), ES)> |

Thomas Thiemann
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Remarks:

Q
Q
Qo

Notice: X just differential manifold, no Riemannian space!
No a priori meaning to how densely v embedded

In particular, final operator H cannot depend on short distance regulator
used at intermediate stages of construction

Notice: Operator family (ﬁw) defines Continuum operator

Expect that good semiclassical states depend on graphs which are very
densely embedded wrt background metric to be approximated

Choose graph to be countably infinite (for compact X large finite graph
sufficient)

Thomas Thiemann
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Example: Cubic graph

O
A Ijsfﬁse
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Comparison with YM theory on cubic lattice
] Yang — Mills on (R4, 77) [Kogut & Susskind 74]

Hy = 5o > > T (E(S0* + [2- Aed) - AGad) )

veV(y) a=1

@ Gravity on R x X [T.T. 96 - 05, Giesel & T.T. 06]

3

My =5 Z > {ZTr 7w Ala]) A(e]) [A(e])~, W])

b VEV(7) =0
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Comparison with YM theory on cubic lattice
] Yang — Mills on (R4, 77) [Kogut & Susskind 74]

3

o= g 3 3 Te(ESY + 2 Alod) — Aled) )

@ Gravity on R x X [T.T. 96 - 05, Giesel & T.T. 06]

My =5 Z > {ZTV 7w Ala]) A(e]) [A(e])~, W])

P veV(y)

O Volume operator

Vo = /leascTr (E(S3) E(SY) E(S9)) |

@ Lattice spacing e disappears, automat. UV finite.
@ In a precise sense: e replaced by /p

Thomas Thiemann
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Exp. Value < ¢a, g,, Hioa, £, >= H(Ao, Eo) + O(h)

Fluctuation < ta, e, HZT/JAoon > — < Uay g ﬁU)AO,EO >2=0O(h)

Quantum Hamiltonian correctly implemented
For sufficiently small ~

irH /R
e™ Yng By A wAO(T):EO(T)



Summary, Open Questions & Outlook

@ LQG dynamically severly constrained (unigeness result)

Thomas Thiemann



Summary, Open Questions & Outlook

@ LQG dynamically severly constrained (unigeness result)
@ correct semiclassical limit of H established

Thomas Thiemann



Summary, Open Questions & Outlook

@ LQG dynamically severly constrained (unigeness result)
@ correct semiclassical limit of H established

O Final picture equivalent to background independent, Hamiltonian
“floating” lattice gauge theory

Thomas Thiemann
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@ Proposal for removing graph dependence (preservation), non
separability, controlling fluctuations of all dof:
Algebraic Quantum Gravity (AQG) [Giesel, T.T. 06]

Implementation of classical ' symmetry
H stable coherent states?
Better understanding of validity/physics of dust, other types of matter?

© ¢ ¢ ©

Scrutinise LQG/AQG by further consistency checks

Thomas Thiemann
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Summary, Open Questions & Outlook

If LQG/AQG pass consistency tests then:
@ All LQG techniques developed so far can be imported to phys. HS level!
@ Physical semiclassical techniques to make contact with standard model
O phys. Hamiltonian defines S — Matrix, scattering theory, Feynman rules

O conservative system, hence possible improvement of vacuum problem
in QFT on time dep. backgrounds (cosmology)

Thomas Thiemann
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