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Supergravity :

This leads to intriguing connections with known results from 
M/String-Theory

It seems, sometimes, that supergravity is already aware of the underlying 
string theory.  In this talk we will see an example of this phenomenon.

Deforming supergravities by non-abelian gauge interactions reveals a 
restricted set of possible charges. Generically these gaugings involve a 
hierarchy of form fields of arbitrary rank.

There are many instances where supergravity can give the whole story, 
which is not surprising because a great many things depend strongly on the 
presence of symmetries, such as supersymmetry.

provides the effective field theories for string compactifications
provides the framework for many applications
among those are topics that belong to the general relativity domain,
such as black holes, cosmology, etcetera.

◆
◆
◆



Kaluza-Klein theory toroidal compactification
pure gravity 

MD →Md × Tn (D = d + n)

resulting theory is invariant under the group GL(n)

charge lattice of KK tower: symmetry restricted to GL(n, Z)

gMN → gµν + Aµ
n + gmn

massless states:  graviton,     gauge fields (KK photons),
               scalar fields 

n
1
2n(n + 1)
infinite tower of massive graviton states

 non-linearly realized on the scalars:
GL(n)
SO(n)

the massive states carry KK photon charges



lower space-time dimensions do not follow the generic pattern:

three space-time dimensions: the vector fields 
can be dualized to scalars  (Hodge duality)

massless:  graviton (no states),                scalars  1
2n(n + 3)

systematic features of toroidal compactifications:

SL(n + 1)
SO(n + 1)

symmetry non-linearly realized on the scalars

the rank of the invariance group increases with n★

when starting with scalars that parametrize a homogeneous 
target space, the target space remains homogeneous 

★

the presence of the massive states breaks the 
symmetry group to an arithmetic subgroup

★



the symmetry of the resulting compactified theory 
depends sensitively on the original theory

gMN → gµν + Aµ
m + gmn

BMN → Bµν + Bmµ + Bmn

LD = − 1
2

√
g R− 3

4

√
g
(
∂[MBNP ]

)2

 tower of massive graviton and tensor states ⇒

⇒ massless states: graviton, tensor,       spin-1 states, 
and      spinless statesn2

2n

⇒ G ⊂ SO(n, n; Z)

Another example: graviton-tensor theory



GOAL: study all possible deformations induced by 
gauging subgroups of G

not the generic pattern in five, four and three space-time dimensions ! 

e.g. upon including a dilaton in the original theory, one finds :

d > 5 : G = R+ × SO(n, n; Z) (n, n) vectors
d = 5 : G = R+ × SO(n, n; Z) (n, n) + 1 vectors
d = 4 : G = SL(2; Z)× SO(n, n; Z) (n, n) + 1 vectors
d = 3 : G = SO(n + 1, n + 1; Z) 0 vectors

The Hodge dilemma:
to increase the symmetry  ⇒  dualize to lower-rank form fields★

the presence of certain form fields may be an obstacle to certain gauge groups★

what to do when the theory contains no (vector) gauge fields★



Example: maximal supergravity in 3 space-time dimensions

gauging versus scalar-vector-tensor duality 

128 scalars and 128 spinors, but no vectors !
E8(8)(R)obtained by dualizing vectors in order to realize the symmetry 

solution: 
introduce 248 vector gauge fields with Chern-Simons terms

vectors ‘invisible’ at the level of the toroidal truncation

EMBEDDING TENSOR

LCS ∝ g εµνρ Aµ
MΘMN

[
∂νAρ

N − 1
3
g fPQ

NAν
P Aρ

Q
]

Θ

Nicolai, Samtleben, 2000

First the general analysis of gauge group embeddings :



EMBEDDING TENSOR ΘM
αgauge group encoded into the 

gauge group generators generatorsG↵ ↵
XM = ΘM

α tαΘM
α

 

according to a product representation
Gtransforming under the action of 

treated as a spurionic quantity, ΘM
α

with gauge fields          transforming in some representation of GAµ
M

gauge a subgroup of     ,  the symmetry group of the ungauged theory G

dW, Nicolai, Samtleben, 
Trigiante,  2000-2008

Gauge group embeddings



EMBEDDING TENSORS  FOR D = 3,4,5,6,7

characterize all possible gaugings 
group-theoretical classification
universal Lagrangians 

dW, Samtleben, Trigiante,  2002

7 SL(5) 10× 24 = 10 + 15 + 40 + 175

6 SO(5, 5) 16× 45 = 16 + 144 + 560

5 E6(6) 27× 78 = 27 + 351 + 1728

4 E7(7) 56× 133 = 56 + 912 + 6480

3 E8(8) 248× 248 = 1 + 248 + 3875 + 27000 + 30380

G M αD

This representation branches into irreducible representations.
Not all these representations are allowed !! 
(for instance, because of supersymmetry)

Restricted deformations, for example:



XMN
P

contains the gauge group structure constants, but is in 
general not symmetric in lower indices, unless contracted 
with the embedding tensor !!!!

one special (quadratic) constraint: 

−(XM )γ
α

[XM , XN ] = fMN
P XPclosure:

XMN
P↵

ΘM
β ΘN

γ fβγ
α = fMN

P ΘP
α = −ΘM

β tβN
P ΘP

α

∈ g↵

ZM
NP ≡ X(NP )

M ZM
NP ΘM

α = 0

X[NP
R XQ]R

M = 2
3ZM

R[N XPQ]
R

Jacobi identity affected :

[XM , XN ] = XMN
P XP⇔

ΘM
α is invariant under the gauge group  ⇔



in special basis:

the gauge fields           not involved in the gauging can still carry charges
this is known to be inconsistent !   To see this:

Aµ
M

[Dµ, Dν ] = −gFµν
M XMRicci identity

Dµ = ∂µ − g Aµ
M XMcovariant derivative

Fµν
M = ∂µAν

M − ∂νAµ
M + g XNP

M A[µ
NAν]

P
field strength

XMN
P =









−fM∗
∗ problematic !!

anti-symmetric part

↵



δFµν
M = 2D[µδAν]

M − 2 g ZM
PQ δA[µ

P Aν]
Q

Palatini identity

NOT covariant  indeed !

options: 

acts as an intertwining tensor between the gauge field 
representation and the 2-form field representationZM

NP

Fµν
M → Hµν

M = Fµν
M + g ZM

NP Bµν
NP

try to enlarge/change  the gauge group
or .....

★

introduce an extra gauge transformation 
and 
introduce 2-form gauge fields                 whose variation 
cancels the undesirable terms: 

Bµν
MN

δΞAµ
M = −g ZM

NP Ξµ
NP★

subtle: regard         as a single index, which does not map into the
 full symmetric tensor product !

(NP )



This leads to, e.g.

δBµν
MN = 2D[µΞν]

MN − 2 Λ!MHµν
N"

+ 2 A[µ
!MδAν]

N"

− g Y MN
P!RS" Φµν

P!RS"

Hµνρ
MN = 3D[µBνρ]

MN

+ 6 A[µ
!M

(
∂νAρ]

N" + 1
3gX[PQ]

N"Aν
P Aρ]

Q
)

+g Y MN
P!RS" Cµνρ

P!RS"

etcetera

Cµνρ
P!RS" new tensor field

Y MN
P!RS" new covariant tensor proportional to 

the embedding tensor

Φµν
P!RS" new gauge parameterwhere



Hierarchy of p-form fields

this structure continues indefinitely 

the covariant intertwining tensors are all proportional to the 
embedding tensor and mutually orthogonal

Aµ
M −→ Bµν

MN −→ Cµνρ
MNP −→ · · · (p-form gauge fields)

ΛM −→ Ξµ
MN −→ Φµν

MNP −→ · · · (transformation parameters)

ZM
NP −→ Y MN

PQR −→ Y MNP
QRST −→ · · ·

(intertwining tensors)

dW, Samtleben, 2005
dW, Nicolai, Samtleben, 2008



Alternative deformations (digression)

An obvious question is whether the gaugings discussed so far are the 
only viable deformations. While it is true that other deformations are 
known in supergravity, there are indications that these deformations are 
already incorporated in the present approach.

Hµν
M = ∂µAν

M − ∂νAµ
M + g XNP

M A[µ
NAν]

P

+ g ZM
NP Bµν

NP

Hµνρ
MN = 3D[µBνρ]

MN

+ 6 A[µ
!M

(
∂νAρ]

N" + 1
3gX[PQ]

N"Aν
P Aρ]

Q
)

+g Y MN
P!RS" Cµνρ

P!RS"

✓ O(g0) : survives            limit g = 0 (known from Einstein-Maxwell SG)

ZM
NP ΘM

α = 0 =⇒ Θ = 0 , Z "= 0
(Romans massive deformation) 

✓



Often the hierarchy breaks off at some point and higher rank forms do 
not appear in the Lagrangian (projection)

The physical degrees of freedom are shared between the various tensor 
fields in a way which depends on the embedding tensor.

At this point there is no Lagrangian yet. (There exist universal 
Lagrangians!) In the context of a Lagrangian the transformations 
of the gauge hierarchy are subject to change.

studied in D = 2,3,4,5,6,7 space-time dimensions
in D=4, for N = 2,4,8 supergravities
in D=3, for N = 1,...,6,8,9,10,12,16 supergravities

Bergshoeff, de Vroome, dW, Herger, Nicolai, Samtleben, Schön, Sezgin, Trigiante, Weidner, etc

 applications

Gauged supergravity,  flux compactifications, etcetera, and.......



Apply the embedding tensor formalism to the maximal 
supergravities, with the duality group, the representations of 
the vector gauge fields and the embedding tensor as input.

Maximal supergravities

At this point, the number of space-time dimensions is not used. 

This analysis yields the representations for the hierarchy of 
form fields.



Striking feature:

rank D-2 : adjoint representation of the duality group

Leads to :

2 1 4 6 5 3 rank ➯

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

dW, Samtleben, Nicolai, 2008

note:  restricted representation, not the full symmetric tensor product



Striking feature:

rank D-1 : embedding tensor !

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



Striking feature:

rank D : closure constraint on the embedding tensor !

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



Perhaps most striking:

implicit connection between space-time electric/magnetic 
(Hodge) duality and the U-duality group

Probes new states in M-Theory!
Θ dial

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



Life at the end of the hierarchy:

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 

It is possible to construct the hierarchy starting from the intermediate 
(D-3)-forms, assuming that they transform according to the conjugate of 
the representation associated with the vector fields.  In this way one 
generates the (D-2)-, the (D-1)-, and the D-form fields, in accordance we 
the results found in the table. Note that the latter two forms are not 
related to any other forms by Hodge duality! 



p-forms transforming in the conjugate of the representations of the 1-forms, 
the adjoint representation, the embedding tensor and the constraints

∆
[D−3]

C M = D
[D−4]

Φ M + · · ·− YM
α

[D−3]

Φ α

∆
[D−2]

C α = D
[D−3]

Φ α + · · ·− Yα,M
β

[D−2]

Φ M
β

∆
[D−1]

C M
α = D

[D−2]

Φ M
α + · · ·− Y M

α,PQ
β

[D−1]

Φ PQ
β

∆
[D]

C MN
α = D

[D−1]

Φ MN
α + · · ·− Y MN

α,PQR
β

[D]

Φ PQR
β

∆
[D+1]

C PQR
α = D

[D]

Φ PQR
α + · · ·− · · ·

intertwiners



QMN
α ≡ δMΘN

α = ΘM
β δβΘN

α

YM
α = ΘM

α

Yα,M
β = δαΘM

β

Y M
α,PQ

β =
δ

δ ΘM
α
QPQ

β

Y MN
α,PQR

β = −δM
P Y N

α,QR
β + XPQ

M δN
R δβ

α + XPR
N δM

Q δβ
α −XPα

β δN
R δM

Q

closure constraint

intertwiners

orthogonality: Y × Y ′ ∝ QMN
α

Y MN
α,PQR

β QMN
α = 0



What is the role of the higher form fields ?

This construction supports the following idea which has been worked 
out completely for three space-time dimensions:

Regard the embedding tensor as a space-time field transforming in the 
appropriate representation, but not satisfying the quadratic closure 
constraint.  Add the gauge invariant Lagrangian with (D-1)- and D-form 
fields:

L = g εµ1µ2···µD Cµ1···µD−1
M

α DµDΘM
α

+ g2 εµ1µ2···µD Cµ1···µD
MN

α QMN
α

dW, Samtleben, Nicolai, 2008



M-theory implications:

The table coincides substantially with results based on several 
rather different conceptual starting points:

Correspondence between toroidal compactifications of M-Theory 
and del Pezzo surfaces 

M(atrix)-Theory compactified on a torus: duality representations of states

E11 decompositions

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 



Elitzur, Giveon, Kutasov, Rabinovici, 1997

The explicit duality multiplets arise as representations of 
this group. 

Ri →
l3p

RjRk
Rj →

l3p
RkRi

Rk →
l3p

RiRj
l3p →

l6p
RiRjRk

Invariance group consist of permutations of the 
combined with the T-duality relations (               ) :

Ri

i != j != k

Algebraic Aspects of Matrix Theory on Tn

generate a group isomorphic with the Weyl group of En(n)

in the infinite-momentum frame. 
and M-Theory on , a rectangular torus with radii 
Based on the correspondence between super-Yang-Mills on 

T̃n R1, R2, . . . Rn

Tn



for higher n the multiplets are sometimes incomplete, because 
they are not generated as a single orbit by the  Weyl group.

the dimensions of these two multiplets coincide with those of the 
multiplets presented previously for vectors and tensors

Example n=4           D=7       

4 KK states on  

6 2-brane states wrapped on

Tn

Tn M ∼ RjRk

l3p

M ∼ 1
Ri

j != k

4 2-brane states wrapped on

1 5-brane state wrapped on

M ∼ R11Ri

l3p

M ∼ R11R1R2R3R4

l6p

Tn × x11

Tn × x11



This cannot be a coincidence!

A Mysterious Duality Iqbal, Neitzke, Vafa, 2001

Such probe is the gauging encoded in the embedding tensor!

West et. al., 2001-2007
Bergshoeff et. al.,2005-2007

E11 decomposition

It is important to uncover the physical interpretation of these 
duality relations. One possibility is that the del Pezzo surface is 
the moduli space of some probe in M-Theory. It must be a
U-duality invariant probe .......

Based on the conjecture that E11 is the underlying symmetry 
of M-Theory. Decomposing the relevant E11 representation to 
dimensions D<11 yields representations that substantially 
overlap with those generated for the gaugings.



✦ Gaugings probe new degrees of freedom of M-Theory

Conclusions
✦ There are unexpected intriguing connections with other 
results derived on the basis of rather different concepts

✦ More work needs to be done on clarifying these connections

✦ Maximal supergravity theories contain subtle 
information about  M-Theory. This may be interpreted as 
an indication that supergravity needs to be extended 
towards string/M-theory. This is also indicated by 
comparing degrees of freedom originating from the 
maximal theories in various dimensions. 




