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Supergravity :

¢ provides the effective field theories for string compactifications

¢ provides the framework for many applications

¢ among those are topics that belong to the general relativity domain,
such as black holes, cosmology, etcetera.

There are many instances where supergravity can give the whole story,
which is not surprising because a great many things depend strongly on the
presence of symmetries, such as supersymmetry.

It seems, sometimes, that supergravity is already aware of the underlying
string theory. In this talk we will see an example of this phenomenon.

Deforming supergravities by non-abelian gauge interactions reveals a
restricted set of possible charges. Generically these gaugings involve a
hierarchy of form fields of arbitrary rank.

This leads to intriguing connections with known results from
M/String-Theory




Kaluza-Klein theory toroidal compactification
pure gravity

MP — Me x T (D=d+n)

IJMN — Guv T A,un - Imn

== massless states: graviton, n gauge fields (KK photons),

2n(n + 1)scalar fields

infinite tower of massive graviton states

resulting theory is invariant under the group GL(n)

non-linearly realized on the scalars: GL(n)
SO(n)

the massive states carry KK photon charges

charge lattice of KK tower: symmetry restricted to GL(n, Z)




lower space-time dimensions do not follow the generic pattern:

three space-time dimensions: the vector fields
can be dualized to scalars (Hodge duality)

massless: graviton (no states), 2n(n + 3) scalars

SL(n+1)

symmetry non-linearly realized on the scalars
4 4 4 O(n+1)

systematic features of toroidal compactifications:

* the rank of the invariance group increases with n

* when starting with scalars that parametrize a homogeneous
target space, the target space remains homogeneous

* the presence of the massive states breaks the
symmetry group to an arithmetic subgroup




Another example: graviton-tensor theory

the symmetry of the resulting compactified theory
depends sensitively on the original theory
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= G C SO(n,n;7Z)

—> massless states: graviton, tensor, 27 spin-1 states,
and n° spinless states

—> tower of massive graviton and tensor states




not the generic pattern in five, four and three space-time dimensions !

e.g. upon including a dilaton in the original theory, one finds :

d>5 : G=RT" xSO(n,n;Z) (n,n) vectors
d=5 : G=RT" xSO(n,n;Z) (n,n) + 1 vectors
d=4 : G=8SL(2;Z) xSO(n,n;Z) (n,n)-+ 1vectors
d=3 : G=SOn+1,n+1;Z) 0 vectors

=3 GOAL: study all possible deformations induced by
gauging subgroups of G

The Hodge dilemma:

* to increase the symmetry = dualize to lower-rank form fields
* the presence of certain form fields may be an obstacle to certain gauge groups

* what to do when the theory contains no (vector) gauge fields




Example: maximal supergravity in 3 space-time dimensions
Nicolai, Samtleben, 2000

gauging versus scalar-vector-tensor duality

128 scalars and 7128 spinors, but no vectors !
obtained by dualizing vectors in order to realize the symmetry Eg(g) (R)

solution:
introduce 248 vector gauge fields with Chern-Simons terms
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EMBEDDING TENSOR

vectors ‘invisible’ at the level of the toroidal truncation

First the general analysis of gauge group embeddings :




Gauge group embeddings

gauge a subgroup of (G, the symmetry group of the ungauged theory

with gauge fields Athransforming in some representation of G

gauge group encoded into the EMBEDDINGTENSOR ©jp/“

o
Xy =00 1o
gauge group generators  ¢— b G generators

O~ treated as a spurionic quantity,

transforming under the action of G

according to a product representation dW, Nicolai, Samtleben,
Trigiante, 2000-2008




This representation branches into irreducible representations.

Not all these representations are allowed !!
(for instance, because of supersymmetry)

Restricted deformations, for example:

EMBEDDING TENSORS FOR D = 3,4,5,6,7

SL(5) 10 x 24 =10+ 15+ 40+ 175
SO(5,5) 16 x 45 =16 + 144 + 560

Erp 56 x 133 = 56 + 912 + 6480
Fss) 248 x 248 = 1 + 248 + 3875 + 27000 + 30380
G M )

characterize all possible gaugings

dW, Samtleben, Trigiante, 2002

group-theoretical classification
universal Lagrangians




one special (quadratic) constraint:

closure:  [Xar, Xn| = fun? Xp

On’ ONT f5,% = funt Op* = —OnP tgn’ Op°
N —(XM)WQ Ly XMNP cg

& Op” s invariant under the gauge group
P
& [ Xy, Xn) = Xun' Xp

b contains the gauge group structure constants, but is in
XMN general not symmetric in lower indices, unless contracted
with the embedding tensor !!!!

ZMnp = X(NP)M ZM Np On® =0

Jacobi identity affected :




in special basis:

Xun' = /
/

the gauge fields AMM not involved in the gauging can still carry charges
this is known to be inconsistent ! To see this:

problematic !!

covariant derivative D, =0, — g AMM X
Ricci identity D,,D,| =—g .7'—“,/M X

field strength
Fut = 0,4 —0,A,M +gXnp™ AN ALY

anti-symmetric part J




Palatini identity
0F ™ =2D,0A,M —29Z" pg §A ALY

NOT covariant indeed!

options:
% try to enlarge/change the gauge group

— NP

et

: : M M
* introduce an extra gauge transformation 0=A," = —gZ" nypZE,

and

) MN ..
introduce 2-form gauge fields B, whose variation
cancels the undesirable terms:

f,Lu/M — H,uz/M — f,uz/M + QZMNPBW/NP

ZM acts as an intertwining tensor between the gauge field
NP representation and the 2-form field representation

subtle: regard (N P) as a single index, which does not map into the

full symmetric tensor product !




This leads to, e.g.
0B, MN = 2Dy=,MN —2AMy, N
+2A,M5A,N

— g VMY prpg) @, 1]

HWPMN — SD[MBVP]MN

+6 Ag, ' (aVAp]NJ + 59Xpq) AVPAP]Q)

'+g§ZN“VPFRSJCmprFRSJ

etcetera

q)/u/P RS |

where new gauge parameter

C’,WPP(RSJ new tensor field

YMprRSJ new covariant tensor proportional to

the embedding tensor




Hierarchy of p-form fields

this structure continues indefinitely

—> S (p-form gauge fields)

pp

(transformation parameters)

(intertwining tensors)

the covariant intertwining tensors are all proportional to the
embedding tensor and mutually orthogonal

dW, Samtleben, 2005
dWV, Nicolai, Samtleben, 2008




Alternative deformations (digression)

An obvious question is whether the gaugings discussed so far are the
only viable deformations.While it is true that other deformations are

known in supergravity, there are indications that these deformations are
already incorporated in the present approach.

Ho" = 0,4M-0,4M+gXnp™ AN A,
+9ZMNnpB N

MN
3Dy, By )

+6 Ay, 1M (aI/A/O]NJ +39Xpq)" AVPAp]Q)
/ FgYMN i Gy PTRS)

v O(go) :survives g = 0 limit  (known from Einstein-Maxwell SG)

v ZMypOy“=0= 0=0, Z+#0

(Romans massive deformation)




At this point there is no Lagrangian yet. (There exist universal
Lagrangians!) In the context of a Lagrangian the transformations
of the gauge hierarchy are subject to change.

Often the hierarchy breaks off at some point and higher rank forms do
not appear in the Lagrangian (projection)

The physical degrees of freedom are shared between the various tensor
fields in a way which depends on the embedding tensor.

studied in D = 2,3,4,5,6,7 space-time dimensions
in D=4, for N = 2,4,8 supergravities
in D=3,for N =1,...,6,8,9,10,12,16 supergravities

Bergshoeff, de Vroome, dW, Herger, Nicolai, Samtleben, Schon, Sezgin, Trigiante, Weidner, etc

=== applications

Gauged supergravity, flux compactifications, etcetera, and




Maximal supergravities

Apply the embedding tensor formalism to the maximal
supergravities, with the duality group, the representations of
the vector gauge fields and the embedding tensor as input.

At this point, the number of space-time dimensions is not used.

This analysis yields the representations for the hierarchy of
form fields.




Leads to :

rank —

3 4 S 6

SL(5)
SO(5, 5)

Eg(+6)

5 10 24 15 + 40

10 16, 45 144, 10+126,+320

27 78 351 27+1728

Er7 47

133 912 13348165

Es(is) | 248

3875 38754147250

Striking feature:

rank D-2 : adjoi

A

nt representation of the duality group

dW, Samtleben, Nicolai, 2008

note: restricted representation, not the full symmetric tensor product



rank — 4 5 6

SL(5) 10 24 15+ 40

SO(5,5) 45 144, 10+126,+320

E6(—|—6) 351 2741728

Er7 47 56 133 912 13348165

Fgsg) 248 |3875 38754147250

Striking feature:

rank D-7 : embedding tensor !




rank — 1 2 4

S

6

SL(5) 10 5 10
SO(5,5) 16, 10 45

Eore) 27 27 351

24

144,

15+ 40

10+126,+320

27+1728

Ery7y 56 133 912 133+8165

Egsg) 248 3875 | 3875+147250

Striking feature:

rank D : closure constraint on the embedding tensor !




rank — 4 5 6

SL(5) 10 24 15+ 40

SO(5,5) 10 45 144, 104+126,+320

Eo(+6) 27 351  27+1728

Erin) 133 912 133+8165

Fgsg) 248 3875 38754147250

Perhaps most striking:

implicit connection between space-time electric/magnetic
(Hodge) duality and the U-duality group

© dial

Probes new states in M-Theory!




Life at the end of the hierarchy:

1 2 3 4 S 6

SL(5) 10 5 5 10 24 15+ 40

SO(5,5) 16, 10 16, 45 144, 10+126,+320

Eore) 27 27 78 351  27+1728
Ers7y 56 133 912 133-+8165

Fgsg) 248 3875 38754147250

It is possible to construct the hierarchy starting from the intermediate
(D-3)-forms, assuming that they transform according to the conjugate of
the representation associated with the vector fields. In this way one
generates the (D-2)-, the (D-1)-, and the D-form fields, in accordance we
the results found in the table. Note that the latter two forms are not
related to any other forms by Hodge duality!




p-forms transforming in the conjugate of the representations of the 7-formes,
the adjoint representation, the embedding tensor and the constraints

[D—3] (D —4] [D—3]
A C D & ,+---—Yyu® &

[D—2) [D—3) [D—2)
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closure constraint

QN = 0ON* = Op” 630N

intertwiners

O
6,01,"

0

B
50,0 Apro

MN | por” —6) YN or® + Xpo™ SN 65 + Xpr™ 6565 — Xpo” SR Y

orthogonality: Y XY o« Qun®

YMY por” Qun® = 0




What is the role of the higher form fields ?

This construction supports the following idea which has been worked
out completely for three space-time dimensions:

Regard the embedding tensor as a space-time field transforming in the
appropriate representation, but not satisfying the quadratic closure
constraint. Add the gauge invariant Lagrangian with (D-7)- and D-form

fields:

_ M1 D M o)
— g¢& CMl"'ND—l QD'LLD@M

2 MN Qo
—I—g €’u1'u2 = C,ul“',uD QQMN

dWV, Samtleben, Nicolai, 2008




M-theory implications:

1 2 3 4 S 6

SL(5) 10 5 5 10 24 15+ 40

SO(5,5) 16, 10 16, 45 144, 104+126,+320

Egre) 27 27 78 351  27+1728
Erry 56 133 912 133-+8165

Fgsg) 248 3875 38754147250

The table coincides substantially with results based on several
rather different conceptual starting points:

M(atrix)- Theory compactified on a torus: duality representations of states

Correspondence between toroidal compactifications of M-Theory
and del Pezzo surfaces

E11 decompositions




® Algebraic Aspects of Matrix Theory on 1™

Elitzur, Giveon, Kutasov, Rabinovici, 1997

Based on the correspondence between super-Yang-Mills on 7™
and M-Theory on 7", a rectangular torus with radii R, Rs, ... R,
in the infinite-momentum frame.

Invariance group consist of permutations of the R;
combined with the T-duality relations (¢ # 7 # k) :

Ly b s

> R. — R >
R; Ry, Ry R; “ " RiR,

R; 2

generate a group isomorphic with the Weyl group of L,

The explicit duality multiplets arise as representations of
this group.




Example n=4 —>» D=7

4 KK states on T
6 2-brane states wrapped on 7™

R R;
Ly
N Ri1R1RyR3 Ry

Uy

4 2-brane states wrapped on 7" x x'' M ~

Vi

1 5-brane state wrapped on T" x '

the dimensions of these two multiplets coincide with those of the
multiplets presented previously for vectors and tensors

for higher n the multiplets are sometimes incomplete, because
they are not generated as a single orbit by the Weyl group.




® A Mysterious Duality lgbal, Neitzke, Vafa, 200 |

This cannot be a coincidence!

It is important to uncover the physical interpretation of these
duality relations. One possibility is that the del Pezzo surface is
the moduli space of some probe in M-Theory. It must be a
U-duality invariant probe

Such probe is the gauging encoded in the embedding tensor!

® E11 decomposition

Based on the conjecture that E11 is the underlying symmetry
of M-Theory. Decomposing the relevant E11 representation to
dimensions D<11 yields representations that substantially
overlap with those generated for the gaugings.

West et. al,, 2001-2007
Bergshoeff et. al.,2005-2007/




Conclusions

4 There are unexpected intriguing connections with other
results derived on the basis of rather different concepts

4 Gaugings probe new degrees of freedom of M-Theory

4 Maximal supergravity theories contain subtle
information about M-Theory.This may be interpreted as
an indication that supergravity needs to be extended
towards string/M-theory. This is also indicated by
comparing degrees of freedom originating from the
maximal theories in various dimensions.

4 More work needs to be done on clarifying these connections







