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Introduction

Introduction

The first instances of four-dimensional pure N' = 4 supergravities
were constructed almost 50 years ago by [Das (1977), Cremmer
and Scherk (1977), Cremmer, Scherk and Ferrara (1978),
Freedman and Schwarz (1978)].

The coupling of N = 4 supergravity to vector multiplets, as well as
some of its gaugings, were analyzed a few years later, by [de Roo
(1985), Bergshoeff, Koh and Sezgin (1985), de Roo and
Wagemans (1985), Perret (1988)].
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Introduction

More recently, various gauged A/ = 4 supergravity models
originating from orientifold compactifications of type IIA or 1IB
supergravity were studied [D'Auria, Ferrara and Vaula (2002),
D’Auria, Ferrara, Gargiulo, Trigiante and Vaula (2003), Berg,
Haack and Kors (2003), Angelantonj, Ferrara and Trigiante
(2003,2004), Villadoro and Zwirner (2004,2005), Derendinger,
Kounnas, Petropoulos and Zwirner (2005), Dall'Agata, Villadoro
and Zwirner (2009)].

The most general analysis of the structure of the gauged D = 4,
N = 4 supergravity is provided by [Schon and Weidner (2006)],
where one can find a systematic discussion of the consistency
constraints on the embedding tensor.
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Introduction

However, a specific symplectic frame is chosen, in which the rigid
symmetry group of the ungauged Lagrangian is
Gr =SO(1,1) x SO(6, n) (n = number of vector multiplets).

This choice is constraining, since for example the maximally
supersymmetric anti-de Sitter vacuum cannot be obtained by a
purely electric gauging in this frame [Louis and Triend| (2014)].
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Introduction

Our work provides the full Lagrangian and supersymmetry
transformation rules for the gauged four-dimensional V' = 4
supergravity coupled to n vector multiplets in an arbitrary
symplectic frame.

Any known (as well as yet unknown) vacuum of such a theory can

be obtained from an electrically gauged theory, which is
incorporated in our general Lagrangian.
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The ector of the r multiplets
The fermionic fields

The Ingredients of N/ = 4 Supergravity

N = 4 supergravity multiplet:
@ graviton g,

4 gravitini ¢/, i=1,....4

6 vector fields Al = —A{i

4 spin-1/2 fermions x; (dilatini)

1 complex scalar 7
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The Ingredients of 4 Supergravity

The scalar sector of the suf

avity multiplet
The ctor of th

r multiplets

The fermionic fields

n vector multiplets:
@ n vector fields Afj, a=1,...,n
@ 4n gaugini A\

@ 6n real scalar fields
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

The scalar sector of the supergravity multiplet

The complex scalar of the N/ = 4 supergravity multiplet
parametrizes the coset space SL(2,R)/SO(2).
Coset representative: complex SL(2,R) vector V,, a = +, —,
which satisfies

VoV — VaVs = —2ieqp, (1)

where €,3 = —€go and e, = 1.
Ve carries SO(2) charge +1.
We also define
Mas = Re(VaV3) - (2)
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

SL(2,R)/SO(2) zweibein : P = éeo‘ﬁVadVB (3)
SO(2) connection : A = —%eaﬁvadv; (4)

Useful identities:

DV, = dV, — iAV, = PV* (5)
DP =dP —2iAAP =0 (6)
F=dA=iP*AP. (7)
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

The scalar sector of the vector multiplets

The 6n real scalars of the n vector multiplets parametrize the coset
space SO(6,n)/(SO(6)xSO(n)).

Coset representative: (n+ 6) x (n+ 6) matrix L with entries
Ly™ = (Lpy™, Lpy2), where M =1,...,n+6, m=1,...,6,
a=1,...,n, which is an element of SO(6,n):

v = v L™y = LM iym = L™ Lym + LvPlna,  (8)

where nyy = nun = diag(—-1,-1,-1,-1,—-1,-1,1,...,1).
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

We also introduce the positive definite symmetric matrix M = LLT
with elements

MMN = —L/\/]mLNm + LMéLNé . (9)

We can trade Ly™ for the antisymmetric SU(4) tensors
Ly =—Lpf' i, j=1,...,4, defined by

Ly =T Ly™, (10)

where ', are six antisymmetric 4x4 matrices that realize the
isomorphism between the fundamental representation of SO(6) and
the twofold antisymmetric representation of SU(4).

) 1
Pseudoreality : Lyj = (Lpm?)" = EGUkILMkI (11)
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

SO(6, n)/(SU(4) x SO(n)) vielbein : P,7 = LM ,dL "
SU(4) connection : w'; = LM*dL pys
SO(n) connection : w,? = LM, d?
Useful identities:
DL =dLy — w'Lpg" — o kL™ = Lpy2P,Y
DLm2 =dLy? + wiply® = Ly P2y
DP,T =dP,7 + w2 A PpY — wiy A PN
— Wi AP =0
R'j=dw'j — w'i Awkj = PP A Py

R.2 =dw, 4+ w,g Awet = — Py nPEE

(12)

(13)
(14)

(15)
(16)

(17)
(18)
(19)
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The Ingredients of ' = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
The fermionic fields

The fermionic fields

Field | SO(2) charge
G 3
X' +3
A2 +5
Y =P X =X, A = A (20)

iy = (1/1L)C, xi = (X')€ and AT = (A2) have opposite SO(2)
charges and chiralities.
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Duality and Symplectic Frames

Duality and Symplectic Frames

The ungauged theory for the four-dimensional A = 4 Poincaré
supergravity coupled to n vector multiplets contains n+ 6 abelian
vector fields Aﬁ, AN=1,...,n+6, and is described by a
2-derivative Lagrangian of the form

I 1 1
7ML = Tns P, P + S Ras P (+F2)" + S O F,
+ e Lrest, (21)

where F/i\l, = 28[#’41//\]’ (*FA)W = %ijngApU, Zpas and Ry are
real symmetric matrices that depend on the scalar fields, with Zay
being negative definite, while O" and Lyest do not depend on the
vector fields.
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Duality and Symplectic Frames

We can associate with the field strengths F!/L\V their magnetic duals
Gy defined by

_ oL
Gruw = —€ leuupoaﬁ = RaxF2 — Ias (#F =) uw — (+Op) v -
po
(22)
The equations of motion for the vector fields read
Oyl GAjwp) = 0 (23)

and imply the local existence of n+ 6 dual magnetic vector fields
Apy such that
G/\HV = 28[#"4/\‘1’]' (24)
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Duality and Symplectic Frames

The group of global transformations that leave the full set of
Bianchi identities and equations of motion of the ungauged D = 4,
N = 4 matter-coupled supergravity invariant is

G =SL(2,R) x SO(6, n) C Sp(2(n+6),R). (25)

The vector fields AQ, which are those appearing in the ungauged
Lagrangian and will be referred to as electric vectors, together with
their magnetic duals Ap, form an SL(2,R)xSO(6,n) vector

AM = Al = (AR, Apy), which is also a symplectic vector of

"
Sp(2(6 + n),R).
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Duality and Symplectic Frames

Every electric/magnetic split Aﬁ/‘ = A;‘f‘l = (AQ, Apy) such that
the symplectic form

(CMN — CMQNB = 77MNeozﬂ (26)

decomposes as

(C/\Z CA A

e PR Oz g ; (27)
(C/\ C/\): —5/\ 0

defines a symplectic frame and any two symplectic frames are

related by a symplectic rotation.
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Duality and Symplectic Frames

It is convenient to parametrize the choice of the symplectic frame
by means of projectors My, and Maxq that extract the electric
and magnetic components of a symplectic vector VM = (VA V)
respectively, according to

vA =t vM, Vp = Maa VM. (28)
These projectors must satisfy the properties
MMy NEy CMV =0, (29)
MMy CMY = 53 (30)
MamMey TV =0, (31)
M mMay = Mam 'y = Cauw, (32)

where Cypn = Cpang = Mvneas
19/90



Solution of the Bianchi Identities of the Ungauged Theory

Solution of the Bianchi Identities of the Ungauged Theory

Geometric or rheonomic approach [Castellani, D" Auria and Fré
(1991)]:
1. Promotion of the spacetime one-forms

e = e dx!, ' =1, dxt, i =y dxt,

AMa — A/’Y’adx“, Wab = Wyapdx",
and the spacetime zero-forms

Xla Xis )‘217 )‘,jiv Von V;a LMU, LMa

to super-one-forms and super-zero-forms in N = 4 superspace

respectively.
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Solution of the Bianchi Identities of the Ungauged Theory

These superforms depend on the supespace coordinates (x*, 6, 0;)
in such a way that their projections on the spacetime submanifold,
i.e. the ' = df’ = 0 hypersurface, are equal to the corresponding
spacetime quantities.

A basis of one-forms in N' = 4 superspace is given by the
supervielbein (€72, %¢', ;).
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Solution of the Bianchi Identities of the Ungauged Theory

2. Supercurvatures:
Rab — dwab + WA wcb
T2 =de’ +wipb A e® — ' Ay
= De — ' A1

1 i ;

pi = Dy =di + Zwab AYab¥i = 5 AN Y = wil A
1 3i ;

Vi=Dxij=dxi+ Zwab’Yain + A — Wil
1 i ;

Agi = DAyi = d),i + Zwab%b@ + 5 AN = wi Ay

+ LUQQ)\Q,'

(33)

(34)
(35)

(36)

(37)

22/90



Solution of the Bianchi Identities of the Ungauged Theory

FMe = gaMe _ (yorys [ M n e — VLM ol A g (38)
p— éeaﬁvadvﬂ (39)
Pyij = LM ,dL (40)
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Solution of the Bianchi Identities of the Ungauged Theory

3. Bianchi identities:

DR =0 (41)
DT? =R A el +j Av2p  + 0" Ay2p; (42)
Do = gR® Ayastli — 2 F At — RY A (43)
Dv; = %Rab%bxl' + %FX/' — Rx; (44)
DA, = %Rab%bxé,- + éF/\é,- — RIA5 + R (45)

DFMe — _ o Mij px 5 1;,' Npj — (Va)*LMEPQU A &i N ;i
+ 20V LM A i — (VY LMP A A (46)
—VeLMap i AT A+ 20 M A
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Solution of the Bianchi Identities of the Ungauged Theory

DP =0 (47)
DP,; =0 (48)

4. Solution of the Bianchi identities:

@ The supercurvatures can be expanded along the intrinsic bases
of one- and two-forms in N/ = 4 superspace built out of the
supervielbein (e, 7', ;).

@ Rheonomy principle: The components of the
supercurvatures along the basis elements that involve at least
one of ', 1; (outer components) must be expressed in terms
of the supercurvature components along the basis elements e?
and e? A e® (inner components) and the physical superfields

= No new d.o.f. are introduced in the theory.
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Solution of the Bianchi Identities of the Ungauged Theory

Then, one writes down the expansions of the supercurvatures in a
form that is compatible with all the symmetries of the theory, i.e.
covariance under local SO(2), SU(4), SO(n) and Lorentz
transformations.

The unknown coefficients in these expansions are determined by
requiring closure of the Bianchi identities.

We also impose the kinematic constraint

T2 =0. (49)
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Solution of the Bianchi Identities of the Ungauged Theory

Rheonomic parametrizations of the supercurvatures:

P =Pe + iy’ (50)
Paij = Paija€” + 20 Aalj) + € Al (51)
i * [0 a /
Vi = Viae” — 2 LuVaF o™y 0 — (Aaid})e/
V2P i (52)
Nai = Aaia€® — Pajay®i + éLMaV FMaaby,
_ 1,_
+ (i)Y — 5 (XML (53)

2
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Solution of the Bianchi Identities of the Ungauged Theory

1 1
FMe — 5Jfggaea AeP+ < — ZvaLM'JAQ,-%bAf e’ NeP
1 . o

+ ZvaLMéx,%bA; e? NeP + (V) LMy A e (54)

+ (VO‘)*LMQS\;%M A e+ c.c.>
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Solution of the Bianchi Identities of the Ungauged Theory

/ .
*LMijV I_-I\/Ioe bc’}/a'éb]/\ea

1
pi = piabe” e’ — 2

+ %eijkI(Aj Yap X2 )7y A P + 1(Xi7axj)¢j N e?

- %()_(j’Yan )i A e + %(max" )Yabthj A €”

- %(Xﬂaxj )Yabthi A €” + %(/_\?'Vax\é)% A e (55)
+ %(;\?’Ya)\é)%b”tﬂj NeP— %(S\f’ya/\é)%blbi A e

— %qkij(i;k Ay,
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Solution of the Bianchi Identities of the Ungauged Theory

where ]-";‘Z"‘ satisfy

€abcd FMOd = —2 MMy M5 FLE (56)
We define the 2(6 4+ n) x 2(6 4+ n) matrix
Mmn = Mpang = MagMun (57)

The restriction of the superspace equation (56) to spacetime reads
(+FM) 0 = CMN Mucp L, + (= 2000 L5585 + o (V) LM
— VLM AE — IV LMy, N+ 2i (V) LMy, |
— urpoe (V) LM X7 + 20V LN iy (58)
— €upo VELMZN iy P’ + c.c.),
where Fl%"‘ = 28[MAMC“.

v]
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Solution of the Bianchi Identities of the Ungauged Theory

Comparing (58) with the matrix equation

(*FA)/JZ/ (I—IR)/\z _(1—1)/\2 F,Z:V
(*GA)w (Z+RIR)as —(RIYr"/) \Grw
(59)
(I (05w
+ X
Opnw — (RZH)A™ (05 ) v

and identifying Gp,,, with Fp,,, we find that the matrix Mz
decomposes as

Mps  MpT (T +RIR RI-\T
MM./\/ = <MQ§ M/AZ) = ( ( (I_lR)AZ )/\Z (_(I—lij\\i )
(60)
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Solution of the Bianchi Identities of the Ungauged Theory

and that Op,, is given by

Onuw = Ips M=o (= 20V*)* LM 005, — i€uupa(Va)*LMU1/_Jf)¢f
+ VLM iy AR = VLM N, 4+ 200°) LY 1y, ;]
+ i€ppo (V) LM X7+ 20 LM iy (61)
+ i€pe VLM 57 7+ c.c)

We also derive an expression for Op,,,, — (RIfl)AZ(*Oz)W, which
is consistent with (61), if Max = Rax + iZas satisfies

NasNME o VLM = Oppp VLMD, (62)

Nas M o (V) LM2 = My (V) LMa, (63)
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Solution of the Bianchi Identities of the Ungauged Theory

The local supersymmetry transformation J. of each spacetime field
is equal to the projection on spacetime of the Lie derivative
l. = dic + i.d of the corresponding superform along the tangent
vector

€= EiD,' + E,‘Di7 (64)
where the basis tangent vectors D;, D' are dual to the gravitino
super-one-forms so that

it =€ i = €. (65)
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Solution of the Bianchi Identities of the Ungauged Theory

For the super-one-forms e?, ; and AM® we have

Eeea - ie Ta + Ei’Yawi + gi’yawi7 (66)
€€¢i = DE[ + iEpf7 (67)
LAV = FMe g p(Va) Mg, 2V Meiyd, (68)

while for the super-zero-forms
v = (Va, Vi, Ly Lmas X' Xis Ay Aai),s (69)
we have the simpler result
(' =i.Dv'. (70)
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Duality Covariant Gauging

Duality Covariant Gauging

Embedding tensor formalism [Nicolai and Samtleben (2001), de
Wit, Samtleben and Trigiante (2003,2005,2007)]:

@ gauge fields Aﬁ" = A"‘[’“ that decompose into electric gauge
fields Aﬁ and magnetic gauge fields A,

@ gauge group generators Xy = (Xp, X") expressed as linear
combinations of the generators t4 of SL(2,R)xSO(6,n)

Xpm =0Omta, (71)

where A = ([MN], (a3)) is an index labeling the adjoint
representation of SL(2,R)xSO(6,n) and © A = (Op*,0M) is a
constant tensor, called the embedding tensor.
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Duality Covariant Gauging

The components of the embedding tensor are given by [Schon and
Weidner (2006)]

Oart™ = fun™ — Vo), G =3ls).  (12)

where {opm and fomnp = fo[mnp) are two real constant
SL(2,R)xSO(6,n) tensors, so that

Xounpy = Xoun 2Cpyg = 0, (73)

where Xyn " = @/\/‘(tA)/\/73 are the matrix elements of the
gauge generators X, in the fundamental representation of
SL(2,R)xS0O(6,n).

36/90



Duality Covariant Gauging

Furthermore, the embedding tensor must be invariant under the
action of the gauge group G that it defines, which is equivalent to
the following quadratic constraints on the tensors £, and fomnp

[Schon and Weidner (2006)]
aam =0,
5(’2 faypmn = 0,
3fariam o) + 2(alim fiaynpa) = 0.
eP(EE fapmn + Eaméan) = 0,

P (famnrforg” — EX farpmipnoing — Sapm fainPQ
+&arpifaiQun) = 0.

(74)
(75)
(76)

(77)

(78)
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Duality Covariant Gauging

These quadratic constraints guarantee the closure of the gauge
algebra:

X, Xnv] = = Xun" Xp (79)

and also imply the locality constraint
cMVe et =0. (80)

The latter ensures that for any gauging there exists a symplectic
frame in which the gauging is purely electric and guarantees that

dimG; < n+6 (81)
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Duality Covariant Gauging

In the gauged theory, the ordinary exterior derivative d is replaced
by a gauge-covariant one

d=d— gAhMXy
=d— gAMa@aMNPtNP + gAM(aeﬁ)’yffy/\//tag , (82)

where we have introduced the one-forms AM = AMa — Aﬁ”o‘dx“.
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Duality Covariant Gauging

The gauge-covariant 2-form field strengths of the vector gauge
fields are defined by [Schon and Weidner (2006)]

HMa _ gaMa _ %%NPMANB A AP
- %eaMNPBNP + %53”50"3, (83)

where

~

3
famne = famnpe — Sa[mnPIN — EfaNUMP (84)

and BNP = BINPI BB — B(@B) 3re 2-form gauge fields in the
adjoint representations of SO(6,n) and SL(2,R) respectively.
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Duality Covariant Gauging

The field strengths of the two-form gauge fields are defined by [de
Wit and Samtleben (2005)]

HEOMN = ggMN 1 240 ,po!M AP A BINIQ (85)
+ GQﬂA[Mla A (dAIN]ﬁ + %XP'chS‘N]ﬁAP’Y A AQ6) ’

1 BB = ygas _ gg(aW’AW A BB — ggvMAM(a A B (86)
— i AM(l A (dANIB) + %XPWQ(SNIB)APW A AQ&)
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Duality Covariant Gauging

gauged SL(2,R)/SO(2) zweibein : P = éeaﬁva&vﬁ (87)
~ 1 ~
gauged SO(2) connection : A = —Eeaﬁvadv;;, (88)
where
. 1 1
dVe = dV, + 5,g,rgmAMﬂvg + EgéMBAMaV@ . (89)
Useful relations:
DV, =dV, —iAv, = PV} (90)
DP =dP —2iANP = égganangMﬁ (91)
F=dA=iP NP+ %gﬁ;MaﬂHW (92)

42/90



Duality Covariant Gauging

gauged SO(6, n)/(SU(4) x SO(n)) vielbein : P,¥ = LM dL "

(93)
gauged SU(4) connection : dj"j = LMikc?LMjk
(94)
gauged SO(n) connection : @; = IM dLy?
(95)
where
diy™ = dLy™ + gAN*© " LpM (96)
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Duality Covariant Gauging

Useful relations:

DL’ =dLu” - @ikLMkj . a’jkLMik = Llwéfsgij (97)
Dy = dlu® + &% Lu® = LuP*, (58)
éﬁ)ﬁij Edﬁ)ﬁij +@ab/\ 'f)bij — @A FA)gkj —@fjk A lsaik
= g@un" LusLpT HM® (99)
I%’J = d@ij _ ‘bik A @lj _ paik 5 ’:A)gjk
+ 80am™” L™ Lpj HY* (100)
Ii’éb = d@éﬁ +@,5A @gg — Py AP
+ &9am™ LnaLpPHM (101)
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Solution of the Gauged Bianchi Identities

Solution of the Gauged Bianchi ldentities

Gauged supercurvatures:
R = dw? 4+ w* A wcb
T2 =de? +wip A eP — ' Ay2Y;
=De — ' Ay

pi
L 1 3. .
Vi = Dxi =dxi+ Zwab’yain + *AX:' — o7 x;

" A 1
/\gl = D>\al = d)\a/ + 4(*) 'Yab)\al + A)\al Wl )\é[

+ wab)\bl

A 1 [ A .
Dypi = dipy + 3w Aasifi — 3 AN 5 =& A

(102)

(103)
(104)

(105)

(106)
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Solution of the Gauged Bianchi Identities

Mo = gaMe %%NPMAW A AP %eaMNPBNP (107)
+ S4B — (V) LM A gy — VLM Ay
HOMN — gBMN ¢ s AlMIa A (dAl’Vlﬁ
+ %XPVQ(;WWAPV A A05> (108)
HOB — GBSy AVl <dANlﬁ)
+ §><,37(;,5"’|5)AP’7 A AQ‘s) (109)
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Solution of the Gauged Bianchi Identities

P = éeO‘BVadAVfg
Paij =M, d Ly
Bianchi identities:
DR* =0
DT =Ry N e® + i A2D + 9" AP

A1 ia 5
Dpi = R Ayawthi — 5 F Aoy — RT Ay

a1 3ia .
DV = ZRab'Yain + 5 Fxi = Rifx;

A A 1 I A A N
DA, = ZRab’yab)\é,- + EFAQ,- — R\ + Ry

(110)
(111)

(112)
(113)

(114)

(115)

(116)
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Solution of the Gauged Bianchi Identities

DHMa — VaLMI'jIS* A TZi A wj . (Va)*LMglséij A 1/‘}1_ A 1/11
L2V LM Ay — (V) LM P AT Ay
—VeLMap At A 4 20X M T A (117)
_ %@&MNPHG)NP n %géﬂr}_{@)aﬁ

_ %@aM W DHONP | %ﬁg/’ BH®9 = Xygp, Mo [12
+ (WY LN Ay + VLV A | A (1P (118)

4 (V’Y)*LPkId‘}k A by + VILP % A w/}
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Solution of the Gauged Bianchi Identities

A A I .
Dp = EggaMV“VgHMB — gEamVLMI; A o (119)
b/sé,'j :g@aMNPLNELPU [’HMQ + (Va)*LMkII/_)k A Yy
L VLM, kA w’] (120)

The above Bianchi identities are solved by appropriate rheonomic
parametrizations of the supercurvatures:
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Solution of the Gauged Bianchi Identities

@ Constraint of vanishing supertorsion:
T°=0 (121)

° P, FA’Q,-J- and M have the same outer components as their
ungauged counterparts, while their inner components are
denoted by Pa, Pa,Ja and HMO‘ respectively.

Furthermore, ’HMO‘ must satisfy

fabcdHMaCd 2MM Ma /HN/B (122)
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Solution of the Gauged Bianchi Identities

@ For the super-field strengths of the super-two-forms
BMa — _%@aMNPBNP + %ég/lBaﬂ v

1 1 1
@M — EeaMNPHB)NP + 55;\!7_[(3)(15 _ gHﬁ)cMa 0 AP A e
+ ieaMNPLNgLPUj\éi,yabwj Ae? A eb
1 o\ * * =0
- ng/l(v ) (VB) X' vapi A €7 A e’
- "eaMNPLNéLPi‘S\Q’Yawa Ael el 123
A’
1 M~ yayy8 = i a b
— 28 VIV Ry N e’ Ne
+ ZI-GQMNPLNMLPJW—/- Aoty A €

1

25}1 MBGT A yahi A €7
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Solution of the Gauged Bianchi Identities

@ The rheonomic parametrizations of the femionic
supercurvatures in the gauged theory,

V. = DXi, /A\é,- = ﬁ)\é,-, pi = [A)w, (124)

are obtained from their ungauged counterparts with the
replacements

P, — Pa, Pajja — Pajjay FMe — M (125)
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Solution of the Gauged Bianchi Identities

and the addition of suitable fermion shift terms proportional to g:

. o
Dxi D ggAzijW
é)\gi Dg’z\2§ji¢j

. 1 - .

Dy O — ggAlij'YaW Ne?,

where [Schon and Weidner (2006)]

AY = funnp VLM g LV LPIT 4 gfaMVO‘L’V’"f
. 1
Aoa’ = 0"V”\’F’VaLMQLNikLPJk - Z&faMVaLMa

Ai] — f‘aMNP(VOc)* LMkILNikLPj/

(126)
(127)
(128)

(129)

(130)
(131)
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Constraints on the inner components of the fermionic
supercurvatures:

VAV, = fV*LMaHab VN2 —2g A0 N, + 28 A% g 4.

(132)
YA i = v L HO PN, + 8v oL My ?P i (133)
) ) _ R, T )
— gA2a Xj + 8A2a7 Xi + 28 Aabis A + ggA2(lj))‘J§ +...,
where ) )
A‘Lbu = aMNPVaLMéLNQLPU. (134)
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Solution of the Gauged Bianchi Identities

5 i
7 Pive = V LmgHap N7 = S ValmiHsh'y*x!
1 - .
+ 38A257aX + gA2al Vo] + -

The restrictions of these constraints to spacetime are identified
with the equations of motions for the fermionic spacetime fields.
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In the rheonomic approach the action is written as

S= L, (136)
M4

where

e MH* is a four-dimensional bosonic hypersurface embedded in

N = 4 superspace

e L is a super-four-form Lagrangian
Provided £ does not contain the Hodge duality operator, the
equations of motion implied by the variational principle 65 = 0 are
independent from the choice of M* and are thus valid in the whole
superspace.
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In order to construct L,

@ write down the most general super-four-form Lagrangian
invariant under local Lorentz, SO(2), SU(4) and SO(n)
transformations

e in particular, introduce auxiliary super-0-forms providing a
first-order description of the kinetic terms of the bosonic
superfields which avoids the introduction of the Hodge duality
operator

@ require the equations of motion arising from the variational
principle 6S = 0 be solved by the constraint T2 = 0, the
rheonomic parametrizations of the supercurvatures and the
superspace equations of motion obtained by demanding
closure of the Bianchi identities
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The Lagrangian and Supersymmetry Transformation Rules

The Lagrangian

The spacetime Lagrangian for the gauged D =4, N/ =4
supergravity in an arbitrary symplectic frame follows from the
restriction of the corresponding superspace four-form Lagrangian
to spacetime and can be split in 6 terms as follows

L= ['kin + EPauIi + Lfermion mass T ['pot + Etop + [f4fermi (137)
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The Lagrangian and Supersymmetry Transformation Rules

where
-1 1 pwvpo (T~ A n N
e Lyin = ER + 26 (wufyl/pipa - wiufyl/ppg)

1/ .  « o

~3 (X"V“D,m + xw“Dux’)

- (X%“Du)\; + X;%ﬁm?) (138)
aoa 1A a1

= PLP = SPaiju PR S T Hy, HE

1
+ geﬂyﬂﬂn,\ H[}V Hpg ,
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The Lagrangian and Supersymmetry Transformation Rules

where the field strengths of the fermionic fields have the following
expressions

o 1 A
Pipw =200 Yip) + Ew[mab(e, V) VabPip] — 1A Vi)

= 207 Ly (139)
A 1 ab 3i 4 ~J
D,uXi =0uXi+ Zw,u (e, w)'Yain + E-A;LXI —WituXj (140)

A 1 i A i
Dy Xai = 0uAai + Zw#ab(e, V) YabAai + EA“/\éi — 07 g
+ @, M>‘bl , (141)
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The Lagrangian and Supersymmetry Transformation Rules

e_1£PaU|i = 'E); (Xlwf‘ - >_(i7'uy¢i1/) + 'E)p (f(i@bi“ - XIVMV@Z’L)
2Py, (N — Nainprapd) (142)
2PaIJH ( al'@bj,u a,'yw,wj ) + ZHL\VONV

where
O/\ul/ :IAanMa( - 2(Va)*LMU'(Ziuwjy - i€uupa(va)*LMijqzlpwf
+ VaLMUS\Q,"}/MV)\? - e LMé)ziquV)‘; + 2(Va)*LMU>2’7[Mw'II/]
+ ieuupa(va)*LMij)_(i’prja + 2VO‘LM£5‘§1"Y[M¢{/] (143)

+i€pupo VLM Y +cc)
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The Lagrangian and Supersymmetry Transformation Rules

71['ferm|on mass — 2gA2 IX >\ +2gA2 ai J)\ +2gAabU)\ )\Q

+ ggAg' X2\, + ggi\z,-jx’y“w (144)

+ 28424 Xy, — gAl:ﬂﬁ Y 4 c.c.,
— 1 .- 1 - 1 .
e 1ﬁpot :g2 <3A¥A1ij - §A’21A2,-j — 2A23,JA2azj> :
(145)
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The Lagrangian and Supersymmetry Transformation Rules

where the A tensors are given by [Schén and Weidner (2006)]

AV = o (V) LM LNk P (146)
. 1
Ags? = foranp VLM LN LPIK Z(%fanaLMga (147)
AT = VLM g LV LRI gfaMVaLMij, (148)
A’ = fupnp VLM LN, LPT (149)
and satisfy the Ward identity
2 . 2 .- _
§A11kA1ik - §A12<JA2ki — Agai* Ao¥ =
L2 5 2 iz I 3 _ak
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The Lagrangian and Supersymmetry Transformation Rules

The topological term Liop reads [de Wit, Samtleben and Trigiante
(2005)]

1
e Liop = ggEWWHAMaﬂ/\Nﬁ (@M QBPS - 63”8;33) X
. 1
(2apAy/3 — ghips NARIASE deﬁNRsBRS + gE BY )

1
— —ge"P7 (MMgeMase + 2MareMs¢) XMaN,BREAﬁ/IaALVﬁ X

6
(8,,A§< + igXPvQéscA,fﬂyAgé) (151)
_ 1,
e 1‘C4fermi :g(I 1)AZOAMVO/Z“/ (152)
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The Lagrangian and Supersymmetry Transformation Rules

The supersymmetry transformation rules

The Lagrangian (137) is invariant up to a total derivative under
the local supersymmetry transformations

Sc€d =&y iy, + &7V, (153)
6eva = V;axia (154)
deLmij = LMQ(QE[,'/\;] + €A (155)
Sclm? =2Lm &N + c.c., (156)

S AN = (V) IMyE o — Ve LMaE iy A,
+ ZVQLMU?'% +c.c., (157)
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The Lagrangian and Supersymmetry Transformation Rules

_ . 1 % *= i
553,%0 _ QI@O‘MNPLNQI—PUEI’Y;W)‘QJ + ngg/’(w) (Vﬁ) €M X
) -1 i
— 2i0*MNPL 21 pey,, N, + Eggﬂvavﬁglwl’x"
— 4O MNP Ly Loy (S + Egaly)  (159)
MpgaB (=i €; i
+ég M (6 Yl Vi) + 6'ry[lﬂbV])
N N(a P|B
-0 MNP%’VA[ | 0cA A - &5’ e A (\ 5 A|v|] ),

where BMo = —1@M\p NP + 2§MB°‘5,
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The Lagrangian and Supersymmetry Transformation Rules

1 - .
deiy = 8V LM,ng,p""y vuef — ggAl,-j'yueJ +..., (159)
Sehai = év;LMégﬂaWe,- — Pojun"e + g e + ..., (160)
v_j O * 2 i
6eXi = V LMUgW ’Y‘u ¢ —f-’Yué,':D‘u + ggAg,'jej + ..., (161)

where

LA —0due,  (162)

A 1
Dufi = apei + Zwuab(&w)’yabei - 5
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The Lagrangian and Supersymmetry Transformation Rules

and we have introduced the symplectic vector g,%a = (HL\V, GAuw),
where

oL

71€uupam :R/\ZHEV — I/\):(*Hz)w/
po

g/\,u,z/ = —€

— (*OA) v - (163)
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Vacua, Masses and Supertrace

In order to derive the conditions satisfied by the critical points of
the scalar potential
1
3

1

Al Ay + 5

— . 1 Lo
V=—e 1£pot = g2 ( AgAZU + 2A2aIJA2a’j> )
(164)
we compute its variation induced by the action of an infinitesimal
rigid SL(2,R) x SO(6,n) transformation that is orthogonal to the
isotropy group SO(2) x SU(4) x SO(n) of the scalar manifold on

the coset representatives V,, and Ly [de Wit and Nicolai (1984)].
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Vacua, Masses and Supertrace

Such a transformation can be written as
Vo = ZV5, LY = 0002, 6Ly2 = X25L07, (165)

where ¥ denotes the complex SL(2,R)/SO(2) scalar fluctuation
and ¥, = (Z.7)" = Je;yTa" are the SO(6,n)/(SO(6) x SO(n))
scalar fluctuations.

The variation of the scalar potential is given by

5V =g (XT + X% + X% ,;), (166)
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Vacua, Masses and Supertrace

where
2 4ij L A7 aj
X = - 9A Agjj + — 1g¢ UK Ry Agks — *Azg A
+ Z/_\Qéi,'/_\gé/j, (167)

2 R T
Xau:_gA[l‘kA ] _ 3A[|kA IJ]k_§A§[|A25\J]k_ZA[2J]A2§kk

A " 1. -
— ABlilk 4, T, + ZAib“Azgkk + 6”""( - §A1kIA2§km

1- 1- 1-
B §A2(kI)A2§mk - gAZImA2akk + §Aibk/A2bmk (168)

1-
+ 8AabImA2bkk> :
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Supertrace relations

Vacua, Masses and Supertrace

The stationary points of the scalar potential correspond to
solutions of the following system of 6n + 2 real equations

X=0, X¥=o0. (169)
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Vacua, Masses and Supertrace

Scalar masses

We can specify the mass spectrum of the scalar fields by
computing the second variation of the scalar potential under (165).
Mass terms for the scalar fluctuations:

e_lf'scalar mass — *552 V. (170)

We then introduce the real scalar fluctuations
Y1 =V2ReX, To=V2ImY, Y.n=-TmX.’, (171)

and substitute the expansions of the coset representatives around
their vacuum expectation values into the kinetic terms for the

scalars.
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Vacua, Masses and Supertrace

We find that the kinetic and mass terms for the scalar fluctuations
read

e Lo %(auzl)(auzl) (0,52)(9"55)

1
2
163b5mn "

- 5 * *(auzm)(a Zm)

1
— SOMB)MER - J(MB)? (172)

— (ME)" ™51 Xam — (MG)** XL am
1

— SMGPmEE E

1
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Vacua, Masses and Supertrace

where the elements of the squared mass matrix for the scalars M3
are given by

(MG = (W22 =g~ SATAy — S0 o+ S AP B
+ A2aij/a2aij>a (173)
(M2)lam — (pq2)am:? \ﬁgz( B A%Azgkk I 4ALbikA2§kj
— A2 AT 4 e (174)
(Mo = (Mg = 22 (A A

+c.c., (175)
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Vacua, Masses and Supertrace

1 .
58" (2R Aoty — AI B ) Ty

1 o _ _ _
+ 2g2< — 2A02 ApK ) 4+ 2% | AR K — 252K A 4 Ap2 K ALY

1 ; 1. - i) =
+ A2 Ak, — §€k/mnAjkA‘me" - §€ka"A1k/A@mn + 2A§’k)A"*"k1
+ 2o A2 4 AZBE B ]| — AP — 4 AT Ry Py
1 _ .
+ 58 A Aol Ty (176)
1,01 iz iz ¢\ sabrm .okl
+ =8 §A2A2k/ — 2A2£/ A2 k 6—F7,-J-F—

8
+ g2< - §AJkA1k/ + 2A0 /Ao — Aok K Ao | — Aol AxSK

2
1
2
8 (jk) = ; 1 _ ;
+ aAgk)Aﬂkl))&Lbrmijrﬂ,/ + §g2A2£kkA2£lI(5-LbrmijrﬂU
+(a < b,m < n),
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Vacua, Masses and Supertrace

where
_ M N P
Aabc = aMNPVaL gL QL c:

(177)
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Vacua, Masses and Supertrace

Vector masses

Equations of motion for the vector gauge fields:

rauGp =igel! (VYR — () (7))
+2g@aMNPLN§LP,'jﬁ§UM+... , (178)

where the ellipses represent terms of higher order in the fields.
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Vacua, Masses and Supertrace

Using the twisted self-duality condition

€pa G =2nMN e Myp M3, G

+ (2-fermion terms) (179)
and that QM,O‘ is on-shell identified with HA”VO‘, we can write (178)
as
e719, (eHMviy = (M2)Me g ANBH (180)
where

i * * e kY 9%
(MM pg = ZgzMMpffofv (V)Y (V) VsVs — VIVIVEV5)
+ 8%20,prOpnsTMMP MOV LR 152 R T (181)

is the squared mass matrix of the vector fields.
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Vacua, Masses and Supertrace

The matrix M2 is a (12 4 2n) x (12 + 2n) matrix. However, the
locality constraint on the embedding tensor implies that 6 + n
vector fields are not physical. Therefore, at least half of the
eigenvalues of this matrix are zero at any vacuum.
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Vacua, Masses and Supertrace

Fermion masses

After eliminating the mass mixing terms between the gravitini and
the spin-1/2 fermions,

e N Lmix = —gzZL’y“ Gi+c.c., (182)

where

o_ .
G = §A2ﬁXJ + 24047 X7, (183)

the mass matrix of the spin-1/2 fermions for Minkowski vacua that
completely break N' = 4 supersymmetry is given by
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Vacua, Masses and Supertrace

1 = P
5 ai ai,bj
2 Mi1)*j (My)
0 —V2A5 +\f5JA2bk
a —\@Afij + \@5}/‘_\23kk py ELI T %5‘@/\&”)
(184)
A R Ay — 22 (AT Ay Agty
n 5( YK Az Ao 3(1) 2ik A2
g
i( 1)kIA2 WA ( 1)kIA2aklA2
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Vacua, Masses and Supertrace

The equations of motion for the gravitini read

2

’Yul/plplﬂﬁip = _3

so the mass matrix of the gravitini is given by

2 -
(M3)j = — 3841

glz\lw“l’w{; + ...

(185)

(186)
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Supertrace relations

Supertrace of the squared mass matrices:

STr(M?) = > (-1)%(2J + 1) Tr(M3)

spins J
=Tr (M%) —2Tr <MEM
—ame (Miag ) (187)

This supertrace controls the quadratic divergences of the 1-loop

effective potential [Coleman and Weinberg (1973), Weinberg
(1973)].
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Vacua, Masses and Supertrace

Using the critical point conditions, the vanishing of the
cosmological constant and the quadratic constraints on the
embedding tensor, we find

Tr <MEM§> - (M%)U (M;)J - gg2A§fA1,-j. (188)

3°9
2 pabij i .
+ g2 AL (189)

4 1 . PR
Tr(M3) = (MHM o = ( + ”) ng[2U]A2ij + 2% Anai Ar¥
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Vacua, Masses and Supertrace

16 - .- .4 .
—_ 3g2AgA1,-j +4g% A ¥ + §ng2Ag’J)A2U
. 32 .
+4g2ADIA, i+ EnggJ]Ag,-j, (190)
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Tr(MG) = (MM + (MG)*? + 0260 mn( M) 2722
4
9

1 i
+5(n+29) g2 AN, (191)
+ 2ng2A2§,JA2§ij + 5g2A£UAaibij .

i 4 i) 7
(3n+1)g*A{ Ay + 5(3n - 1)g2 A% 4,
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Vacua, Masses and Supertrace

Altogether, the supertrace of the squared mass eigenvalues equals
STr(M?)=4(n—1)V =0 (192)

for any Minkowski vacuum of D = 4, N/ = 4 supergravity that
completely breaks N' = 4 supersymmetry irrespective of the
number of vector multiplets and the choice of the gauge group.
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Conclusion

@ Construction of the complete Lagrangian that incorporates all
gauged N = 4 matter-coupled supergravities in four
spacetime dimensions.

@ STr(M?2) = 0 for all Minkowski vacua that completely break
N = 4 supersymmetry = the one-loop effective potential at
such vacua has no quadratic divergence
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