Mass spectra and higher-order couplings for AdS vacua using Exceptional Field Theory

Henning Samtleben, ENS de Lyon
"Supergravity techniques and the CFT bootstrap" Golm 11/2023

plan: mass spectra and higher-order couplings
motivation

* compactification, Kaluza-Klein spectra
tools
B consistent truncations
* exceptional field theory
examples
- $\mathrm{AdS}_{p} \times \mathrm{Sq}$ and deformations/squashings $\mathrm{AdS}_{p} \times \Sigma_{q}$
cubic and higher order couplings
* near extremal n-point couplings
- explicit cubic couplings

> based on work with Emanuel Malek, Bastien Duboeuf, Nikolay Bobev, Camille Eloy, Michele Galli, Adolfo Guarino, Alfredo Giambrone, Olaf Hohm, Gabriel Larios, Hermann Nicolai, Brandon Robinson, Colin Sterckx, Mario Trigiante, Jesse van Muiden
b background $\mathscr{M}_{10}=\operatorname{AdS}_{m} \times \mathscr{M}_{n}$

* expanding fields in harmonics on the internal space
higher-dimensional sugra
e.g. scalar field

$$
\phi(x, y)=\sum_{\Sigma} \phi_{\Sigma}(x) \mathcal{Y}^{\Sigma}(y)
$$

Dynamics of the KK fluctuations is described by a lower-dimensional theory
infinitely many fields (KK towers of fluctuations $\left\{\phi_{\Sigma}, \ldots\right\}$)

* dual to single trace CFT operators $\mathcal{O}_{\phi_{\Sigma}}$

B mass spectrum of the KK-fluctuations ($->$ conformal dimensions)
B higher order couplings ($->$ n-point correlators)

lower-dimensional

sugra

B in general: complicated problem

- gauge fixing and field redefinitions
o diagonalize various Laplacians on the internal manifold $\quad->$ new tools !
o disentangle mass eigenstates from different higher-dimensional origin
- flux compactifications: higher-dimensional p-forms

ExFT: duality covariant reformulation of $D=10 / 11$ sugra

$$
\mathcal{L} \equiv \hat{R}+\frac{1}{24} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{M N} \mathcal{D}_{\nu} \mathcal{M}_{M N}-\frac{1}{4} \mathcal{M}_{M N} \mathcal{F}^{\mu \nu M} \mathcal{F}_{\mu \nu}^{N}+e^{-1} \mathcal{L}_{\text {lop }}-V(\mathcal{M}, e) .
$$

generalized Scherk-Schwarz reduction of ExFT
$\mathrm{E}_{6} / \mathrm{USp}(8)$

$$
\mathcal{M}_{M N}(x, Y)=U_{M}^{K}(Y) M_{K L}(x) U_{N}^{L}(Y)
$$

27

$$
\mathcal{A}_{\mu}{ }^{M}(x, Y)=\rho^{-1}(Y)\left(U^{-1}\right)_{K}{ }^{M}(Y) A_{\mu}{ }^{K}(x)
$$

$D=5$ maximal sugra

$\mathrm{E}_{6(6)}$ valued twist matrix $U_{M}{ }^{N}(Y)$ and scale factor $\rho(Y)$ consistency equations (generalized Leibniz parallelizable)

$$
\mathscr{L}_{U_{A}} \mathscr{U}_{B}^{M}=X_{A B}^{C} \mathscr{U}_{C}{ }^{M}
$$

$$
\left[\left(U^{-1}\right)_{M}^{P}\left(U^{-1}\right)_{N}{ }^{L} \partial_{P} U_{L}{ }^{K}\right]_{351}=\rho X_{M N}{ }^{K}
$$

ExFT: duality covariant reformulation of $\mathrm{D}=10 / 11$ sugra

$$
\mathcal{L} \equiv \hat{R}+\frac{1}{24} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{M N} \mathcal{D}_{\nu} \mathcal{M}_{M N}-\frac{1}{4} \mathcal{M}_{M N} \mathcal{F}^{\mu \nu M} \mathcal{F}_{\mu \nu}^{N}+e^{-1} \mathcal{L}_{\text {lop }}-V(\mathcal{M}, e) .
$$

generalized Scherk-Schwarz
reduction of ExFT
$\mathrm{E}_{6} / \mathrm{USp}(8)$
27

$$
\begin{gathered}
\mathcal{M}_{M N}(x, Y)=U_{M}{ }^{K}(Y) M_{K L}(x) U_{N}{ }^{L}(Y) \\
\mathcal{A}_{\mu}{ }^{M}(x, Y)=\rho^{-1}(Y)\left(U^{-1}\right)_{K}{ }^{M}(Y) A_{\mu}{ }^{K}(x)
\end{gathered}
$$

$D=5$ maximal sugra

- every stationary point of the $\mathrm{D}=5$ scalar potential lifts to a IIB background $\mathscr{M}_{10}=\operatorname{AdS}_{5} \times \Sigma_{5}$

o around these backgrounds: compute the masses and couplings of the 42 scalars
- instabilities in all non-supersymmetric
AdS_{5} vacua! [Bobev, Fischbacher, Gautason, Pilch]

B consistent truncation to lowest KK-multiplet

$$
\mathcal{A}_{\mu}{ }^{M}(x, Y)=\rho^{-1}(Y)\left(U^{-1}\right)_{K}^{M}(Y) A_{\mu}^{K}(x)
$$

* extend to the higher Kaluza-Klein modes (linearized)

$$
\begin{aligned}
\mathcal{A}_{\mu}{ }^{M}(x, Y) & =\rho^{-1}(Y)\left(U^{-1}\right)_{K}^{M}(Y) \sum_{\Sigma} A_{\mu}^{K, \Sigma}(x) \mathcal{Y}^{\Sigma} \\
\mathcal{M}_{M N}(x, Y) & =U_{M}^{K}(Y) U_{N}^{L}(Y)\left(\delta_{K L}+\sum_{\Sigma} \phi^{\alpha, \Sigma} \mathbb{T}_{\alpha, K L} \mathcal{Y}^{\Sigma}\right)
\end{aligned}
$$

with fluctuations $A_{\mu}^{K, \Sigma}, \phi^{\alpha, \Sigma}$, and the tower of scalar harmonics \mathcal{Y}^{Σ}

ExFT field equations
(lowest KK multiplet) \otimes (scalar harmonics) $\xrightarrow{\text { ExFT field equations }} \mathrm{KK}$ spectrum
trace of exceptional symmetry in the full spectrum \longrightarrow holography!

$$
\begin{aligned}
\mathcal{A}_{\mu}{ }^{M}(x, Y) & =\rho^{-1}(Y)\left(U^{-1}\right)_{K}{ }^{M}(Y) \sum_{\Sigma} A_{\mu}{ }^{K, \Sigma}(x) \mathcal{Y}^{\Sigma} \\
\mathcal{M}_{M N}(x, Y) & =U_{M}^{K}(Y) U_{N}^{L}(Y)\left(\delta_{K L}+\sum_{\Sigma} \phi^{\alpha, \Sigma} \mathbb{T}_{\alpha, K L} \mathcal{Y}^{\Sigma}\right)
\end{aligned}
$$

plug into the ExFT action and expand in fluctuations
e.g. mass matrix for all vector fluctuations $A_{\mu}^{M, \Sigma}$

$$
\begin{aligned}
& M_{M \Sigma, N \Omega} \propto \frac{1}{3} X_{M L}^{\mathrm{s}}{ }^{K} X_{N K}^{\mathrm{s}}{ }^{L} \delta^{\Sigma \Omega}+2\left(X_{M K}^{\mathrm{s}}{ }^{N}-X_{N M}^{\mathrm{s}}{ }^{K}\right) \mathcal{T}_{K, \Omega \Sigma} \\
& -6\left(\mathbb{P}^{K}{ }_{M}{ }^{L}{ }_{N}+\mathbb{P}^{M}{ }_{K}{ }^{L}{ }_{N}\right) \mathcal{T}_{L, \Omega \Lambda} \mathcal{T}_{K, \Lambda \Sigma}+\frac{8}{3} \mathcal{T}_{N, \Omega \Lambda} \mathcal{T}_{M, \Lambda \Sigma}
\end{aligned}
$$

in terms of essentially five-dimensional data !

- symmetrized $\mathrm{D}=5$ embedding tensor $X_{M N}^{\mathrm{s}} \equiv X_{M N}{ }^{K}+X_{M K}{ }^{N}$
- adjoint projector $\mathbb{P}^{M}{ }_{N}{ }^{K}{ }_{L}=\left(t^{\alpha}\right)_{N}{ }^{M}\left(t_{\alpha}\right)_{L}{ }^{K}$
- representation of scalar harmonics $\mathcal{K}_{M}{ }^{m} \partial_{m} \mathcal{Y}^{\Sigma}=\mathcal{T}_{M, \Sigma \Omega} \mathcal{Y}^{\Omega}$
- similar for the scalar mass matrix
- similar for fermion masses [Cesàro, Varela]
o entire KK mass spectrum!
traditional: harmonic analysis on coset spaces
$\operatorname{AdS}_{5} \times \mathrm{S}^{5}$: expand fluctuations in sphere harmonics (representations of $\mathrm{SO}(6)$)
10D scalar: $\quad \phi(x, y)=\sum_{\Sigma} \phi_{\Sigma}(x) \mathscr{Y}^{\Sigma}(y)=\sum_{n} \phi_{[n, 0,0]}(x) \underbrace{\mathscr{Y}^{[n, 0,0]}(y)}$
scalar harmonics

$$
\begin{array}{r}
\mathscr{Y}^{\Sigma}=\mathscr{Y}^{[n, 0,0]}=\mathscr{y}^{\left(\left(a_{1} \mathscr{y}^{a_{2}} \ldots \mathscr{y}^{a_{n}}\right)\right)} \\
\mathscr{y}^{a} \mathscr{Y}^{a}=1
\end{array}
$$

10D internal metric: $g_{k l}(x, y)=\sum_{n} g_{[n, 0,0]}(x) \mathscr{Y}_{k l}^{[n, 0,0]}(y)+\sum_{n} g_{[n, 1,1]}(x) \mathscr{Y}_{k l}^{[n, 1,1]}(y)+\sum_{n} g_{[n, 2,2]}(x) \mathscr{Y}_{k l}^{[n, 2,2]}(y)$
tensor harmonics

B in general: several Kaluza-Klein towers for each 10D field, systematics [Salam, Strathdee]

$$
S^{5}=\frac{\mathrm{SO}(6)}{\mathrm{SO}(5)}=\frac{\mathrm{G}}{\mathrm{H}} \quad \text { with embedding } \mathrm{H} \subset \mathrm{G}_{\text {Lorentz,int }}
$$

traditional: harmonic analysis on coset spaces

B in general: several Kaluza-Klein towers for each 10D field, systematics [Salam, Strathdee]

$$
S^{5}=\frac{\mathrm{SO}(6)}{\mathrm{SO}(5)}=\frac{\mathrm{G}}{\mathrm{H}} \quad \text { with embedding } \mathrm{H} \subset \mathrm{G}_{\text {Lorentz,int }}
$$

10D field: $\quad \Phi \in \mathscr{R}_{\text {Lorentz,int }} \longrightarrow \mathscr{R}_{\mathrm{H}}$

$$
\mathrm{G} \longrightarrow \mathrm{H}
$$

the harmonic expansion of Φ carries all representations \mathscr{R}_{G} of G such that $\mathscr{R}_{\mathrm{G}} \longrightarrow \mathscr{R}_{\mathrm{H}} \oplus \ldots$
for a scalar field $\mathscr{R}_{\mathrm{H}}=1: \quad \mathrm{SO}(6) \longrightarrow \mathrm{SO}(5)$
$[n, 0,0] \longrightarrow \mathbf{1} \oplus \ldots$ defines the scalar tower
$\left.\begin{array}{rl}g_{k l}(x, y) \text { internal metric } \mathscr{R}_{\mathrm{H}}=\mathbf{1 4}: & {[n, 0,0] \longrightarrow \mathbf{1 4} \oplus \ldots} \\ & {[n, 1,1] \longrightarrow \mathbf{1 4} \oplus \ldots} \\ & {[n, 2,2] \longrightarrow \mathbf{1 4} \oplus \ldots}\end{array}\right\} \longrightarrow$ defines the towers

structure of fluctuations

B in general: several Kaluza-Klein towers for each 10D field, systematics [Salam, Strathdee]

$$
S^{5}=\frac{\mathrm{SO}(6)}{\mathrm{SO}(5)}=\frac{\mathrm{G}}{\mathrm{H}}
$$

with embedding $H \subset G_{\text {Lorentz,int }}$
10D field: $\quad \Phi \in \mathscr{R}_{\text {Lorentz,int }} \longrightarrow \mathscr{R}_{\mathrm{H}}$

$$
\mathrm{G} \longrightarrow \mathrm{H}
$$

the harmonic expansion of Φ carries all representations \mathscr{R}_{G} of G such that $\mathscr{R}_{\mathrm{G}} \longrightarrow \mathscr{R}_{\mathrm{H}} \oplus \ldots$

○ in closed form: $\mathscr{R}_{\Phi} \otimes \sum_{n}[n, 0,0] \quad \Longleftrightarrow \quad$ tensor product structure of fluctuations

$$
\text { (lowest KK multiplet) } \otimes \text { (scalar harmonics) } \xrightarrow{\text { ExFT field equations }} \mathrm{KK} \text { spectrum }
$$

o explicitly:

$$
\mathcal{A}_{\mu}{ }^{M}(x, Y)=\rho^{-1}(Y)\left(U^{-1}\right)_{K}^{M}(Y) \sum_{\Sigma} A_{\mu}^{K, \Sigma}(x) \mathcal{Y}^{\Sigma}
$$

- ExFT basis: $\left\{\phi^{\alpha, \Sigma}, A_{\mu}{ }^{M, \Sigma}, \ldots\right\}$
tensor harmonics

spectrum on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

[Kim, Romans, van Nieuwenhuizen, 1985]

cos	\%mom		
\%ome	\%ame		\%atim
tran	\%	"20	3
-3,	\%	\%	
-	,		\%
+	込	\%	\%
**		\%	\%
\cdots	\%	\%	\%
\cdots	4	\%	\%
		边	

FIG. 2. Mass spectrum of scalars.

$$
\mathscr{B}_{[2,0,0](0,0)} \oplus \mathscr{B}_{[3,0,0](0,0)} \oplus \mathscr{B}_{[4,0,0](0,0)} \oplus
$$

[n, 00](00)

n-1, 10] $\left(0 \frac{1}{2}\right)+[n-1,01]\left(\frac{1}{2} 0\right)$
$n-2,02](00)+[n-2,20](00)+[n-1,00](01)+[n-1,00](10)+[n-2,11]\left(\frac{1}{2} \frac{1}{2}\right)$ $[n-2,10]\left(0 \frac{1}{2}\right)+[n-3,12]\left(0 \frac{1}{2}\right)+[n-2,01]\left(\frac{1}{2} 0\right)+[n-3,21]\left(\frac{1}{2} 0\right)+[n-2,01]\left(\frac{1}{2} 1\right)+[n-2,10]\left(1 \frac{1}{2}\right)$ $2[n-2,00](00)+[n-4,22](00)+[n-3,02](01)+[n-3,20](10)+2[n-3,11]\left(\frac{1}{2} \frac{1}{2}\right)+[n-2,00](11)$ $[n-3,10]\left(0 \frac{1}{2}\right)+[n-4,12]\left(0 \frac{1}{2}\right)+[n-3,01]\left(\frac{1}{2} 0\right)+[n-4,21]\left(\frac{1}{2} 0\right)+[n-3,01]\left(\frac{1}{2} 1\right)+[n-3,10]\left(1 \frac{1}{2}\right)$ $[n-4,02](00)+[n-4,20](00)+[n-3,00](01)+[n-3,00](10)+[n-4,11]\left(\frac{1}{2} \frac{1}{2}\right)$ $[n-4,10]\left(0 \frac{1}{2}\right)+[n-4,01]\left(\frac{1}{2} 0\right)$
[$n-4,00](00)$

```
spectrum on \(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\)
```

[Kim, Romans, van Nieuwenhuizen, 1985]

* combine into $1 / 2$-BPS multiplets

$$
\mathscr{B}_{[2,0,0](0,0)} \oplus \mathscr{B}_{[3,0,0](0,0)} \oplus \mathscr{B}_{[4,0,0](0,0)} \oplus
$$

[n, 00](00)
$[n-1,10]\left(0 \frac{1}{2}\right)+[n-1,01]\left(\frac{1}{2} 0\right)$
$[n-2,02](00)+[n-2,20](00)+[n-1,00](01)+[n-1,00](10)+[n-2,11]\left(\frac{1}{2} \frac{1}{2}\right)$
$[n-2,10]\left(0 \frac{1}{2}\right)+[n-3,12]\left(0 \frac{1}{2}\right)+[n-2,01]\left(\frac{1}{2} 0\right)+[n-3,21]\left(\frac{1}{2} 0\right)+[n-2,01]\left(\frac{1}{2} 1\right)+[n-2,10]\left(1 \frac{1}{2}\right)$ $2[n-2,00](00)+[n-4,22](00)+[n-3,02](01)+[n-3,20](10)+2[n-3,11]\left(\frac{1}{2} \frac{1}{2}\right)+[n-2,00](11)$ $[n-3,10]\left(0 \frac{1}{2}\right)+[n-4,12]\left(0 \frac{1}{2}\right)+[n-3,01]\left(\frac{1}{2} 0\right)+[n-4,21]\left(\frac{1}{2} 0\right)+[n-3,01]\left(\frac{1}{2} 1\right)+[n-3,10]\left(1 \frac{1}{2}\right)$ $[n-4,02](00)+[n-4,20](00)+[n-3,00](01)+[n-3,00](10)+[n-4,11]\left(\frac{1}{2} \frac{1}{2}\right)$ $[n-4,10]\left(0 \frac{1}{2}\right)+[n-4,01]\left(\frac{1}{2} 0\right)$
[$n-4,00]$ (00)

B in the ExFT basis $\left\{\phi^{\alpha, \Sigma}, A_{\mu}{ }^{M, \Sigma}, \ldots\right\}$

- fluctuations appear already in the diagonal basis (mass eigenstates)
- for given $\Sigma=[n, 0,0]$ the fields fill the multiplet $\mathscr{B}_{[n, 0,0]}$
- simple and compact (re-)derivation of the supergravity spectrum on S^{5}

example: deformations of $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

[with N. Bobev, E. Malek, B. Robinson, J. van Muiden]

```
IIB supergravity
```


$D=5$ gauged sugra
[Gunaydin, Romans, Warner]
($D=5 \mathrm{SO}(6)$ gauged supergravity: 42 scalars with scalar potential [Gunaydin, Romans, Warner]

- $\mathcal{N}=8, \mathrm{SO}(6)$, round S^{5}

- $\mathcal{N}=2, \mathrm{U}(2)$, deformed S^{5}

Freedman-Gubser-Pilch-Warner flow holographic dual of Leigh-Strassler SCFT
previously only known for the 256 dof's from the supergravity multiplet
[Freedman, Gubser, Pilch, Warner '99]

Bow: compute the full KK spectrum around the $\mathcal{N}=2$ point
e.g. at level $n=1$ in multiplets $D\left(E_{0}, j_{1}, j_{2} ; r\right)$ of $\mathrm{SU}(2) \times \mathrm{SU}(2,2 \mid 1)$

```
0 : D(1+\frac{1}{2}\sqrt{}{37},0,0;1)\textrm{C}+D(1+\frac{1}{2}\sqrt{}{61},0,0;1)\textrm{C}+\mp@subsup{D}{\textrm{S}}{}(\frac{9}{2},\frac{1}{2},\frac{1}{2};1)\textrm{C}}+2\mp@subsup{D}{\textrm{S}}{}(\frac{9}{2},\frac{1}{2},0;-1)\textrm{C}+D(\frac{9}{2},\frac{1}{2},0;1)\textrm{C
\frac{\mathbf{1}}{\mathbf{2}}:D(1+\frac{1}{4}\sqrt{}{145,\frac{1}{2},\frac{1}{2};\frac{1}{2}\mp@subsup{)}{\textrm{C}}{}+D(1+\frac{1}{4}\sqrt{}{193},0,0;\frac{1}{2}\mp@subsup{)}{\textrm{C}}{}+D(\frac{15}{4},\frac{1}{2},0;\frac{1}{2}\mp@subsup{)}{\textrm{C}}{}+D(\frac{17}{4},\frac{1}{2},0;-\frac{1}{2}\mp@subsup{)}{\textrm{C}}{}}
1: 2D(1+\sqrt{}{7},0,0;0)+D(1+\sqrt{}{7},\frac{1}{2},0;0)}\mp@subsup{)}{\textrm{C}}{}+\mp@subsup{D}{\textrm{S}}{}(\frac{7}{2},\frac{1}{2},0;1\mp@subsup{)}{\textrm{C}}{}+\mp@subsup{D}{\textrm{S}}{}(3,\frac{1}{2},0;2\mp@subsup{)}{\textrm{C}}{
\frac{3}{2}: D DS (\frac{9}{4},0,0;\frac{3}{2})\textrm{C}
in terms of semi-short and long multiplets
```

- e.g. full tower of semi-short (protected) supermultiplets

$$
\begin{array}{lclr}
L \bar{B}_{1}\left(\frac{9+3 n}{4} ; \frac{1}{2}, 0 ; \frac{n+3}{2}\right) \otimes\left[\frac{n+1}{2}\right], & B_{1} \bar{L}\left(\frac{9+3 n}{4}, 0, \frac{1}{2} ;-\frac{n+3}{2}\right) \otimes\left[\frac{n+1}{2}\right], & L \bar{B}_{1}\left(\frac{6+3 n}{4} ; 0,0 ; \frac{n+2}{2}\right] \otimes\left[\frac{n+2}{2}\right], & B_{1} \bar{L}\left(\frac{6+3 n}{4} ; 0,0 ;-\frac{n+2}{2}\right] \otimes\left[\frac{n+2}{2}\right), \\
A_{1} \bar{L}\left(\frac{6+3 n}{2} ; \frac{1}{2}, 0 ;-n\right) \otimes[0], & L \bar{A}_{1}\left(\frac{6+3 n}{2} ; 0, \frac{1}{2} ; n\right) \otimes[0], & L \bar{B}_{1}\left(\frac{12+3 n}{4} ; 0,0 ; \frac{n+4}{2}\right] \otimes\left[\frac{n}{2}\right], & B_{1} \bar{L}\left(\frac{12+3 n}{4} ; 0,0 ;-\frac{n+4}{2}\right] \otimes\left[\frac{n}{2}\right), \\
A_{1} \bar{L}\left(\frac{6+3 n}{2} ; \frac{1}{2}, 0 ;-n\right) \otimes[0], & L \bar{A}_{1}\left(\frac{6+3 n}{2} ; 0, \frac{1}{2} ; n\right) \otimes[0], & L \bar{A}_{2}\left(\frac{8+3 n}{4} ; 0,0 ; \frac{n}{2}\right] \otimes\left[\frac{n+2}{2}\right], & A_{2} \bar{L}\left(\frac{8+3 n}{4} ; 0,0 ;-\frac{n}{2}\right] \otimes\left[\frac{n+2}{2}\right), \\
L \bar{A}_{2}\left(\frac{11+3 n}{4} ; \frac{1}{2}, 0 ; \frac{n+1}{2}\right) \otimes\left[\frac{n+1}{2}\right], & A_{2} \bar{L}\left(\frac{11+3 n}{4} ; 0, \frac{1}{2} ;-\frac{n+1}{2}\right) \otimes\left[\frac{n+1}{2}\right], & L \bar{A}_{2}\left(\frac{14+3 n}{4} ; 0,0 ; \frac{n+2}{2}\right] \otimes\left[\frac{n}{2}\right], & A_{2} \bar{L}\left[\frac{14+3 n}{4} ; 0,0 ;-\frac{n+2}{2}\right] \otimes\left(\frac{n}{2}\right) .
\end{array}
$$

* agreement with index computation in the dual Leigh-Strassler SCFT

B closed formula for all (including unprotected long) multiplets

$$
\Delta=1+\sqrt{7-3\left|j_{1}+j_{2}\right|+\frac{3}{4}\left(r^{2}-2(p+2 y)^{2}+2 n(n+4)-4 k(k+1)\right)} .
$$

example: $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ and deformations

[with A. Guarino, E. Malek, H. Nicolai]

$D=11$ sugra

tools for non-supersymmetric vacua (where masses are not controlled by symmetry)

* in $\mathrm{D}=4 \mathrm{SO}(8)$ supergravity [de Wit, Nicolai]
the supergravity potential has been carefully scanned for AdS $_{4}$ vacua
[Comsa, Firsching, Fischbacher]
all non-supersymmetric vacua are unstable already within $D=4$ supergravity, i.e. have instabilities within the lowest Kaluza-Klein multiplet

* except for a distinguished $\mathrm{SO}(3) \times \mathrm{SO}(3)$ invariant extremal point [Warner]
- stable within $\mathrm{D}=4$ supergravity [Fischbacher, Pilch, Warner]
- uplift to D=11 supergravity [Godazgar, Godazgar, Krüger, Nicolai, Pilch]
- brane-jet instabilities
[Bena, Pilch, Warner]

70 scalars: BF-bound

B ExFT formulas: full scalar Kaluza-Klein spectrum up to level 6
(~ 100.000 scalar fields), from $D=4$ data

instabilities starting from KK level 2
\Longrightarrow In $D=4, \mathrm{SO}(8)$ supergravity, all known non-supersymmetric vacua are perturbatively unstable!

Bassive IIA admits a consistent truncation on S6
\longrightarrow to (dyonic) ISO(7) gauged supergravity with $\mathcal{N}=3 \quad \mathrm{AdS}_{4}$ vacuum

B the $D=4$ scalar potential carries a wealth of AdS vacua:
\qquad \rightarrow non-supersymmetric vacua, stable within $D=4$ supergravity
B most symmetric: $\mathcal{N}=0 \quad \mathrm{G}_{2}$ vacuum, deformed S^{6} \longrightarrow no brane-jet instabilities [Guarino, Tarrio, Varela]
B ExFT analysis yields the full KK spectrum! analytic mass formula for all scalars:

$$
m^{2} \ell^{2}=(n+2)(n+3)-\frac{3}{2} \mathscr{C}_{\left[n_{1}, n_{2}\right]}
$$

[A. Guarino, E. Malek, HS]
B proves stability of the KK spectrum: $m^{2} \ell^{2} \geq m_{\mathrm{BF}}^{2} \ell^{2}$
B (perturbatively) stable non-supersymmetric AdS $_{4}$ vacuum
b bubble instabilities...
[Bomans, Cassani, Dibitetto, Petri]
(ikewise: KK-spectra for more non-supersymmetric vacua (numerical) with remaining $\mathrm{SU}(3), \mathrm{SO}(4), \mathrm{U}(2), \mathrm{SO}(3)$: all (perturbatively) stable!

cubic and higher order couplings
[with B. Duboeuf, E. Malek]

B higher couplings around $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ all fields in representations of $\mathrm{SO}(6)$

$$
\mathscr{L}_{\phi^{n}}=g_{I_{1} I_{2} \cdots I_{n}} \phi^{I_{1}} \phi^{I_{2}} \ldots \phi^{I_{n}}
$$

- information on the holographic n-pt functions $\left\langle\mathcal{O}_{I_{1}} \mathcal{O}_{I_{2}} \cdots \mathcal{O}_{I_{n}}\right\rangle$
* previously $\quad \circ$ expand fields into S^{5} harmonics and integrate IIB Lagrangian over S 5
- expand/diagonalize/disentangle IIB field equations
- gauge fixing, non-linear field redefinitions
- achieved for cubic and (some) quartic couplings, "heroic efforts" [Arutyunov, Frolov]
[Lee, Minwalla, Rangamani, Seiberg]
B in ExFT framework
- 'standard' two-derivative action

$$
\mathcal{L} \equiv \hat{R}+\frac{1}{24} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{M N} \mathcal{D}_{\nu} \mathcal{M}_{M N}-\frac{1}{4} \mathcal{M}_{M N} \mathcal{F}^{\mu \nu M} \mathcal{F}_{\mu \nu}^{N}+e^{-1} \mathcal{L}_{\text {top }}-V(\mathcal{M}, e) .
$$

○ \& basis of fluctuations $\mathcal{M}_{M N}=U_{M}^{K}(Y) U_{N}^{L}(Y)\left(\delta_{K L}+\sum_{\Sigma} \phi^{\alpha, \Sigma} \mathbb{T}_{\alpha, K L} \mathcal{Y}^{\Sigma}\right)$

- tensor product structure (lowest KK multiplet) \otimes (scalar harmonics)
near-extremal n-point couplings
- in ExFT framework
- 'standard' two-derivative action

$$
\mathcal{L} \equiv \hat{R}+\frac{1}{24} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{M N} \mathcal{D}_{\nu} \mathcal{M}_{M N}-\frac{1}{4} \mathcal{M}_{M N} \mathcal{F}^{\mu \nu M} \mathcal{F}_{\mu \nu}^{N}+e^{-1} \mathcal{L}_{\text {top }}-V(\mathcal{M}, e)
$$

○ \& basis of fluctuations $\mathcal{M}_{M N}=U_{M}^{K}(Y) U_{N}{ }^{L}(Y)\left(\delta_{K L}+\sum_{\Sigma} \phi^{\alpha, \Sigma} \mathbb{T}_{\alpha, K L} \mathcal{Y}^{\Sigma}\right)$

- tensor product structure (lowest KK multiplet) \otimes (scalar harmonics)

○ n-point couplings $\mathscr{L}_{\phi^{n}}=g_{\alpha_{1} \Sigma_{1}, \alpha_{2} \Sigma_{2}, \cdots, \alpha_{n} \Sigma_{n}} \phi^{\alpha_{1} \Sigma_{1}} \phi^{\alpha_{2} \Sigma_{2}} \ldots \phi^{\alpha_{n} \Sigma_{n}}$

> SO(6) invariant tensor

- non-vanishing n-point coupling requires $c_{\Sigma_{1} \Sigma_{2} \ldots \Sigma_{n}}$ to exist!
* example: scalars in $[\mathrm{m}, 0,0$] of $\mathrm{SO}(6)$

within the ExFT basis $\phi^{\alpha, \Sigma}: \quad \alpha: \mathbf{4 2} \longrightarrow[2,0,0]_{0} \oplus[0,0,2]_{+1} \oplus[0,2,0]_{-1} \oplus[0,0,0]_{ \pm 2} \quad \Sigma:[n, 0,0]_{0}$

$$
\begin{array}{rll}
s^{I}:[n+2,0,0] \in[2,0,0] \otimes[n, 0,0]: \quad \phi^{(a b, \Sigma)}=\phi^{\left(\left(a b, a_{1} \ldots a_{n}\right)\right)} & |I|=|\Sigma|+2 \\
\phi_{ \pm}^{I}:[n, 0,0] \in[0,0,0] \otimes[n, 0,0]: \phi^{ \pm, \Sigma}=\phi^{ \pm, a_{1} \ldots a_{n}} & |I|=|\Sigma| \\
t^{I}:[n-2,0,0] \in[2,0,0] \otimes[n, 0,0]: \phi^{a b, \Sigma}=\phi^{a b, a b a_{1} \ldots a_{n-2}} & |I|=|\Sigma|-2
\end{array}
$$

B consider a coupling among the $s^{I}: \mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, \ldots, s^{I_{n}}\right)$
near-extremal n-point couplings
 within the ExFT basis $\phi^{\alpha, \Sigma}: s^{I}:[n+2,0,0] \in[2,0,0] \otimes[n, 0,0]: \quad \phi^{((a b, \Sigma)}=\phi^{\left(\left(a b, a_{1} \ldots a_{n}\right)\right)} \quad|I|=|\Sigma|+2$

* consider a coupling among the $s^{I}: \mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, \ldots, s^{I_{n}}\right)$
- SO(6) group theory: a non-vanishing coupling requires $\mathbf{1} \in I_{1} \otimes I_{2} \otimes \cdots \otimes I_{n}$
thus $\quad\left(\sum_{j \neq i}\left|I_{j}\right|\right)-\left|I_{i}\right|<0 \quad \Longrightarrow \quad \mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, \ldots, s^{I_{n}}\right)=0$
○ in the ExFT basis $\mathscr{G}\left(\phi^{\alpha_{1}, \Sigma_{1}}, \phi^{\alpha_{2}, \Sigma_{2}}, \ldots, \phi^{\alpha_{n}, \Sigma_{n}}\right)$
a non-vanishing coupling requires moreover $\quad \mathbf{1} \in \Sigma_{1} \otimes \Sigma_{2} \otimes \cdots \otimes \Sigma_{n}$

$$
\left(\sum_{j \neq i}\left|I_{j}\right|\right)-\left|I_{i}\right| \leq 2(n-3) \quad \Longrightarrow \quad \mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, \ldots, s^{I_{n}}\right)=0
$$

o cubic extremal couplings vanish!

- n-point near-extremal couplings vanish!

conjectured in

[D'Hoker, Erdmenger, Freedman, Perez-Victoria, 2000]
[D'Hoker, Pioline, 2000]

$$
\left(\sum_{j \neq i}\left|I_{j}\right|\right)-\left|I_{i}\right| \leq 2(n-3) \quad \Longrightarrow \quad \mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, \ldots, s^{I_{n}}\right)=0
$$

o cubic extremal couplings vanish!
o n-point near-extremal couplings vanish!
conjectured in
[D'Hoker, Erdmenger, Freedman, Perez-Victoria, 2000]
[D'Hoker, Pioline, 2000]

moreover:

- proof of analogous conjectures for near-extremal couplings on AdS ${ }_{7} \times \mathrm{S}^{4}$ and $\mathrm{AdS}_{4} \times \mathrm{S}^{7} \quad$ [D'Hoker, Pioline, 2000]
- similar results for couplings $\mathscr{G}\left(s^{I_{1}}, \ldots, s^{I_{m}}, t^{J_{1}}, \ldots, t^{J_{n}}\right)$ and scalars in other representations
o similar results for couplings involving spin-1 and spin-2 fields
- apply to all vacua of the theory, e.g. $\mathcal{N}=2$ holographic dual of Leigh-Strassler SCFT

$$
\begin{array}{lcll}
L \bar{B}_{1}\left(\frac{9+3 n}{4} ; \frac{1}{2}, 0 ; \frac{n+3}{2}\right) \otimes\left[\frac{n+1}{2}\right], & B_{1} \bar{L}\left(\frac{9+3 n}{4}, 0, \frac{1}{2} ;-\frac{n+3}{2}\right) \otimes\left[\frac{n+1}{2}\right], & L \bar{B}_{1}\left(\frac{6+3 n}{4} ; 0,0 ; \frac{n+2}{2}\right] \otimes\left[\frac{n+2}{2}\right], & B_{1} \bar{L}\left(\frac{6+3 n}{4} ; 0,0 ;-\frac{n+2}{2}\right] \otimes\left[\frac{n+2}{2}\right), \\
A_{1} \bar{L}\left(\frac{6+3 n}{2} ; \frac{1}{2}, 0 ;-n\right) \otimes[0], & L \bar{A}_{1}\left(\frac{6+3 n}{2} ; 0, \frac{1}{2} ; n\right) \otimes[0], & L \bar{B}_{1}\left(\frac{12+3 n}{4} ; 0,0 ; \frac{n+4}{2}\right] \otimes\left[\frac{n}{2}\right], & B_{1} \bar{L}\left(\frac{12+3 n}{4} ; 0,0 ;-\frac{n+4}{2}\right] \otimes\left[\frac{n}{2}\right), \\
A_{1} \bar{L}\left(\frac{6+3 n}{2} ; \frac{1}{2}, 0 ;-n\right) \otimes[0], & L \bar{A}_{1}\left(\frac{6+3 n}{2} ; 0, \frac{1}{2} ; n\right) \otimes[0], & L \bar{A}_{2}\left(\frac{8+3 n}{4} ; 0,0 ; \frac{n}{2}\right] \otimes\left[\frac{n+2}{2}\right], & A_{2} \bar{L}\left(\frac{(+3 n}{4} ; 0,0 ;-\frac{n}{2}\right] \otimes\left[\frac{n+2}{2}\right), \\
L \bar{A}_{2}\left(\frac{1+3 n}{4} ; \frac{1}{2}, 0 ; \frac{n+1}{2}\right) \otimes\left[\frac{n+1}{2}\right], & A_{2} \bar{L}\left(\frac{1+3 n}{4} ; 0, \frac{1}{2} ;-\frac{n+1}{2}\right) \otimes\left[\frac{n+1}{2}\right], & L \bar{A}_{2}\left(\frac{14+3 n}{4} ; 0,0 ; \frac{n+2}{2}\right] \otimes\left[\frac{n}{2}\right], & A_{2} \bar{L}\left[\frac{1+3 n}{4} ; 0,0 ;-\frac{n+2}{2}\right] \otimes\left(\frac{n}{2}\right) .
\end{array}
$$

$$
\text { semi-short supermultiplets at a given level }|\Sigma|=n
$$

B universal formulas for cubic couplings $\quad \mathscr{L}_{\phi^{3}}=g_{\alpha \Sigma, \beta \Delta, \gamma \Omega} \phi^{\alpha, \Sigma} \phi^{\beta, \Delta} \phi^{\gamma, \Omega}$

$$
\mathcal{L}_{\phi^{3}}=\phi^{\alpha \Sigma} \phi^{\beta \Delta} \phi^{\gamma \Omega}\{c^{\Sigma \Delta \Omega} \mathbb{X}_{\alpha \beta \gamma}+c^{\Delta \Omega \Lambda} \mathcal{T}_{A} \underbrace{\Lambda \Sigma} \mathbb{X}_{A \alpha \beta \gamma}+c^{\Delta \Omega \Lambda} \mathcal{T}_{A}{ }^{\Lambda \Theta} \mathcal{T}_{B}{ }^{\Theta \Sigma} \mathbb{X}_{A B}{ }_{\alpha \beta \gamma}\}
$$

- with tensors

$$
\begin{aligned}
\mathbb{X}_{A B \alpha \beta \gamma} & =6 \mathbb{T}_{\gamma \alpha \beta A}{ }^{B}-\frac{3}{2} \mathbb{T}_{\gamma A}{ }^{B} \eta_{\alpha \beta} \\
\mathbb{X}_{A \alpha \beta \gamma} & =-X_{B C}{ }^{D} \mathbb{T}_{[\alpha \gamma] D}{ }^{C} \mathbb{T}_{\beta A}{ }^{B}-X_{B C}{ }^{D} \mathbb{T}_{\alpha D}{ }^{B} \mathbb{T}_{\beta \gamma A}{ }^{C}+X_{A B}{ }^{C} \mathbb{T}_{\beta \alpha \gamma C}{ }^{B}+\ldots \\
\mathbb{X}_{\alpha \beta \gamma} & =\frac{3}{5} X_{A B}{ }^{C} X_{D E}{ }^{F} \times\left\{\delta^{B E} \mathbb{T}_{\alpha A}{ }^{B} \mathbb{T}_{\beta \gamma F}{ }^{C}+\delta^{A D} \mathbb{T}_{\alpha B}{ }^{E} \mathbb{T}_{\beta \gamma F}{ }^{C}+\delta_{C F} \mathbb{T}_{\beta A}{ }^{D} \mathbb{T}_{\alpha \gamma B}{ }^{E}+\ldots\right.
\end{aligned}
$$

B reproduce and extend the known results on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
B valid for all vacua in the theory

B universal formulas for cubic couplings $\quad \mathscr{L}_{\phi^{3}}=g_{\alpha \Sigma, \beta \Delta, \gamma \Omega} \phi^{\alpha, \Sigma} \phi^{\beta, \Delta} \phi^{\gamma, \Omega}$
$\mathcal{L}_{\phi^{3}}=\phi^{\alpha \Sigma} \phi^{\beta \Delta} \phi^{\gamma \Omega}\left\{c^{\Sigma \Delta \Omega} \mathbb{X}_{\alpha \beta \gamma}+c^{\Delta \Omega \Lambda} \mathcal{T}_{A}{ }^{\Lambda \Sigma} \mathbb{X}_{A \alpha \beta \gamma}+c^{\Delta \Omega \Lambda} \mathcal{T}_{A}{ }^{\Lambda \Theta} \mathcal{T}_{B}{ }^{\Theta \Sigma} \mathbb{X}_{A B \alpha \beta \gamma}\right\}$
representation matrix on harmonics
symmetric $\mathrm{SO}(6)$ tensors
() example on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$:

$$
\begin{aligned}
\mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, s^{I_{3}}\right)=\left(\frac{\sigma}{2}+2\right)\left(\frac{\sigma}{2}+1\right) a\left(n_{1}, n_{2}, n_{3}\right) \mathscr{C}^{I_{1} I_{2} I_{3}} s^{I_{1}} S^{I_{2}} S^{I_{3}} \\
n_{i}=\left|\Sigma_{i}\right|=\left|I_{i}\right|-2 \quad \sigma=n_{1}+n_{2}+n_{3} \quad \int_{S^{5}} \mathscr{y}_{1}^{I_{1} \mathscr{I}_{2}^{I_{2}} \mathscr{Y}^{I_{3}}=a\left(n_{1}, n_{2}, n_{3}\right) \mathscr{C} I_{1} L_{2} l_{3}}
\end{aligned}
$$

translate to compare to previous results: [Lee, Minwalla, Rangamani, Seiberg] [Arutyunov, Frolov]

$$
\begin{aligned}
\mathscr{G}\left(s^{I_{1}}, s^{I_{2}}, s^{I_{3}}\right)=\frac{\tilde{\sigma} \alpha_{1} \alpha_{2} \alpha_{3}}{16\left(k_{1}+1\right)\left(k_{2}+1\right)\left(k_{3}+1\right)}\left(\frac{\tilde{\sigma}^{2}}{4}-1\right)\left(\frac{\tilde{\sigma}^{2}}{4}-4\right) a\left(k_{1}, k_{2}, k_{3}\right) \mathscr{C}^{I_{1} I_{2} I_{3}} \tilde{S}^{I} \tilde{S}^{2} \tilde{S}^{2} \tilde{S}^{3} \\
k_{i}=\left|I_{i}\right| \quad \alpha_{i}=\frac{1}{2} \tilde{\sigma}-k_{i} \quad \tilde{\sigma}=k_{1}+k_{2}+k_{3}
\end{aligned}
$$

with 'unexpected' zeros for the extremal case $\alpha_{i}=0$

B new tools from ExFT for the analysis of Kaluza-Klein spectra and couplings
○ 'standard' two-derivative action $\quad \mathcal{L} \equiv \hat{R}+\frac{1}{24} g^{\mu \nu} \mathcal{D}_{\mu} \mathcal{M}^{M N} \mathcal{D}_{\nu} \mathcal{M}_{M N}-\frac{1}{4} \mathcal{M}_{M N} \mathcal{F}^{\mu \nu M} \mathcal{F}_{\mu \nu}^{N}+e^{-1} \mathcal{L}_{\text {top }}-V(\mathcal{M}, e)$.
○ \& basis of fluctuations $\mathcal{M}_{M N}=U_{M}^{K}(Y) U_{N}^{L}(Y)\left(\delta_{K L}+\sum_{\Sigma} \phi^{\alpha, \Sigma} \mathbb{T}_{\alpha, K L} \mathcal{Y}^{\Sigma}\right)$
B Kaluza-Klein spectra entirely encoded in 5-dim data:

- embedding tensor $X_{M N}{ }^{K}$ of the lower-dimensional supergravity
o representation $\left(\mathscr{T}_{M}\right)_{\Sigma}{ }^{\Lambda}$ of the scalar harmonics
- access to vacua
- with few or no (super-)symmetries
- within and beyond consistent truncations
- extension to cubic and higher couplings
-> universal patterns in mass spectra \& n-point couplings: holography!

