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AdSp x Sq   and deformations/squashings  AdSp x qΣ

plan: mass spectra and higher-order couplings

consistent truncations 

exceptional field theory

tools

motivation

compactification, Kaluza-Klein spectra

near extremal n-point couplings 

explicit cubic couplings

cubic and higher order couplings



motivation compactification  &  Kaluza-Klein spectra

background ℳ10 = AdSm × ℳn

expanding fields in harmonics on the internal space

dynamics of the KK fluctuations is described by a lower-dimensional theory

e.g. scalar field
�(x, y) =

X

⌃

�⌃(x)Y⌃(y) =
X

n

�[n,0,0](x)Y [n,0,0]
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harmonics
fluctuations

in general: complicated problem

gauge fixing and field redefinitions 
diagonalize various Laplacians on the internal manifold 
disentangle mass eigenstates from different higher-dimensional origin 
flux compactifications: higher-dimensional p-forms
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higher-dimensional 
sugra

internal space

lower-dimensional 
sugra

infinitely many fields (KK towers of fluctuations  ){ϕΣ, …}
dual to single trace CFT operators  $ϕΣ

mass spectrum of the KK-fluctuations  (—> conformal dimensions)

higher order couplings   (—> n-point correlators)

—>  new tools !



  E6(6)  valued twist matrix                and scale factorUM
N (Y )
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  consistency equations (generalized Leibniz parallelizable)

embedding tensor of the D=5 
gauged supergravity

consistent truncations from ExFT               Dan’s talknew tools:

Henning Samtleben                                                                                                                                                           ENS de Lyon

A B

dictionarygeneralized Scherk-Schwarz 
reduction of ExFT

Exceptional Form ofD ¼ 11 Supergravity

Olaf Hohm1,* and Henning Samtleben2,†

1Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-1-80333 Munich, Germany
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Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þ covariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.

DOI: 10.1103/PhysRevLett.111.231601 PACS numbers: 11.25.Yb, 04.65.+e, 04.50.%h, 11.15.%q

Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S ¼
Z

d5xd27YeL;
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should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
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every stationary point of the D=5 scalar potential lifts to a IIB background ℳ10 = AdS5 × Σ5

around these backgrounds: compute the 
masses and couplings of the 42 scalars  

instabilities in all non-supersymmetric 
AdS5 vacua !
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form
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 ( lowest KK multiplet )    (scalar harmonics)                          KK spectrum⊗ ExFT field equations

trace of exceptional symmetry in the full spectrum                holography! 

[E. Malek, HS]Kaluza-Klein spectroscopy from ExFT

H. J. KIM, L. J. ROMANS, AND P. van NIEUVPENHUIZEN
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FIG. 2. Mass spectrum of scalars.
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Diagonal equations. The remaining fields, b„„in a„

and P '4 in h(~p) as well as H(z ) in h&, have diagonal
fie1d equations which read

(M a+x6 )«b z
' Y[''p]+—=0 [from (2. 19)],

( x+CI« —2e )(t "Y(~p)——0 [from (E3.1)],
l I) p I) ~ I
[T(+x++y)H(pv)+e H(pv) D(pD Hv)k

(2.41)

(2.42)

+—,'D(„D )HI~]Y ' =0 [from (El. 1)] .
(2.43)

The last equation can be diagonalized for k ) 1 by

which can be implemented by first fixing the transversal
I5part of A in 6A p ——D Ap—DpA to gauge a =0, and

then fixing the D A„part of 6A „=D Az—D&A to set
Il
a& ——0. The on1y gauge transformations which respect
these gauges have y-independent A„(x), which are the
usual gauge parameters for az„= (x). Thus we may use

I)the expansion in (2.48) with a„'=a '=0. Substituting
these expansions into the field equations yields

[(Max+ «)a„z+2iee z "(3 a,„']Y '=0, (2.50)

++«—6e )a Y[ p] +2iea e pr Dr Y

2(D~aq')(D[—Yp])=0, (2.51)

(Max+ «
—4e )a 'Y '+(D"a&'„)(D Y ')=0, (2.52)

H(~„) P(q„)+D(„D,——)( , n. 12eb) j[(k—+1—)(k+3)] .
(E3 +xCly)B 'Y' '=0. (2.53)

(2.44)

The traceless field P(&v) is then transversal on-shell from
(2.30) and satisfies the Einstein equation

I&oWe recall that the spherical harmonies Y~ p~ are not
only eigenfunctions of 6, but also of the operator

[Ein—k(k+4)e ]P(„„) 0, ——
where Ein stands for the Einstein operator

(2.45) ( D )Y[ap] —=cap Dr Y[sp]

Rp,'(g„„+h„',) 4e (g„„+h„' )=0—. (2.46)

This clearly demonstrates that h& is the massless gravi-
ton, as expected.

I[4 ~The real scalars P ' in (2.42) have masses

2R~„'"(P(p ))—8e P(„„) (O +2e——)P(„„).
Here R„',' is the Ricci tensor of five-dimensional space-
time. One should not be confused with Rz ' and the orgi-
nial R„. Recall that R& is the pv component of the full
Ricci tensor in ten dimensions. For k =0, the (El) equa-
tion, together with (2.21) and (2.40) yields

(*D)Y[ ' p] = +2l e( k +2 )Y["p]'' (2.55)

Collecting all terms with a given spherical harmonic,
one gets the d =5 field equations

Since (*D)(*D)=4( y
—6e ), we can divide the Y[ p] into

YI~p~ and Yl~p~, where

(*D)Y['p] =+2i(—«+6e ) Y['p] (2.54)

Since

(—Cl +6 ')Y"—=—b. ", —,= '(k+ )'Y '—

we thus have

=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

  consistent truncation to lowest KK-multiplet 

  extend to the higher Kaluza-Klein modes (linearized)

=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

X

⌃

Aµ
K,⌃(x)Y⌃
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MMN (x, Y ) = UM
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L(Y )
⇣
�KL +

X

⌃
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with fluctuations   ,  ,   

     and the tower of scalar harmonics

Aμ
K,Σ ϕα,Σ

Y⌃
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 e.g. mass matrix for all vector fluctuations  Aμ
M,Σ

 in terms of essentially five-dimensional data ! Xs
MN

K ⌘ XMN
K +XMK
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 symmetrized D=5 embedding tensor

 adjoint projector

 representation of scalar harmonics

 similar for the scalar mass matrix 

 similar for fermion masses  [Cesàro, Varela] 

 entire KK mass spectrum!

Henning Samtleben                                                                                                                                                           ENS de Lyon

A B

[E. Malek, HS]Kaluza-Klein spectroscopy from ExFTnew tools:

 plug into the ExFT action and expand in fluctuations

=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

X

⌃

Aµ
K,⌃(x)Y⌃
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 AdS5 x S5:    expand fluctuations in sphere harmonics (representations of SO(6))

10D scalar:  

harmonic analysis on coset spacestraditional:

*Σ = *[n,0,0] = *((a1*a2 … *an))

*a*a = 1

ϕ(x, y) = ∑
Σ

ϕΣ(x) *Σ(y) = ∑
n

ϕ[n,0,0](x) *[n,0,0](y)

scalar harmonics

10D internal metric:  gkl(x, y) = ∑
n

g[n,0,0](x) *[n,0,0]
kl (y) + ∑

n
g[n,1,1](x) *[n,1,1]

kl (y) + ∑
n

g[n,2,2](x) *[n,2,2]
kl (y)

tensor harmonics

  in general: several Kaluza-Klein towers for each 10D field, systematics  [Salam, Strathdee]

S5 = SO(6)
SO(5) = G

H with embedding  H ⊂ GLorentz,int
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harmonic analysis on coset spacestraditional:

  in general: several Kaluza-Klein towers for each 10D field, systematics  [Salam, Strathdee]

S5 = SO(6)
SO(5) = G

H with embedding  H ⊂ GLorentz,int

Φ ∈ ℛLorentz,int ⟶ ℛH10D field:  

the harmonic expansion of    carries all representations   of    such thatΦ ℛG G ℛG ⟶ ℛH ⊕ …
for a scalar field  :ℛH = 1 SO(6) ⟶ SO(5)

[n,0,0] ⟶ 1 ⊕ … defines the scalar tower

internal metric   :ℛH = 14
[n,1,1] ⟶ 14 ⊕ …
[n,0,0] ⟶ 14 ⊕ …

[n,2,2] ⟶ 14 ⊕ …
defines the towers

<latexit sha1_base64="ziZ7NWD8R+kJzwBSnyJAqZLsAUw=">AAACF3icbVDLTsJAFJ3iC+ur6tJNIzFxRVrjgyXRjUtMBEkoIdPhFiZMp83MrQkhfIgbf8WNMWw0cenfOEAXAp7MJCfnnHtn7g1TwTV63o9VWFvf2Nwqbts7u3v7B87hUUMnmWJQZ4lIVDOkGgSXUEeOApqpAhqHAp7Cwd3Uf3oGpXkiH3GYQjumPckjzigaqeNUAgERlu0ghB6XI6oUHY5HbGwHwZ8DsptbdqB4r4/BuOOUvLI3g7tK/JyUSI5ax5kE3YRlMUhkgmrd8r0U26YtcibANM40pJQNaA9Gs7nG7pmRum6UKHMlujN1IUdjrYdxaJIxxb5e9qbif14rw6jSHnGZZgiSzR+KMuFi4k6X5Ha5AoZiaAhlipsfuqxPFWVoVmmb0f3lQVdJ46LsX5evHi5L1dt8CUVyQk7JOfHJDamSe1IjdcLIK3knn+TLerHerA9rMo8WrLzmmCzA+v4FjZieuw==</latexit>9
>>=

>>;

in closed form:

14
⏟

⟶ 20 ⊖ 6
SO(6)SO(5)

(20 ⊖ 6) ⊗ ∑
n

[n,0,0] = ∑
n

([n,0,0] + [n,1,1] + [n,2,2])

<latexit sha1_base64="7ZRiue8A+Zv7bChVQb1Pku0nwIw=">AAACJnicdVBNSwMxEM3W7/Vr1aOXYBE8Lbtqtd5ED3pUsCq4pWTT2TY0m12SWaGU/h8v/g9PXkREUPCnmNb1oOgjgcd7byaZiXMpDAbBq1OZmJyanpmdc+cXFpeWvZXVS5MVmkODZzLT1zEzIIWCBgqUcJ1rYGks4SruHY/8q1vQRmTqAvs5NFPWUSIRnKGVWt5JJCFB341i6Ag1YFqz/nDAh24U/X9AtcukG2nR6WI0bHnVwK8F4cHeDg38YIwxqYfbdRqWSpWUOGt5D1E740UKCrlkxtyEQY5N2xYFl2AbFwZyxnusA4PxmEO6aaU2TTJtr0I6Vn/kWGpMP41tMmXYNb+9kfiXd1NgUm8OhMoLBMW/HkoKSTGjo53RttDAUfYtYVwL+0PKu0wzjnazrh39ez76P7nc9sM9v3a+Wz08KpcwS9bJBtkiIdknh+SUnJEG4eSePJE38u7cOY/Os/PyFa04Zc0a+QHn4xOy4aNG</latexit> 9 > > > > > > > > > > > > = > > > > > > > > > > > > ;

G ⟶ H

gkl(x, y)
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structure of fluctuations

  in general: several Kaluza-Klein towers for each 10D field, systematics  [Salam, Strathdee]

S5 = SO(6)
SO(5) = G

H with embedding  H ⊂ GLorentz,int

in closed form: ℛΦ ⊗ ∑
n

[n,0,0]       tensor product structure of fluctuations⟺

 ( lowest KK multiplet )    (scalar harmonics)                          KK spectrum⊗ ExFT field equations

Φ ∈ ℛLorentz,int ⟶ ℛH10D field:  

the harmonic expansion of    carries all representations   of    such thatΦ ℛG G ℛG ⟶ ℛH ⊕ …
G ⟶ H

=3

Aµ
M (x, Y ) = ��1(Y ) (U�1)K

M (Y ) Aµ
K(x)

X

⌃

Aµ
K,⌃(x)Y⌃

<latexit sha1_base64="9QYRZdQjYOWDBMg1xUtxG9ssXCg="></latexit>

<latexit sha1_base64="hOblAD9UazkeEOZDkNr9LVNta+Y=">AAACOHiclVC7TsMwFHXKO7wKjCwWFRJTlPAsG4KFESTagkhVOe5Na9VxIvsGqar6Yyys/AIbC0IsIPEFuCUMIBg4sqWrc8699rlRJoVB339wShOTU9Mzs3Pu/MLi0nJ5ZbVu0lxzqPFUpvoyYgakUFBDgRIuMw0siSQ0ot7JSG/cgDYiVRfYz6CZsI4SseAMLdUqX4USYvTcMIKOUAOmNesPB3zohuF/Dqh20euGWnS6GA5b5Yrv7fnB4f4O9T1/jHFRDbarNCiYCilw1irfh+2U5wko5JIZcx34GTbtWBRcgh2cG8gY77EODMbBh3TTUm0ap9pehXTMfvOxxJh+EllnwrBrfmoj8jftOse42hwIleUIin8+FOeSYkpHW6RtoYGj7NuCcS3sDynvMs042l27NvpXPvp3Ud/2gn1v73y3cnRcLGGWrJMNskUCckCOyCk5IzXCyR15Iq/kzbl1Hp1n5+XTWnKKnjXyDc77B7EIqIY=</latexit>

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

tensor harmonics

scalar harmonics

explicitly:

ExFT basis:  {ϕα,Σ, Aμ
M,Σ, …}
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[Kim, Romans, van Nieuwenhuizen, 1985]
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Spin Field
I1 I1

h pv=Hpv Y

I5 I5ha„=B„Ya
I5 ~ I5

a„ap~=P„empt D(;1',

TABLE III. Complete mass spectrum.

Masses on S'
M =e k(k+4)

( M'=e'(k —1)(k+1)
I M =e (k+3)(k+5)

(k &0)

Irred.
reps.

1,6,20, . . .

15,64, 175,. . .
15,64, 175, . . .

I1 I1
aapyg ——b eapyg'D, Y

k(k 4)
(k+4)(k+ 8)

(k &2)
(k &0)

20, 50, . . .
1,6,20, . . .

ant

14
~(ap) =0 y'(ap)

B=B YI1 I1

10,+ 10,+apvap ~pv Y[ap]

M =e k(k+4)

k(k+4)

M2 e2(k+2)2

(k &2)

(k &0)

(k &1)

84, 300, . . .

1„6„20„.. .

10„45„.. .

ant I1
Ap =ap Y f

M'=e'k'
M =e (k+4)

(k &1)
(k &0)

6c,20c
1„6c).. .

0

I5 I5
A pa =a„Ya

Ilo + 10 +Q ap =a ' Y[ap]

M =e (k+1)(k+3)
' M =e (k —2)(k+2)
I M~=e (k+2)(k+6)

15„64„.. .

10„45„.. .
10„45„.. .

3
2

1

2

IL IL t
M=ek

i M= —e(k+ —", )

t
M=e(k+ —, )

. M= —e(k+ —, )

(k &0)
(k &0)

(k &0)
(k &0)

4, 20, . . .
4g 20+

36*,140*,. . .
36, 140, . . .

1

2
IL IL

0( (=0'D( (:'+&r ')+ tM =e(k+ —, )

-M= —e(k ——, )

(k &0)
(k &1)

4, 20, . . .
20*,. . .

1

2

(M=e(k+ z )

IM= —e(k+ z )

(k &0)
(k &0)

4, 20, . . .
4*,20*,. ~ .

plex sextext of antisymmetric tensors. Their linearized
field equations read

The 48 spinors have the field equations
(g ——,

' e)g '(20*, )=0,
(g„——', e)A, (4*, )=0 .

Thus, also the spinors in different SO(6) multiplets have
different masses.
Among the unitary infinite-dimensional irreducible rep-

resentations of the superalgebra for the d =5,%=8
model, SU(2,2

~
4), there is one irreducible representation

which is even smaller than the massless supermultiplet. '

It is called the doubleton multiplet and contains one com-
plex antisymmetric tensor, six real scalars, and four com-
plex spinors.
These fields we identify as follows: (i) With those six

scalars in the k = 1 sector of H and 6, which would have

been present if we would not have had the extra confor-
mal invariance (or, equivalently, which at once disappears
after algebraically eliminating FE)„)„); (ii) with that k =0
component of az which becamepure gauge on-shell; and
(iii) with the = =g terms in P D( )

= which are also
absent because D~ i" ——0 in this case.
A technical point we solved has to do with the confor-

mal diffeomorphisms which remain after imposing the de
Donder conditions D h~~p) ——D h &

——0. We showed that
these symmetries must in general be used twice to elim-
inate redundant modes: once using the inhomogeneous
equation for the gauge parameter, and once more using
the homogeneous equation. Thus, there is complete agree-
ment between gauge fixing and direct elimination of
nonprogating fields.
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a
h~ 0 p

—( y
—2e )Y'( p)

——ek(k+4)Y( p), k=2, 3, . . .
(2.47)

Iio+ Iiowhile the two complex fields b&'„'+ and bz", in (2.41)
have masses e (k+2) . The field bz'„'+ is the complex
conjugate of b plo —because the four-index antisymmetric
tensor is real.
We now discuss the modes contained in the fields A -,

and B. These fields are purely fluctuations and contain
no background parts. %'e expand them into spherical har-
monics as follows:

5-

C

4 e

a
aPy8

05 k

FIG. 2. Mass spectrum of scalars.

3„„=ga p'„(x)Y '(y ),
A„~=+[a„'(x)Y '(y)+a&'(x)D~ Y' '(y)],

A~p ——+[a "(x)Y["p](y)+a '(x)D[~Yp'](y)],
B=+B '(x) Y '(y) .

We choose the Lorentz-type gauges

DA p ——0, DA~p ——0

(2.48)

(2.49)
branch of (2.34), namely at k =0. We summarize the re-
sults of a11 scalar modes in Fig. 2.
Diagonal equations. The remaining fields, b„„in a„

and P '4 in h(~p) as well as H(z ) in h&, have diagonal
fie1d equations which read

(M a+x6 )«b z
' Y[''p]+—=0 [from (2. 19)],

( x+CI« —2e )(t "Y(~p)——0 [from (E3.1)],
l I) p I) ~ I
[T(+x++y)H(pv)+e H(pv) D(pD Hv)k

(2.41)

(2.42)

+—,'D(„D )HI~]Y ' =0 [from (El. 1)] .
(2.43)

The last equation can be diagonalized for k ) 1 by

which can be implemented by first fixing the transversal
I5part of A in 6A p ——D Ap—DpA to gauge a =0, and

then fixing the D A„part of 6A „=D Az—D&A to set
Il
a& ——0. The on1y gauge transformations which respect
these gauges have y-independent A„(x), which are the
usual gauge parameters for az„= (x). Thus we may use

I)the expansion in (2.48) with a„'=a '=0. Substituting
these expansions into the field equations yields

[(Max+ «)a„z+2iee z "(3 a,„']Y '=0, (2.50)

++«—6e )a Y[ p] +2iea e pr Dr Y

2(D~aq')(D[—Yp])=0, (2.51)

(Max+ «
—4e )a 'Y '+(D"a&'„)(D Y ')=0, (2.52)

H(~„) P(q„)+D(„D,——)( , n. 12eb) j[(k—+1—)(k+3)] .
(E3 +xCly)B 'Y' '=0. (2.53)

(2.44)

The traceless field P(&v) is then transversal on-shell from
(2.30) and satisfies the Einstein equation

I&oWe recall that the spherical harmonies Y~ p~ are not
only eigenfunctions of 6, but also of the operator

[Ein—k(k+4)e ]P(„„) 0, ——
where Ein stands for the Einstein operator

(2.45) ( D )Y[ap] —=cap Dr Y[sp]

Rp,'(g„„+h„',) 4e (g„„+h„' )=0—. (2.46)

This clearly demonstrates that h& is the massless gravi-
ton, as expected.

I[4 ~The real scalars P ' in (2.42) have masses

2R~„'"(P(p ))—8e P(„„) (O +2e——)P(„„).
Here R„',' is the Ricci tensor of five-dimensional space-
time. One should not be confused with Rz ' and the orgi-
nial R„. Recall that R& is the pv component of the full
Ricci tensor in ten dimensions. For k =0, the (El) equa-
tion, together with (2.21) and (2.40) yields

(*D)Y[ ' p] = +2l e( k +2 )Y["p]'' (2.55)

Collecting all terms with a given spherical harmonic,
one gets the d =5 field equations

Since (*D)(*D)=4( y
—6e ), we can divide the Y[ p] into

YI~p~ and Yl~p~, where

(*D)Y['p] =+2i(—«+6e ) Y['p] (2.54)

Since

(—Cl +6 ')Y"—=—b. ", —,= '(k+ )'Y '—

we thus have

spectrum on AdS5 x S5

10D scalar:  ϕ(x, y) = ∑
n

ϕ[n,0,0](x) *[n,0,0](y)

10D internal metric:  gkl(x, y) = ∑
n

g[n,0,0](x) *[n,0,0]
kl (y) + ∑

n
g[n,1,1](x) *[n,1,1]

kl (y) + ∑
n

g[n,2,2](x) *[n,2,2]
kl (y)

10D 4-form:  Cklpq(x, y) = ∑
n

c[n,0,0](x) *[n,0,0]
klpq (y) + ∑

n
c[n,1,1](x) *[n,1,1]

klpq (y)

 linearize & diagonalize field equations             mass spectrum
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Table 2
d = 2 BPS multiplet [n,000](0) under SO(8) × SO(2)

∆

n [n,000](0)
n + 1

2 [n − 1,001](+1) + [n − 1,010](−1)
n + 1 [n − 2,100](+2) + [n − 1,000](0) + [n − 2,011](0) + [n − 2,100](−2)
n + 3

2 [n − 2,010](+3) + [n − 2,001](+1) + [n − 3,110](+1) + [n − 2,010](−1) + [n − 3,101](−1) + [n − 2,001](−3)
n + 2 [n − 2,000](+4) + [n − 3,100](+2) + [n − 3,020](+2) + [n − 2,000](0) + [n − 3,011](0) + [n − 4,200](0)

+[n − 3,100](−2) + [n − 3,002](−2) + [n − 2,000](−4)
n + 5

2 [n − 3,010](+3) + [n − 3,001](+1) + [n − 4,110](+1) + [n − 3,010](−1) + [n − 4,101](−1) + [n − 3,001](−3)
n + 3 [n − 4,100](+2) + [n − 3,000](0) + [n − 4,011](0) + [n − 4,100](−2)
n + 7

2 [n − 4,001](+1) + [n − 4,010](−1)
n + 4 [n − 4,000](0)

Table 3
d = 4 BPS multiplet [n,00](00) under SO(6) × SO(4)

∆

n [n,00](00)
n + 1

2 [n − 1,10](0 12 ) + [n − 1,01]( 12 0)
n + 1 [n − 2,02](00) + [n − 2,20](00) + [n − 1,00](01) + [n − 1,00](10) + [n − 2,11]( 12 12 )

n + 3
2 [n − 2,10](0 12 ) + [n − 3,12](0 12 ) + [n − 2,01]( 12 0) + [n − 3,21]( 12 0) + [n − 2,01]( 12 1) + [n − 2,10](1 12 )

n + 2 2[n − 2,00](00) + [n − 4,22](00) + [n − 3,02](01) + [n − 3,20](10) + 2[n − 3,11]( 12 12 ) + [n − 2,00](11)
n + 5

2 [n − 3,10](0 12 ) + [n − 4,12](0 12 ) + [n − 3,01]( 12 0) + [n − 4,21]( 12 0) + [n − 3,01]( 12 1) + [n − 3,10](1 12 )

n + 3 [n − 4,02](00) + [n − 4,20](00) + [n − 3,00](01) + [n − 3,00](10) + [n − 4,11]( 12 12 )

n + 7
2 [n − 4,10](0 12 ) + [n − 4,01]( 12 0)

n + 4 [n − 4,00](00)

Table 4
d = 6 BPS multiplet [n,n](000) under SO(4) × SO(6)

∆

n [n,n](000)
n + 1

2 [n,n − 1](001) + [n − 1, n](010)
n + 1 [n,n − 2](100) + [n − 2, n](100) + [n − 1, n − 1](011) + [n − 1, n − 1](000)
n + 3

2 [n − 2, n − 1](101) + [n − 1, n − 2](110) + [n − 1, n − 2](001) + [n − 2, n − 1](010)
+[n,n − 3](010) + [n − 3, n](001)

n + 2 [n − 2, n − 2](000) + [n − 2, n − 2](200) + [n − 2, n − 2](011) + [n − 3, n − 1](002)
+[n − 3, n − 1](100) + [n − 1, n − 3](020) + [n − 1, n − 3](100) + [n,n − 4](000) + [n − 4, n](000)

n + 5
2 [n − 3, n − 2](101) + [n − 2, n − 3](110) + [n − 2, n − 3](001) + [n − 3, n − 2](010)

+[n − 1, n − 4](010) + [n − 4, n − 1](001)
n + 3 [n − 2, n − 4](100) + [n − 4, n − 2](100) + [n − 3, n − 3](000) + [n − 3, n − 3](011)
n + 7

2 [n − 3, n − 4](001) + [n − 4, n − 3](010)
n + 4 [n − 4, n − 4](000)

 combine into  1/2-BPS multiplets

 ℬ[2,0,0](0,0)  ℬ[4,0,0](0,0) ℬ[3,0,0](0,0) ⊕  ⊕  ⊕
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[Kim, Romans, van Nieuwenhuizen, 1985]H. J. KIM, L. J. ROMANS, AND P. van NIEUVPENHUIZEN
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12-

a
h~ 0 p

—( y
—2e )Y'( p)

——ek(k+4)Y( p), k=2, 3, . . .
(2.47)

Iio+ Iiowhile the two complex fields b&'„'+ and bz", in (2.41)
have masses e (k+2) . The field bz'„'+ is the complex
conjugate of b plo —because the four-index antisymmetric
tensor is real.
We now discuss the modes contained in the fields A -,

and B. These fields are purely fluctuations and contain
no background parts. %'e expand them into spherical har-
monics as follows:

5-

C

4 e

a
aPy8

05 k

FIG. 2. Mass spectrum of scalars.

3„„=ga p'„(x)Y '(y ),
A„~=+[a„'(x)Y '(y)+a&'(x)D~ Y' '(y)],

A~p ——+[a "(x)Y["p](y)+a '(x)D[~Yp'](y)],
B=+B '(x) Y '(y) .

We choose the Lorentz-type gauges

DA p ——0, DA~p ——0

(2.48)

(2.49)
branch of (2.34), namely at k =0. We summarize the re-
sults of a11 scalar modes in Fig. 2.
Diagonal equations. The remaining fields, b„„in a„

and P '4 in h(~p) as well as H(z ) in h&, have diagonal
fie1d equations which read

(M a+x6 )«b z
' Y[''p]+—=0 [from (2. 19)],

( x+CI« —2e )(t "Y(~p)——0 [from (E3.1)],
l I) p I) ~ I
[T(+x++y)H(pv)+e H(pv) D(pD Hv)k

(2.41)

(2.42)

+—,'D(„D )HI~]Y ' =0 [from (El. 1)] .
(2.43)

The last equation can be diagonalized for k ) 1 by

which can be implemented by first fixing the transversal
I5part of A in 6A p ——D Ap—DpA to gauge a =0, and

then fixing the D A„part of 6A „=D Az—D&A to set
Il
a& ——0. The on1y gauge transformations which respect
these gauges have y-independent A„(x), which are the
usual gauge parameters for az„= (x). Thus we may use

I)the expansion in (2.48) with a„'=a '=0. Substituting
these expansions into the field equations yields

[(Max+ «)a„z+2iee z "(3 a,„']Y '=0, (2.50)

++«—6e )a Y[ p] +2iea e pr Dr Y

2(D~aq')(D[—Yp])=0, (2.51)

(Max+ «
—4e )a 'Y '+(D"a&'„)(D Y ')=0, (2.52)

H(~„) P(q„)+D(„D,——)( , n. 12eb) j[(k—+1—)(k+3)] .
(E3 +xCly)B 'Y' '=0. (2.53)

(2.44)

The traceless field P(&v) is then transversal on-shell from
(2.30) and satisfies the Einstein equation

I&oWe recall that the spherical harmonies Y~ p~ are not
only eigenfunctions of 6, but also of the operator

[Ein—k(k+4)e ]P(„„) 0, ——
where Ein stands for the Einstein operator

(2.45) ( D )Y[ap] —=cap Dr Y[sp]

Rp,'(g„„+h„',) 4e (g„„+h„' )=0—. (2.46)

This clearly demonstrates that h& is the massless gravi-
ton, as expected.

I[4 ~The real scalars P ' in (2.42) have masses

2R~„'"(P(p ))—8e P(„„) (O +2e——)P(„„).
Here R„',' is the Ricci tensor of five-dimensional space-
time. One should not be confused with Rz ' and the orgi-
nial R„. Recall that R& is the pv component of the full
Ricci tensor in ten dimensions. For k =0, the (El) equa-
tion, together with (2.21) and (2.40) yields

(*D)Y[ ' p] = +2l e( k +2 )Y["p]'' (2.55)

Collecting all terms with a given spherical harmonic,
one gets the d =5 field equations

Since (*D)(*D)=4( y
—6e ), we can divide the Y[ p] into

YI~p~ and Yl~p~, where

(*D)Y['p] =+2i(—«+6e ) Y['p] (2.54)

Since

(—Cl +6 ')Y"—=—b. ", —,= '(k+ )'Y '—

we thus have

spectrum on AdS5 x S5

 combine into  1/2-BPS multiplets

 ℬ[2,0,0](0,0)  ℬ[4,0,0](0,0) ℬ[3,0,0](0,0) ⊕  ⊕  ⊕

in the ExFT basis  {ϕα,Σ, Aμ
M,Σ, …}

J.F. Morales, H. Samtleben / Physics Letters B 607 (2005) 286–293 291

Table 2
d = 2 BPS multiplet [n,000](0) under SO(8) × SO(2)

∆

n [n,000](0)
n + 1

2 [n − 1,001](+1) + [n − 1,010](−1)
n + 1 [n − 2,100](+2) + [n − 1,000](0) + [n − 2,011](0) + [n − 2,100](−2)
n + 3

2 [n − 2,010](+3) + [n − 2,001](+1) + [n − 3,110](+1) + [n − 2,010](−1) + [n − 3,101](−1) + [n − 2,001](−3)
n + 2 [n − 2,000](+4) + [n − 3,100](+2) + [n − 3,020](+2) + [n − 2,000](0) + [n − 3,011](0) + [n − 4,200](0)

+[n − 3,100](−2) + [n − 3,002](−2) + [n − 2,000](−4)
n + 5

2 [n − 3,010](+3) + [n − 3,001](+1) + [n − 4,110](+1) + [n − 3,010](−1) + [n − 4,101](−1) + [n − 3,001](−3)
n + 3 [n − 4,100](+2) + [n − 3,000](0) + [n − 4,011](0) + [n − 4,100](−2)
n + 7

2 [n − 4,001](+1) + [n − 4,010](−1)
n + 4 [n − 4,000](0)

Table 3
d = 4 BPS multiplet [n,00](00) under SO(6) × SO(4)

∆

n [n,00](00)
n + 1

2 [n − 1,10](0 12 ) + [n − 1,01]( 12 0)
n + 1 [n − 2,02](00) + [n − 2,20](00) + [n − 1,00](01) + [n − 1,00](10) + [n − 2,11]( 12 12 )

n + 3
2 [n − 2,10](0 12 ) + [n − 3,12](0 12 ) + [n − 2,01]( 12 0) + [n − 3,21]( 12 0) + [n − 2,01]( 12 1) + [n − 2,10](1 12 )

n + 2 2[n − 2,00](00) + [n − 4,22](00) + [n − 3,02](01) + [n − 3,20](10) + 2[n − 3,11]( 12 12 ) + [n − 2,00](11)
n + 5

2 [n − 3,10](0 12 ) + [n − 4,12](0 12 ) + [n − 3,01]( 12 0) + [n − 4,21]( 12 0) + [n − 3,01]( 12 1) + [n − 3,10](1 12 )

n + 3 [n − 4,02](00) + [n − 4,20](00) + [n − 3,00](01) + [n − 3,00](10) + [n − 4,11]( 12 12 )

n + 7
2 [n − 4,10](0 12 ) + [n − 4,01]( 12 0)

n + 4 [n − 4,00](00)

Table 4
d = 6 BPS multiplet [n,n](000) under SO(4) × SO(6)

∆

n [n,n](000)
n + 1

2 [n,n − 1](001) + [n − 1, n](010)
n + 1 [n,n − 2](100) + [n − 2, n](100) + [n − 1, n − 1](011) + [n − 1, n − 1](000)
n + 3

2 [n − 2, n − 1](101) + [n − 1, n − 2](110) + [n − 1, n − 2](001) + [n − 2, n − 1](010)
+[n,n − 3](010) + [n − 3, n](001)

n + 2 [n − 2, n − 2](000) + [n − 2, n − 2](200) + [n − 2, n − 2](011) + [n − 3, n − 1](002)
+[n − 3, n − 1](100) + [n − 1, n − 3](020) + [n − 1, n − 3](100) + [n,n − 4](000) + [n − 4, n](000)

n + 5
2 [n − 3, n − 2](101) + [n − 2, n − 3](110) + [n − 2, n − 3](001) + [n − 3, n − 2](010)

+[n − 1, n − 4](010) + [n − 4, n − 1](001)
n + 3 [n − 2, n − 4](100) + [n − 4, n − 2](100) + [n − 3, n − 3](000) + [n − 3, n − 3](011)
n + 7

2 [n − 3, n − 4](001) + [n − 4, n − 3](010)
n + 4 [n − 4, n − 4](000)

for given    the fields fill the multiplet  Σ = [n,0,0] ℬ[n,0,0]

simple and compact (re-)derivation of the supergravity spectrum on S5

fluctuations appear already in the diagonal basis (mass eigenstates)



example:  deformations of AdS5 x S5

[with N. Bobev, E. Malek, B. Robinson, J. van Muiden]

IIB supergravity

S5

D=5 gauged sugra
[Gunaydin, Romans, Warner]
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example:  AdS5 x S5 and deformations

  now: compute the full KK spectrum around the  point4 = 2

, , 

round 

4 = 8 SO(6)
S5

, , deformed 4 = 2 U(2) S5

Freedman-Gubser-Pilch-Warner flow

 previously only known for the 256 dof’s from the supergravity multiplet    
[Freedman, Gubser, Pilch, Warner ’99]

  D=5 SO(6) gauged supergravity: 42 scalars with scalar potential

[Gunaydin, Romans, Warner]

holographic dual of Leigh-Strassler SCFT
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  e.g. at level    in multiplets    of  n = 1 D(E0, j1, j2; r) SU(2) × SU(2,2 |1)

D(1 + 1
2

p
37, 0, 0; 1)C +D(1 + 1

2

p
61, 0, 0; 1)C +DS(

9
2 ,

1
2 ,

1
2 ; 1)C + 2DS(

9
2 ,

1
2 , 0;�1)C +D( 92 ,

1
2 , 0; 1)C

<latexit sha1_base64="3QwZtMgugFvmDBvLX2/qSJhlcnU="></latexit>

 0 :

2D(1 +
p
7, 0, 0; 0) +D(1 +

p
7, 1

2 , 0; 0)C +DS(
7
2 ,

1
2 , 0; 1)C +DS(3,

1
2 , 0; 2)C

<latexit sha1_base64="THVlDVepxGGEqYVk1zaYLiaMl8k="></latexit>

 1 :

D(1 + 1
4

p
145, 1

2 ,
1
2 ;

1
2 )C +D(1 + 1

4

p
193, 0, 0; 1

2 )C +D( 154 , 1
2 , 0;

1
2 )C +D( 174 , 1

2 , 0;�
1
2 )C +DS(

15
4 , 0, 0; 5

2 )C +DS(
17
4 , 0, 0; 3

2 )C
<latexit sha1_base64="ikgD1Eciuxl5iYyY1NiZFZXhd/g="></latexit>

+DS(
15
4 , 0, 0; 5

2 )C +DS(
17
4 , 0, 0; 3

2 )C
<latexit sha1_base64="iTCLpMGH2gzoTg0FlWdEjqK3ImA=">AAACU3icbVHLSgMxFM2Mr3a0WnXpJliEilJm+qCCm0JduKxoVXBKyaSZGpp5kNwRyjD/5w+40F9xY6adTVsvCRzOPYfce+LFgiuw7W/D3Nre2d0rla39g8rhUfX45FlFiaRsSCMRyVePKCZ4yIbAQbDXWDISeIK9eLN+3n/5YFLxKHyCecxGAZmG3OeUgKbGVbi6G6euDPBjVscu+JLQ1OlkaTu7xrY+twXZaeJLLQwIvHte2s8ybP3n7G46W5vOcbVmN+xF4U3gFKCGihqMq5/uJKJJwEKggij15tgxjFIigVPBMstNFIsJnZEpSxeZZPhCUxPsR1LfEPCCXdGRQKl54GllPppa7+Xkf723BPybUcrDOAEW0uVDfiIwRDgPGE+4ZBTEXANCJdcTYvpOdBCgvyFf3VlfdBM8NxtOq9F5aNd67SKEEjpD56iOHNRFPXSPBmiIKPoxkFE2LOPL+DVNc3spNY3Cc4pWyqz8ASD+rCs=</latexit>

 
1
2 :

DS(
9
4 , 0, 0;

3
2 )C

<latexit sha1_base64="UOjrfELStUTQibvTuU44XEsEFZ0=">AAACFXicbVDLSgMxFM3UV62v8bFzEyxChVJm2vrCTaEuXFa0D+iUkkkzbWjmQZIRyjDf4cZfcSMigoJr/8bMtJu2Hggczjnh3nPtgFEhDeNXy6ysrq1vZDdzW9s7u3v6/kFL+CHHpIl95vOOjQRh1CNNSSUjnYAT5NqMtO1xPfHbT4QL6nuPchKQnouGHnUoRlJJff3ith9Z3IUPcQFa0uEIR9dxVI2LRhEaNzOpUoZnKuYiObLtqB7Hub6eN0pGCrhMzBnJ146cFI2+/mkNfBy6xJOYISG6phHIXoS4pJiROGeFggQIj9GQRGmrGJ4qaQAdn6vnSZiqcznkCjFxbZVMNhOLXiL+53VD6Vz1IuoFoSQeng5yQgalD5MTwQHlBEs2UQRhTtWGEI+QuoNUh0yqm4tFl0mrXDIrpfN7M1+rgimy4BicgAIwwSWogTvQAE2AwQt4A1/gW3vWXrV37WMazWizP4dgDtrPH2G3ny0=</latexit>

 
3
2 :

 in terms of semi-short and long multiplets
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example:  AdS5 x S5 and deformations



  e.g. full tower of semi-short (protected) supermultiplets

  agreement with index computation in the dual Leigh-Strassler SCFT

SCFT and, as we discuss in detail in Section 4, an explicit calculation of the index in the planar
limit yields results that are in full agreement with the KK spectrum presented here.

To facilitate the comparison between the KK spectroscopy results and the superconformal
index computation in Section 4 we explicitly present here all KK towers of semi-short multiplets
resulting from the analysis above.

From the spin-1 spectrum in (2.52) we identify two towers of semi-short multiplets

LĀ1[
6+3n

2 ;
1
2 ,

1
2 ;n]⌦ [0]

(0)
, and A1L̄[

6+3n
2 ;

1
2 ,

1
2 ;�n]⌦ [0]

(0)
, (2.61)

where, for completeness, we have listed the value of p + 2y as a superscript on the SU(2)F spin
representation.9 At level n = 0 these two towers degenerate to a single A1Ā1[3;

1
2 ,

1
2 ; 0] ⌦ [0]

(0)

multiplet that contains the stress-energy tensor.
The spectrum in (2.54) contains eight towers of semi-short multiplets given by

LB̄1(
9+3n

4 ;
1
2 , 0;

n+3
2 )⌦ [

n+1
2 ] , B1L̄(

9+3n
4 , 0,

1
2 ;�

n+3
2 )⌦ [

n+1
2 ] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

LĀ2(
11+3n

4 ;
1
2 , 0;

n+1
2 )⌦ [

n+1
2 ] , A2L̄(

11+3n
4 ; 0,

1
2 ;�

n+1
2 )⌦ [

n+1
2 ] ,

(2.62)

where the multiplets in the second line have n � 1 and all other multiplets have n � 0.
The spectrum in (2.57) results in eight more towers of semi-short multiplets

LB̄1(
6+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n+2
2 ] , B1L̄(

6+3n
4 ; 0, 0;�n+2

2 ]⌦ [
n+2
2 ) ,

LB̄1(
12+3n

4 ; 0, 0;
n+4
2 ]⌦ [

n
2 ] , B1L̄(

12+3n
4 ; 0, 0;�n+4

2 ]⌦ [
n
2 ) ,

LĀ2(
8+3n

4 ; 0, 0;
n
2 ]⌦ [

n+2
2 ] , A2L̄(

8+3n
4 ; 0, 0;�n

2 ]⌦ [
n+2
2 ) ,

LĀ2(
14+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n
2 ] , A2L̄[

14+3n
4 ; 0, 0;�n+2

2 ]⌦ (
n
2 ) .

(2.63)

At level n = 0 the third line degenerates to a single A2Ā2[2; 0, 0; 0]⌦[1]
(0) multiplet which contains

the SU(2)F flavor current. The multiplets in the first three lines have n � 0, while the multiplets
in the fourth line have n � 1.

We note that in the spectrum above there are semi-short multiplets that contain marginal
operators. Such marginal deformations, compatible with N = 1 supersymmetry, belong to
LB̄1[3; 0, 0; 2] and B1L̄[3; 0, 0;�2] multiplets. From the first line of (2.63) we find that at level
n = 2 we have the multiplets

LB̄1[3; 0, 0; 2]⌦ [2]
(2)

, and B1L̄[3; 0, 0;�2]⌦ [2]
(�2)

. (2.64)
9It is important to remember that the label p+2y is not related to the symmetry of the LS theory and therefore

there is no corresponding fugacity for it in the superconformal index.
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SCFT and, as we discuss in detail in Section 4, an explicit calculation of the index in the planar
limit yields results that are in full agreement with the KK spectrum presented here.

To facilitate the comparison between the KK spectroscopy results and the superconformal
index computation in Section 4 we explicitly present here all KK towers of semi-short multiplets
resulting from the analysis above.

From the spin-1 spectrum in (2.52) we identify two towers of semi-short multiplets

LĀ1[
6+3n

2 ;
1
2 ,

1
2 ;n]⌦ [0]

(0)
, and A1L̄[

6+3n
2 ;

1
2 ,

1
2 ;�n]⌦ [0]

(0)
, (2.61)

where, for completeness, we have listed the value of p + 2y as a superscript on the SU(2)F spin
representation.9 At level n = 0 these two towers degenerate to a single A1Ā1[3;

1
2 ,

1
2 ; 0] ⌦ [0]

(0)

multiplet that contains the stress-energy tensor.
The spectrum in (2.54) contains eight towers of semi-short multiplets given by

LB̄1(
9+3n

4 ;
1
2 , 0;

n+3
2 )⌦ [

n+1
2 ] , B1L̄(

9+3n
4 , 0,

1
2 ;�

n+3
2 )⌦ [

n+1
2 ] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

LĀ2(
11+3n

4 ;
1
2 , 0;

n+1
2 )⌦ [

n+1
2 ] , A2L̄(

11+3n
4 ; 0,

1
2 ;�

n+1
2 )⌦ [

n+1
2 ] ,

(2.62)

where the multiplets in the second line have n � 1 and all other multiplets have n � 0.
The spectrum in (2.57) results in eight more towers of semi-short multiplets

LB̄1(
6+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n+2
2 ] , B1L̄(

6+3n
4 ; 0, 0;�n+2

2 ]⌦ [
n+2
2 ) ,

LB̄1(
12+3n

4 ; 0, 0;
n+4
2 ]⌦ [

n
2 ] , B1L̄(

12+3n
4 ; 0, 0;�n+4

2 ]⌦ [
n
2 ) ,

LĀ2(
8+3n

4 ; 0, 0;
n
2 ]⌦ [

n+2
2 ] , A2L̄(

8+3n
4 ; 0, 0;�n

2 ]⌦ [
n+2
2 ) ,

LĀ2(
14+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n
2 ] , A2L̄[

14+3n
4 ; 0, 0;�n+2

2 ]⌦ (
n
2 ) .

(2.63)

At level n = 0 the third line degenerates to a single A2Ā2[2; 0, 0; 0]⌦[1]
(0) multiplet which contains

the SU(2)F flavor current. The multiplets in the first three lines have n � 0, while the multiplets
in the fourth line have n � 1.

We note that in the spectrum above there are semi-short multiplets that contain marginal
operators. Such marginal deformations, compatible with N = 1 supersymmetry, belong to
LB̄1[3; 0, 0; 2] and B1L̄[3; 0, 0;�2] multiplets. From the first line of (2.63) we find that at level
n = 2 we have the multiplets

LB̄1[3; 0, 0; 2]⌦ [2]
(2)

, and B1L̄[3; 0, 0;�2]⌦ [2]
(�2)

. (2.64)
9It is important to remember that the label p+2y is not related to the symmetry of the LS theory and therefore

there is no corresponding fugacity for it in the superconformal index.
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  closed formula for all (including unprotected long) multiplets

where

Z
A2Ā2
0 = , Z

LB̄1
0 =

� ⇢(� ⇢+ )

1� ⌫
p
� ⇢ 

, Z
LĀ2
0 =

⌫
p
� ⇢ (� ⇢+ )

1� ⌫
p
� ⇢ 

,

Z
LL̄
0 =

1 + ⌫(⌫ + ⇢�
2
+

1
⇢�2 ) +  ⌫(1� ⌫

2
)(� +

1
� ) + 

2
⌫
2
(1� ⌫

⇢ )(1� ⌫ ⇢)

(1� ⌫ ⇢)(1� ⌫
⇢ )(1� ⌫

p
 ⇢ )(1� ⌫

q

� ⇢)

.

(2.58)

The generating functions Z̄0 in (2.57) are obtained from the expressions in (2.55) by again using
the substitution in (2.56).

To completely specify the spectrum of superconformal multiplets we need to supplement the
generating functions above with a formula for the conformal dimension of the superconformal
primary operator in each multiplet. There is indeed a simple compact expression for these
conformal dimensions in terms of the labels (j1, j2, n, r, k, p+ 2y) that reads

� = 1 +

q
7� 3 |j1 + j2|+ 3

4 (r
2 � 2(p+ 2y)2 + 2n(n+ 4)� 4k(k + 1)) . (2.59)

In summary, the generating functions in (2.51), (2.54), and (2.57), together with the conformal
dimensions in (2.59) completely determine the full spectrum of KK modes around the AdS5 PW
solution dual to the LS SCFT.

We were not able to rigorously derive the analytic expressions above in full generality. To
obtain them we have instead used several complementary methods. The multiplets counted by
the generating function in (2.51) contain a descendant operator with spin-2. The mass of this
mode is determined by the spin-2 mass matrix in (2.29). One can find a closed form expression
for the eigenvalues of this mass matrix for any KK level n. The result is consistent with the
expression in (2.59) and reads:8

�spin-2 = 2 +

q
4 +

3
4 (r

2 � 2p2 + 2n(n+ 4)� 4k(k + 1)) . (2.60)

As discussed in detail in Section 3 below, the spin-2 spectrum can also be calculated directly
in type IIB supergravity by solving the scalar Laplace equation in the PW background. The
result of this alternative calculation is the same as (2.60) and provides a non-trivial consistency
check of the ExFT KK spectroscopy method. For spin-0 and spin-1 supergravity modes the KK
spectrum results presented above has been checked explicitly up to and including level n = 4,
while for the two-form excitations we have checked up to n = 5. Yet another consistency check
of the KK spectrum above can be performed by restricting to semi-short multiplets at arbitrary
level n. These are precisely the multiplets that contribute to the superconformal index of the LS

8There is no dependence on the label y in this expression since the spin-2 modes in type IIB supergravity come
from the metric and are not charged with respect to U(1)Y .
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example:  AdS4 x S7 and deformations

D=11 sugra
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tools for non-supersymmetric 
vacua (where masses are not 
controlled by symmetry) 
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in D=4 SO(8) supergravity  
    the supergravity potential has been carefully scanned for AdS4 vacua

 all non-supersymmetric vacua are unstable already within D=4 supergravity,      
 i.e. have instabilities within the lowest Kaluza-Klein multiplet

example:  non-supersymmetric AdS4 vacua  SO(3) x SO(3)

[Comsa, Firsching, Fischbacher]

except for a distinguished SO(3) x SO(3) invariant extremal point   [Warner] 

  stable within D=4 supergravity     [Fischbacher, Pilch, Warner] 
  uplift to D=11 supergravity          [Godazgar, Godazgar, Krüger, Nicolai, Pilch] 
  brane-jet instabilities                   [Bena, Pilch, Warner]

70 scalars:

m2ℓ2

BF-bound

beyond ?
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[de Wit, Nicolai]



ExFT formulas: full scalar Kaluza-Klein spectrum up to level 6   
        ( ~ 100.000 scalar fields),  from D=4 data
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instabilities starting from KK level 2

   In D=4, SO(8) supergravity, all known  
       non-supersymmetric vacua are perturbatively unstable!
⟹

[E. Malek, H. Nicolai, HS]  
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example:  non-supersymmetric AdS4 vacua  SO(3) x SO(3)



example:  non-supersymmetric AdS4 vacua in ISO(7) supergravity

the D=4 scalar potential carries a wealth of AdS vacua:  
                  non-supersymmetric vacua, stable within D=4 supergravity

most symmetric:   G2 vacuum, deformed S6 
                  no brane-jet instabilities 

4 = 0
[Guarino, Tarrio, Varela]

massive IIA admits a consistent truncation on S6  
                   to (dyonic) ISO(7) gauged supergravity  
                   with   AdS4 vacuum4 = 3

[Guarino, Jafferis, Varela]
[Dall’Agata, Inverso]

proves stability of the KK spectrum: 

(perturbatively) stable non-supersymmetric AdS4 vacuum

ExFT analysis yields the full KK spectrum! 

analytic mass formula for all scalars:

m2 ℓ2 = (n + 2) (n + 3) − 3
2 6[n1,n2]

m2 ℓ2 ≥ m2
BF ℓ2

KK level ,  G2 Casimir n 6[n1,n2]

10.2.2 E7

On the other hand for E7, the mass formula obtained by mathematica reads

M
A⌃,B⌦ =

1

12
XAD

C
�
XBC

D +XBD
C
�
�
⌃⌦ +

�
XBA

C +XBC
A �XAB

C �XAC
B
�
TC,⌃⌦

� 12
�
PA

C
B
D + PC

A
B
D
�
TD,⇤⌦TC,⌃⇤ + 3TA,⌃⇤TB,⇤⌦ . (10.18)

and di↵ers by a factor 1

2
from (10.14)!?

10.3 Scalar fields

Fluctuation ansatz

⇢UA
M = UA

M � UB
M

jA
B,⌃ Y ⌃ +

1

2
UB

M
jA

C,⌃
jC

B,⇤ Y ⌃Y ⇤
. (10.19)

10.3.1 E6

Scalar potential

V = � 1

24
MMN

@MMKL
@NMKL +

1

2
MMN

@MMKL
@LMNK (10.20)

Induces the supergravity potential

Vsugra =
1

12
MMN

XMP
Q

✓
XNQ

P +
1

5
XNR

S M PRMQS

◆
. (10.21)

Total mass matrix

�! 1

5

�
XAE

F
XBE

F +XEA
F
XEB

F +XEF
A
XEF

B + 5XAE
F
XBF

E
�
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+
2
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�
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C
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D
�
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�
JAB,⌃ JCD,⌦

� 4

5

�
XCA

BTC,⌦⌃ + 6XBC
ATC,⌦⌃

�
JAD,⌃ JBD,⌦

+ 12JAD,⌃ JBD,⌦TA,⌦⇤TB,⇤⌃ � JAB,⌃ JAB,⌦TC,⌦⇤TC,⇤⌃ (10.22)

Confirmed by the mathematica computation!
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bubble instabilities… [Bomans, Cassani,  Dibitetto, Petri]

[A. Guarino, E. Malek, HS] 

Henning Samtleben                                                                                                                                                           ENS de Lyon

A B



1

0 10 20 30 40

20

40

60

80

100

120

Level 0
Level 1
Level 2
Level 3
Level 4

0 10 20 30 40

20

40

60

80

100

120

Level 0
Level 1
Level 2
Level 3
Level 4

(a) (b)

M2L2M2L2
M
ul
ti
pl
ic
it
y

M
ul
ti
pl
ic
it
y

0 10 20 30 40
0

10

20

30

40

Level 0
Level 1
Level 2
Level 3
Level 4

0 10 20 30 40
0

5

10

15

Level 0
Level 1
Level 2
Level 3
Level 4

(c) (d)

M2L2M2L2

M
ul
ti
pl
ic
it
y

M
ul
ti
pl
ic
it
y

0 10 20 30 40
0

5

10

15

Level 0
Level 1
Level 2
Level 3
Level 4

0 10 20 30 40
0

2

4

6

8

10

12

14

Level 0
Level 1
Level 2
Level 3
Level 4

(e) (f)

M2L2M2L2

M
ul
ti
pl
ic
it
y

M
ul
ti
pl
ic
it
y

FIG. 1: First four KK levels of spin-0 fluctuations around the six non-supersymmetric and BF stable AdS4 ⇥ S6

solutions of massive IIA supergravity given in Table ??. The normalized masses M2L2 and their multiplicity are
displayed up to level 4.

likewise: KK-spectra for more non-supersymmetric vacua (numerical) with 
remaining SU(3), SO(4), U(2), SO(3):  all (perturbatively) stable!

example:  non-supersymmetric AdS4 vacua in ISO(7) supergravity
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cubic and higher order couplings
[with B. Duboeuf, E. Malek] 
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n-point couplings 

higher couplings around AdS5 x S5       all fields in representations of SO(6)

 information on the holographic n-pt functions

ℒϕn = gI1I2⋯In
ϕI1 ϕI2 … ϕIn

⟨$I1
$I2

⋯ $In⟩

in ExFT framework

& basis of fluctuations

 tensor product structure  (lowest KK multiplet)    (scalar harmonics)⊗

 expand fields into S5  harmonics and integrate IIB Lagrangian over S5 

 expand/diagonalize/disentangle IIB field equations 

 gauge fixing, non-linear field redefinitions 

 achieved for cubic and (some) quartic couplings, “heroic efforts”   [Arutyunov, Frolov]

previously

[Lee, Minwalla, Rangamani, Seiberg] 
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Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þ covariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S ¼
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
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tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
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near-extremal n-point couplings 

in ExFT framework

& basis of fluctuations

 tensor product structure  (lowest KK multiplet)    (scalar harmonics)⊗

 n-point couplings ℒϕn = gα1Σ1,α2Σ2,⋯,αnΣn
ϕα1Σ1 ϕα2Σ2 … ϕαnΣn

carries ∫S5
*Σ1*Σ2 … *Σn ≡ cΣ1Σ2⋯Σn

SO(6) invariant tensor

 non-vanishing n-point coupling requires    to exist!cΣ1Σ2…Σn

Exceptional Form ofD ¼ 11 Supergravity

Olaf Hohm1,* and Henning Samtleben2,†

1Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-1-80333 Munich, Germany
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introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þ covariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.
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Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S ¼
Z

d5xd27YeL;

L & R̂þ 1
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example: scalars in  [m,0,0]  of SO(6) ℛI : [m,0,0] : | I | ≡ m *I = *((a1*a2 … *am)) *a*a = 1

�

n+ 2 [n+ 2, 00](0 0)

n+
5
2 [n+ 1, 10](0

1
2 ) + [n+ 1, 01](

1
2 0)

n+ 3 [n, 02](0 0) + [n, 20](0 0) + [n+ 1, 00](0 1) + [n+ 1, 00](1 0) + [n, 11](
1
2

1
2 )

n+
7
2 [n, 10](0

1
2 ) + [n� 1, 12](0

1
2 ) + [n, 01](

1
2 0) + [n� 1, 21](

1
2 0) + [n, 01](

1
2 1) + [n, 10](1

1
2 )

n+ 4 2·[n, 00](0 0) + [n� 2, 22](0 0) + [n� 1, 02](0 1) + [n� 1, 20](1 0) + 2·[n� 1, 11](
1
2

1
2 ) + [n, 00](1 1)

n+
9
2 [n� 1, 10](0

1
2 ) + [n� 2, 12](0

1
2 ) + [n� 1, 01](

1
2 0) + [n� 2, 21](

1
2 0) + [n� 1, 01](

1
2 1) + [n� 1, 10](1

1
2 )

n+ 5 [n� 2, 02](0 0) + [n� 2, 20](0 0) + [n� 1, 00](0 1) + [n� 1, 00](1 0) + [n� 2, 11](
1
2

1
2 )

n+
11
2 [n� 2, 10](0

1
2 ) + [n� 2, 01](

1
2 0)

n+ 6 [n� 2, 00](0 0)

Table 1: 1

2
-BPS supermultiplets B[n,0,0] of SU(2, 2|4) in SO(6) ⇥ SO(4) notation [n1, n2, n3](j1, j2)

with Dynkin labels ni, and (j1, j2) denoting the spins of SO(4) ⇠ SU(2)⇥ SU(2).

4.3 Couplings between spin-2 and scalars

Here we give the couplings between the fluctuations of the metric, which we will denote by h, and

two scalars. From the structure of the indices, there is only one term that one can write for these

couplings

G(h, @�, @�) /
1

6
↵� @µ�

↵⌃ @⌫�
�� hµ⌫⇤ c⌃�⇤ . (4.15)

It can be checked that this is what is indeed obtained by expanding the scalar kinetic term from

the Lagrangian (4.7).

5 Example : AdS5⇥S
5

In this section, we use the previously introduced formalism in order to compute couplings on the

background AdS5⇥S5. This background preserves maximal supersymmetry, i.e. states fall into

supermultiplets of SU(2, 2|4) and transform in representations [n, p, q] of the SO(6) R-symmetry

group. Table 1 recapitulates the structure of the 1

2
-BPS supermultiplets B[n,0,0] into which the

supergravity spectrum decomposes.

As has been discussed above, our fluctuation ansatz (2.9) introduces a di↵erent way of labelling

the Kaluza-Klein states by a couple of SO(6) indices, �A⌃ , of which the first index refers to the field

content of the N = 8 supergravity multiplet while the second index runs over the scalar harmonics

on S5. The latter are defined as polynomials in the fundamental harmonics Y
a, a = 1, . . . , 6,

(satisfying Y
a
Y

a = 1) as

Y
I = Y

a1...an = Y
((a1 ...Yan)) ⌘ Y

(a1 ...Yan) � traces , (5.1)

and transform in the symmetric vector representations [n, 0, 0]. We refer to appendix A for a

discussion of the properties of these harmonics and more explicit formulas.

All fields �A⌃ with the second index in a given SO(6) representation [n, 0, 0] combine into the
1

2
-BPS supermultiplet B[n,0,0]. For example, for the scalar fluctuations, the index ↵ on �↵⌃ counts

the 42 scalars of N = 8 supergravity. Under SO(6) these decompose according to

42 ! 1+2 � 1�2 � 10+1 � 10�1 � 200 , (5.2)

15

sI

tI

ϕI
±

within the ExFT basis   :ϕα,Σ

sI : [n + 2,0,0] ∈ [2,0,0] ⊗ [n,0,0] : ϕ((ab , Σ)) = ϕ((ab , a1…an)) | I | = |Σ | + 2

α : 42 ⟶ [2,0,0]0 ⊕ [0,0,2]+1 ⊕ [0,2,0]−1 ⊕ [0,0,0]±2 Σ : [n,0,0]0

ϕI
± : [n,0,0] ∈ [0,0,0] ⊗ [n,0,0] : ϕ±,Σ = ϕ±,a1…an

tI : [n − 2,0,0] ∈ [2,0,0] ⊗ [n,0,0] : ϕab , Σ = ϕab , aba1…an−2

| I | = |Σ |

| I | = |Σ | − 2

consider a coupling among the  sI : :(sI1, sI2, …, sIn)

dual to chiral primary $sI
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near-extremal n-point couplings 

example: scalars in  [m,0,0]  of SO(6) ℛI : [m,0,0] : | I | ≡ m *I = *((a1*a2 … *am)) *a*a = 1

| I | = |Σ | + 2sI : [n + 2,0,0] ∈ [2,0,0] ⊗ [n,0,0] : ϕ((ab , Σ)) = ϕ((ab , a1…an))within the ExFT basis   :ϕα,Σ

consider a coupling among the  sI : :(sI1, sI2, …, sIn)
 SO(6) group theory: a non-vanishing coupling requires  

(∑
j≠i

| Ij |)− | Ii | < 0 ⟹ :(sI1, sI2, …, sIn) = 0thus

1 ∈ I1 ⊗ I2 ⊗ ⋯ ⊗ In

in the ExFT basis  

                a non-vanishing coupling requires moreover

:(ϕα1,Σ1, ϕα2,Σ2, …, ϕαn,Σn)
1 ∈ Σ1 ⊗ Σ2 ⊗ ⋯ ⊗ Σn

(∑
j≠i

| Ij |)− | Ii | ≤ 2 (n − 3) ⟹ :(sI1, sI2, …, sIn) = 0

cubic extremal couplings vanish!

n-point near-extremal couplings vanish!

conjectured in 
[D’Hoker, Erdmenger, Freedman, Perez-Victoria, 2000]  
[D’Hoker, Pioline, 2000]
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near-extremal n-point couplings 

moreover:

[D’Hoker, Pioline, 2000]proof of analogous conjectures for near-extremal couplings on AdS7 x S4 and AdS4 x S7 

similar results for couplings                                        and scalars in other representations :(sI1, …, sIm, tJ1, …, tJn)
similar results for couplings involving spin-1 and spin-2 fields

apply to all vacua of the theory, e.g.  holographic dual of Leigh-Strassler SCFT4 = 2

SCFT and, as we discuss in detail in Section 4, an explicit calculation of the index in the planar
limit yields results that are in full agreement with the KK spectrum presented here.

To facilitate the comparison between the KK spectroscopy results and the superconformal
index computation in Section 4 we explicitly present here all KK towers of semi-short multiplets
resulting from the analysis above.

From the spin-1 spectrum in (2.52) we identify two towers of semi-short multiplets

LĀ1[
6+3n

2 ;
1
2 ,

1
2 ;n]⌦ [0]

(0)
, and A1L̄[

6+3n
2 ;

1
2 ,

1
2 ;�n]⌦ [0]

(0)
, (2.61)

where, for completeness, we have listed the value of p + 2y as a superscript on the SU(2)F spin
representation.9 At level n = 0 these two towers degenerate to a single A1Ā1[3;

1
2 ,

1
2 ; 0] ⌦ [0]

(0)

multiplet that contains the stress-energy tensor.
The spectrum in (2.54) contains eight towers of semi-short multiplets given by

LB̄1(
9+3n

4 ;
1
2 , 0;

n+3
2 )⌦ [

n+1
2 ] , B1L̄(

9+3n
4 , 0,

1
2 ;�

n+3
2 )⌦ [

n+1
2 ] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

A1L̄(
6+3n

2 ;
1
2 , 0;�n)⌦ [0] , LĀ1(

6+3n
2 ; 0,

1
2 ;n)⌦ [0] ,

LĀ2(
11+3n

4 ;
1
2 , 0;

n+1
2 )⌦ [

n+1
2 ] , A2L̄(

11+3n
4 ; 0,

1
2 ;�

n+1
2 )⌦ [

n+1
2 ] ,

(2.62)

where the multiplets in the second line have n � 1 and all other multiplets have n � 0.
The spectrum in (2.57) results in eight more towers of semi-short multiplets

LB̄1(
6+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n+2
2 ] , B1L̄(

6+3n
4 ; 0, 0;�n+2

2 ]⌦ [
n+2
2 ) ,

LB̄1(
12+3n

4 ; 0, 0;
n+4
2 ]⌦ [

n
2 ] , B1L̄(

12+3n
4 ; 0, 0;�n+4

2 ]⌦ [
n
2 ) ,

LĀ2(
8+3n

4 ; 0, 0;
n
2 ]⌦ [

n+2
2 ] , A2L̄(

8+3n
4 ; 0, 0;�n

2 ]⌦ [
n+2
2 ) ,

LĀ2(
14+3n

4 ; 0, 0;
n+2
2 ]⌦ [

n
2 ] , A2L̄[

14+3n
4 ; 0, 0;�n+2

2 ]⌦ (
n
2 ) .

(2.63)

At level n = 0 the third line degenerates to a single A2Ā2[2; 0, 0; 0]⌦[1]
(0) multiplet which contains

the SU(2)F flavor current. The multiplets in the first three lines have n � 0, while the multiplets
in the fourth line have n � 1.

We note that in the spectrum above there are semi-short multiplets that contain marginal
operators. Such marginal deformations, compatible with N = 1 supersymmetry, belong to
LB̄1[3; 0, 0; 2] and B1L̄[3; 0, 0;�2] multiplets. From the first line of (2.63) we find that at level
n = 2 we have the multiplets

LB̄1[3; 0, 0; 2]⌦ [2]
(2)

, and B1L̄[3; 0, 0;�2]⌦ [2]
(�2)

. (2.64)
9It is important to remember that the label p+2y is not related to the symmetry of the LS theory and therefore

there is no corresponding fugacity for it in the superconformal index.
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semi-short supermultiplets at a given level  |Σ | = n
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(∑
j≠i

| Ij |)− | Ii | ≤ 2 (n − 3) ⟹ :(sI1, sI2, …, sIn) = 0

cubic extremal couplings vanish!

n-point near-extremal couplings vanish!

conjectured in 
[D’Hoker, Erdmenger, Freedman, Perez-Victoria, 2000]  
[D’Hoker, Pioline, 2000]
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ds2 = ��1(x, y) gµ⌫(x) dx
µdx⌫

+Gmn(x, y)
⇣
dym +K[ab]

m(y)Aab
µ (x)dxµ

⌘⇣
dyn +K[cd]

n(y)Acd
⌫ (x)dx⌫

⌘

Gmn(x, y) =
1

8
�(x, y)K[ab]

m(y)K[cd]
n(y)

⇣
uijab + vijab

⌘
(x)

⇣
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  new tools from ExFT for the analysis of Kaluza-Klein spectra and couplings

Kaluza-Klein spectra entirely encoded in 5-dim data:
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Exceptional Form ofD ¼ 11 Supergravity
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Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance

with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a

mystery. In this Letter, we show that D ¼ 11 supergravity can be extended to be fully covariant under the

exceptional groups EnðnÞ, n ¼ 6, 7, 8. Motivated by a similar formulation of double field theory we

introduce an extended ‘‘exceptional spacetime.’’ We illustrate the construction by giving the explicit E6ð6Þ
covariant form: the full D ¼ 11 supergravity, in a 5þ 6 splitting of coordinates but without truncation,

embeds into an E6ð6Þ covariant 5þ 27 dimensional theory. We argue that this covariant form likewise

comprises type IIB supergravity.

DOI: 10.1103/PhysRevLett.111.231601 PACS numbers: 11.25.Yb, 04.65.+e, 04.50.%h, 11.15.%q

Little is known about the fundamental formulation of M
theory, whose low-energy limit is given by 11-dimensional
supergravity [1]. One illuminating feature is the existence
of duality symmetries, which relate M theory to the
10-dimensional superstring theories. These symmetries
should be as fundamental for the formulation ofM theory as
diffeomorphism invariance is for Einstein’s theory of general
relativity. Intriguingly, the so-called U-duality symmetries
comprise the exceptional Lie groups EnðnÞðZÞ [2]. In the
low-energy limit, it has been known for a long time that
upon torus compactification D ¼ 11 supergravity gives rise
to the continuous versionsEnðnÞðRÞ [3]. Since the early 1980s
this has led to the question: what is it about D ¼ 11 super-
gravity that knows about exceptional symmetries? It is the
purpose of this Letter to give fullyEnðnÞ-covariant versions of
D ¼ 11 supergravity by employing and generalizing tech-
niques from ‘‘double field theory’’ (DFT), an approach that
doubles coordinates to make the Oðd; dÞ T-duality group
manifest [4–8]. These formulations show the emergence of
exceptional symmetries in terms of the higher-dimensional
geometry and symmetriesprior to any reduction or truncation.

Attempts to understand these ‘‘hidden’’ symmetries in
terms of the higher-dimensional theory have in fact a long
history, at least going back to the work of de Wit and
Nicolai [9], who performed a Kaluza–Klein-like decom-
position of D ¼ 11 supergravity to exhibit already in
eleven dimensions the composite local symmetries of the
lower-dimensional coset models. These formulations did
not make the exceptional symmetries manifest, and further
work in Ref. [10] suggested that additional coordinates
need to be introduced in order to realize the exceptional
groups. The idea of such an ‘‘exceptional spacetime’’ has
been implemented for a particular truncation of D ¼ 11
supergravity in Ref. [11]. (For more ambitious proposals
see Refs. [12–14].) More recently, after the emergence of
DFT, a number of papers have succeeded in generalizing

this approach to various U-duality groups; see, e.g.,
Refs. [15,16]. All these results, however, are restricted to
particular truncations of D ¼ 11 supergravity, setting to
zero the off-diagonal components of the metric and of the
3-form, assuming that all fields depend only on ‘‘internal’’
coordinates, and freezing the external metric to be flat
Minkowski up to a possible warp factor. This leaves open
the question about the significance of exceptional symme-
tries for the full theory. The first example of a U-duality
covariant formulation of a complete gravity theory was
obtained in Ref. [17] for the ‘‘toy model’’ of four-
dimensional Einstein gravity. By proper Kaluza–Klein-type
decomposition of fields and extension of the coordinates, the
full theory takes a form that is manifestly covariant under the
SLð2;RÞ Ehlers symmetry discovered in dimensional reduc-
tion more than 50 years ago [18]. The resulting theory
closely resembles DFT when performing the analogous
Kaluza–Klein-type decomposition of fields [19]. In the fol-
lowing, we apply this strategy to D ¼ 11 supergravity and
embed it into a form that is fully covariant under the excep-
tional groups EnðnÞ, n ¼ 6, 7, 8. We argue that this covariant
form likewise encodes the type IIB theory [20].
For definiteness, we present in detail the case of E6ð6Þ

and comment on the other cases below. Performing a 5þ 6
decomposition of the D ¼ 11 coordinates and embedding
the six coordinates into the fundamental 27-dimensional
representation of E6ð6Þ, we cast the bosonic sector of
11-dimensional supergravity, without any truncation, into
the E6ð6Þ-covariant form

S ¼
Z
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‘standard’ two-derivative action

& basis of fluctuations


