Advanced LIGO noise spectral density

Horizon distance

LIGO detections during O1: GW150914

LIGO detections during O1: GW151226

What was originally observed?

The template bank ("uberbank") for O1

Assessing confidence in LIGO detection

Assessing confidence in LIGO detection

Assessing confidence in LIGO detection

Detection confidence with modeled search in O1

(Abbott et al. arXiv:1606.04856)

Detection confidence with modeled search in O1

(Abbott et al. arXiv:1606.04856)

EOBNR waveforms used in LIGO O1

IMR phenomenological waveforms used in LIGO O1

- First works in mid-late 2000 (Ajith et al. 07, Pan et al. 07, Ajith et al 11, Santamaria et al. 10)
- Fast, frequency-domain waveform model hybridizing and fitting EOB & NR (Khan et al. 15; Husa et al. 15)

$$\tilde{h}(f;\lambda_i) = \mathcal{A}(f;\lambda_i) e^{i\phi(f;\lambda_i)}$$

Unveiling binary black holes properties: masses

- We measure best the "chirp" mass $\ \mathcal{M}=M\,
 u^{3/5}$
- GW150914: merger in band, total mass well measured, good measurement of individual masses.
- GW151226: merger outside band, individual masses measured less precisely.

(Abbott et al. PRL 116 (2016) 241103)

Effect of total mass on the waveform

$$\mathcal{M} = 30.4 M_{\odot} \qquad q = 1.24 \qquad \qquad \mathcal{M} = M \nu^{3/5} \\ \mathcal{M} = 15.2 M_{\odot} \qquad q = 1.24 \qquad \qquad \nu = \frac{q}{(1+q)^2}$$

Unveiling binary black-holes properties: spins

- BHs' spins not maximal, and for GW151226 one
 BH's spin larger than 0.2 at 99% confidence.
- $\chi_{\text{eff}} = \left(\frac{\mathbf{S_1}}{m_1} + \frac{\mathbf{S_2}}{m_2}\right) \cdot \left(\frac{\mathbf{\hat{L}}}{M}\right)$
- Spin of primary BH < 0.7. No information about precession.

Unveiling binary black-holes properties: spins

GW150914

GW151226

• Bins are constructed linearly in spin magnitude & cosine of tilt angles $\cos heta_{LS_i} = \mathbf{\hat{S}}_i \cdot \mathbf{\hat{L}}$

Effect of aligned spins on the waveform

Effect of precessing spins/mass ratio on the waveform

Properties of final black hole formed after merger

Binaries' distance and orbital-plane inclination with respect to line of sight

Time-domain data and reconstructed waveforms

Sky map for all LIGO O1 events

First campaign for electromagnetic counterparts

Inference of cosmological parameters in future LIGO searches

• Wide-field galaxy surveys can provide (sky positions and) redshifts (Schutz 1986)

Measurement of Hubble constant H₀ with accuracy of 5% at 95% confidence after 40–50 GW observations with 3 detectors.

Tests of GR with LIGO's sources

(credit: Sennett)

Inspiral-merger-ringdown consistency test

- Does GW150914 deviate from binary black-hole predictions in GR?
- We compare final mass and spin estimates from inspiral and postinspiral.
- No evidence of discrepancy from GR.

Tests of GR with LIGO's BHs: inspiral

 GW150914/GW122615's rapidly varying orbital periods allow us to bound higher-order PN coefficients in gravitational phase.

$$\begin{split} \tilde{h}(f) &= \mathcal{A}(f)e^{i\varphi(f)} & \varphi(f) = \varphi_{\mathrm{ref}} + 2\pi f t_{\mathrm{ref}} + \varphi_{\mathrm{Newt}}(Mf)^{-5/3} \\ &+ \varphi_{0.5\mathrm{PN}}(Mf)^{-4/3} + \varphi_{1\mathrm{PN}}(Mf)^{-1} \\ &+ \varphi_{1.5\mathrm{PN}}(Mf)^{-2/3} + \cdots \end{split}$$

- PN parameters describe: tails of radiation due to backscattering,
 spin-orbit and spin-spin couplings.
- First **GR test** in the genuinely dynamical, **strong-field regime**.

Tests of GR with LIGO's BHs: late-inspiral-merger-RD

(Yunes & Pretorius 09, Li et al. 12)

Merger-ringdown phenomenological parameters

 (β_i and α_i) not yet expressed in terms of relevant
 parameters in GR and modified theories of GR.

Could we prove that GW150914's remnant is a BH?

- We measured frequency & decay time of damped sinusoid in the data after GW150914's peak.
- Multiple QNMs need to be measured to extract mass and spin of remnant, test no-hair theorem and second-law black-hole mechanics (Israel 69, Carter 71; Hawking 71, Bardeen 73).

Measuring BH's mass and spin from multiple QNMs

Bounding the graviton Compton wavelength (mass)

- Phenomenological approach:
 - modified dispersion relation, thus GWs travel at speed different from speed of light. (Will 94)

$$E^2 = p^2 c^2 + \frac{m_g^2}{g} c^4 \quad \lambda_g = \frac{h}{m_g c}$$

• Lower frequencies propagate slower than higher frequencies. (Abbott et al. arXiv:1602.03841)

(see Yunes et al 16. for constraints on other dispersion relations, super- and sub-luminal GW propagation, Lorentz violation)

Advanced detectors' roadmap and sky localization

(Aasi et al. arXiv:1304.0670)

Advanced LIGO

• Few tens or hundred square degrees

Detection rates @ design sensitivity:

- Binary neutron stars: 0.2 200 per year
- Binary black holes: tens to hundreds per year!

Advanced detectors' roadmap and sky localization

(Aasi et al. arXiv:1304.0670)

Detection rates @ design sensitivity:

- Binary neutron stars: 0.2 200 per year
- Binary black holes: tens to hundreds per year!