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Problem 3 Resonant mass detectors

We’ll work in the center of mass frame with the two masses along the x-axis. For a
given separation �, the locations of the two masses will be

x1 = �m2

m

�, x2 =
m1

m

�,

where m is the sum of the masses. Hence, with an equilibrium separation of L, the
masses will be perturbed by a gravitational wave to

x1(t) = �m2

m

L� m2

m

x(t), x2(t) =
m1

m

L+
m1

m

x(t).

By assumption, the gravitational wave varies on a length scale much smaller than
the detector, so we can treat the equation of geodesic deviation to first order in ⇠,
the coordinate distance between two geodesics. In the proper detector frame, this
geodesic deviation can be thought of as a Newtonian force on each mass given by

F1(2) =
m1(2)

2
¨

h

TT
ij ⇠

j
.

We consider deviations from a test mass initially at rest at the origin, which therefore
remains stationary. Each mass can be though of as being acted on a force of

F1(2) = �m1(2)

2
!

2
h cos(!t)x1(2)(t)x̂.

Including the spring and damping forces, the equations of motion for our two masses
are

m1
d

2
x1

dt

2
=

m1

2
!

2
h cos(!t)

m2

m

L+ kx(t) + b

dx

dt

+O(h2) (1)

m2
d

2
x2

dt

2
= �m2

2
!

2
h cos(!t)

m1

m

L� kx(t)� b

dx

dt

+O(h2) (2)

Subtracting these two, we obtain the equation of motion for the relative separation.

d

2
x

dt

2
= �1

2
!

2
hL cos(!t)� k

µ

x(t)� b

µ

dx

dt

+O(h2) (3)

where µ is the reduced mass.

As an ansatz, we assume that the separation is of the form x(t) = A cos(!t + �).
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Plugging this in to (3), we derive the dependence of A and � on the given parameters.

�!

2
A cos(!t+ �) = �1

2
hL cos(!t)� k

µ

A cos(!t+ �) + A!

b

µ

sin(!t+ �) (4)

) 1

2
!

2
hL cos(!t) = A

✓✓
!

2 � k

µ

◆
cos(!t+ �) + !

b

µ

sin(!t+ �)

◆
(5)

1

2
!

2
hL cos(!t) = A

s✓
!

2 � k

µ

◆2

+ !

2
b

2

µ

2
cos(!t+ � � �) (6)

) A =
!

2
hL

2

r⇣
!

2 � k
µ

⌘2
+ !

2 b2

µ2

� = � = tan�1

 
!

b
µ

!

2 � k
µ

!
(7)

To find the resonant frequency, we must maximize A with respect to the frequency. It
is more convenient to instead minimize Ã = A

�2, which will provide the same result.

@Ã

@!

/
✓
b

2

µ

2
� 2k

µ

◆
!

2 +
2k2

µ

2
= 0 (8)

)!r =

s
k

µ

✓
b

2

2kµ
� 1

◆� 1
2

. (9)

The exact value of the amplitude and phase shift at resonance can be found by
plugging this value into the previous result.

Ar =
hLkµ|2kµ� b

2|
b(2kµ� b

2)
p
4kµ� b

2
, (10)

�r = tan�1

 p
4kµ� 2b2

b

!
(11)
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In the following results, an overbar denotes the value averaged over one oscillation.

KE =
1

2
m1

✓
dx1

dt

◆2

+
1

2
m2

✓
dx2

dt

◆2

=

✓
1

2
m1

m

2
2

m

2
+

1

2
m2

m

2
1

m

2

◆✓
dx

dt

◆2

= 1
2µ

✓
dx

dt

◆2

=
1

2
µA

2
!

2 sin2(!t+ �)

) KE =
1

4
µA

2
!

2

(12)

PE =
1

2
kx

2

=
1

2
kA

2 cos2(!t+ �)

) PE =
1

4
kA

2

(13)

The work done by the gravitational wave on both masses over one oscillation is given
by

WGW =

Z
F · dx

dt

dt

= �
Z

dt

✓
m1m2

2m
!

2
hL cos(!t)

m2

m

dx

dt

+
m1m2

2m
!

2
hL cos(!t)

m1

m

dx

dt

◆

=
m1m2

2m
!

3
hLA

Z
dt cos(!t) sin(!t+ �)

=
m1m2

2m
!

3
hLA

Z
dt cos(!t) cos(!t) sin(�)� cos(!t) sin(!t) cos(�)

=
m1m2

2m
⇡!

2
hLA sin(�)

=
1

2
µ⇡!

2
hLA sin(�)

= ⇡b!A

2

(14)

By energy conservation, the dissipated energy must be equal to the (negative) average
work done on the system by the the gravitational wave. Thus, the average rate of
energy lost in a cycle is

P damp =
!

2⇡
WGW

=
1

2
b!

2
A

2
(15)

Plugging in the given values h = 10�21, L = 1 m, µ = 1000 kg, f=
p

k/µ/(2⇡) = 1
kHz, and Q = !r ⇥ (PE + KE)/P damp = 106, one finds that the amplitude at
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resonance is

Ar = 5⇥ 10�16 m, (16)

and the total energy is

PE +KE = 5⇥ 10�21 J. (17)

At room temperature (300 K), the average thermal energy is given by Ethermal ⇡
kBT ⇡ 10�21J. Thus, this gravitational wave is of the same magnitude of thermal
noise in the detector, and thus would be very di�cult to observe.

. . . . . . . . .

Problem 4 Attenuation of gravitational waves

We work in the rest frame of the fluid, so that uµ = (1, 0, 0, 0). We assume that the
background spacetime is approximately flat and work within linearized gravity, i.e.
to O(G1), such that the metric is given by

gµ⌫ = ⌘µ⌫ + hµ⌫ . (18)

We restrict our attention to transverse-traceless metric perturbations hµ⌫ = h

TT
µ⌫ .

1

We work in the transverse traceless frame, in which mass initially at rest remains at
rest upon arrival of a gravitational wave, i.e. u

µ remains unchanged. To first order
in h, the connection coe�cients are given by

�µ
⌫⇢ =

1

2
⌘

µ�(@⌫h
TT
⇢� + @⇢h

TT
⌫� � @�h

TT
⌫⇢ ) +O(h2) (19)

We calculate � to first order, noting that uµ is constant.

�µ⌫ = 1
2(���

µ⌫u� � ��
µ⌫u� � uµu

↵��
↵⌫u� � u⌫u

↵��
↵µu�)� 1

3(⌘⌫µ + h

TT
µ⌫ + uµu⌫)�

↵
↵�u

�

= 1
2(2�

0
µ⌫ + uµ�

0
0⌫ + u⌫�

0
0µ)� 1

3(⌘⌫µ + uµu⌫)�
↵
↵0 +O(h2)

(20)

Using (19), we find the only non-zero connection coe�cient above to be

�0
µ⌫ =

1

2

@

@t

h

TT
µ⌫ . (21)

Thus, we find that in the transverse traceless gauge, the sheer reduces to

�ij =
1

2

@

@t

h

TT
ij (22)

1
Unlike in vacuum, we do not have the gauge freedom to remove all non-transverse-traceless

components of hµ⌫ a priori (see page 8 of the Maggiore book). Within a viscous fluid, an additional

“sound wave mode” can occur in hµ⌫ tied to wavelike perturbations of the fluid [1]. For simplicity,

we consider only transverse-traceless metric perturbations.
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which is solely spatial because h

TT only has spatial components.

In linearized gravity, the strain satisfies the wave equation

⇤h̄µ⌫ = �16⇡GTµ⌫ , (23)

where h̄µ⌫ ⌘ hµ⌫ � 1
2⌘µ⌫h

↵
↵. Using the given form of the stress-energy tensor, (23)

becomes

⇤h

TT
ij = �16⇡G⌘

@

@t

h

TT
ij . (24)

We consider a solution of the form hij = hij(0)e
�i(!t�kz). At a fixed location in the

fluid, we expect the amplitude of the wave to be constant as there are no non-periodic
time-dependent sources, i.e. ! will be real. We plug this ansatz in to (24) and solve
for k = kR + ikI where kR, kI are real.

(!2 � k

2)hij = 16⇡G⌘(i!)hij

) !

2 = k

2
R � k

2
I , kRkI = �8⇡G⌘

) k

2
Rk

2
I = (8⇡G⌘)2!2

) (!2 + k

2
I )k

2
I = (8⇡G⌘)2!2

) k

2
I =

1

2

⇣
�!

2 +
p
!

4 + 4(8⇡G⌘)2!2
⌘
.

(25)

In the eikonal limit, we expect kR ⇡ ! � kI . For gravitational waves observable with
current detectors, this regime is reached for fluids with viscosity

2(8⇡G⌘)

!c

2
⌧ 1 ) ⌘ ⌧ 1.7⇥ 1027

✓
fGW

10Hz

◆
kg

m · s (26)

In this limit

k

2
I ⇡

1

2
(2(8⇡G⌘)2) (27)

) kI = 8⇡G⌘. (28)

Restoring the factors of c, we find an attenuation length of l = k

�1
I = c3

8⇡G⌘ . For

chocolate, the attenuation length is approximately 6.8⇥ 1016 lightyears.

. . . . . . . . .
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Solutions

Challenge #1: Make your own estimate of the rate per volume of BH-BH mergers (ex-
pressed in number per Gpc−3 yr−1), including the 90% credible interval, based on the three
events reported thus far (for these purposes we assume that LVT151012 was a real event).
The first Advanced LIGO run had 49 total days in which both detectors were taking data,
so that will be our baseline time. Potentially relevant numbers are: GW150914 was at a
distance of 420 Mpc (we’ll ignore the uncertainties for simplicity) and had a signal to noise
ratio of 23.7; GW151226 was at a distance of 440 Mpc and had a signal to noise ratio of
13.0; LVT151012 was at a distance of 1 Gpc and had a signal to noise ratio of 9.7. Suppose
that the threshold for announcing a detection is a signal to noise ratio of 12.0 (recall that
LVT151012 was a marginal detection), and remember that for a given event the distance
scales as the reciprocal of the signal to noise ratio.

a) With no other information, what would be your best estimate for the rate per volume based
on each of the events individually (i.e., without combining them or estimating uncertainties)?

b) How should you estimate the uncertainties for each event individually? More specifi-
cally, how would you calculate the 90% credible interval for the rate based on each event
individually?

c) How should you combine the information from the three events? Do this without, then
with, the uncertainties included.

d) Suppose now that you are given the information that one of the events (pick any of them)
was in a direction to which Advanced LIGO was unusually sensitive. What effect, if any,
would this have on your best estimate of the rate based on that event (i.e., would it decrease
your best estimate, increase your best estimate, or leave it unchanged)?

e) Same question as d), but with regard to the orientation: suppose that one of the events
was known to have its binary orbital axis pointed nearly towards us, which means that we
see a high amplitude compared to the orientation-averaged amplitude. What effect would
this have on your best estimate of the rate from that event alone?

Answers:

a) Recall from the discussion in the notes about the way to estimate the rates of NS-NS
mergers that the contribution from an individual source (or event in our case) goes inversely
with the time of observation and inversely with the volume in which the event could have
been seen. The logic is that, based on the Copernican principle, weak events could have
many similar but more distant events that we didn’t see, whereas strong events would have
to be much farther away to remain undetected. With that in mind, and recalling that the



amplitude goes like the reciprocal of the distance, we note that GW150914 could have been
seen out to rmax = 420 Mpc × (23.7/12) ≈ 0.83 Gpc; GW151226 could have been seen
out to rmax = 440 Mpc × (13/12) ≈ 0.48 Gpc; and LVT151012 could have been seen out
to rmax = 1000 Mpc × (9.7/12) ≈ 0.8 Gpc. Thus the best estimates for rate per Gpc3

per year are (365/49)1/(4π/3(0.83)3) = 3 for GW150914, (365/49)1/(4π/3(0.48)3) = 16 for
GW151226, and (365/49)1/(4π/3(0.8)3) = 3.5 for LVT151012.

b) For each event individually we are certainly in the Poisson-dominated regime. We see one
event. In a Poisson distribution, the probability of seeing d (a non-negative integer) events
given an expected number m (a positive real number) of events is

P (d|m) =
md

d!
e−m . (1)

You can confirm that this expression is properly normalized:
∑

∞

d=0
P (d|m) = 1 for any

m > 0 and
∫

∞

0
P (d|m)dm = 1 for any d ≥ 0. In our case d = 1. If we want the middle 90%

of the probability distribution for m we therefore need m1 and m2 such that:∫
m1

0

p(1|m)dm = 0.05 (2)

and ∫
∞

m2

p(1|m)dm = 0.05 . (3)

Because p(1|m) = me−m, the solutions are m1 ≈ 0.356 and m2 ≈ 4.74. There is, however, a
subtlety in this calculation. It assumes implicitly that all values of m are, a priori, equally
likely. This might not be the case; for example, it is at least equally plausible that we should
assume that all values of the log of m are equally plausible. If we do this then we get different
values of m1 and m2. In any case, we simply multiply our m1 and our m2 by our best value
to get the 90% range.

c) In both cases you simply add the results from the individual events.

d) and e). The volumetric rate (rate per volume per time) is for all events. Thus the
representative signal would be one that was averaged over sky direction and orientation. If
we saw a given event in a direction to which Advanced LIGO was unusually sensitive, then
the intrinsic event would be weaker than average, which would mean that the volume out to
which we could see it would be smaller. Thus that event would have a greater weight than
if it had been average. Similarly, if the orientation was favorable, the orientation-averaged
amplitude would be lower, which would mean that the event would receive greater than
average weight.


