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HW#4 —Phys879—Spring 2017 Instructor: Alessandra Buonanno
Due before class, Monday, Apr. 3, 2017 Grader: Noah Sennett
Course webpage: http://www.aei.mpg.de/2000472 buonanno@umd.edu, nsennett@umd.edu

Recommended readings:

1. Sec. 5.5 in Maggiore’s book on strong-field sources and the effacement principle. [The section builds on
the article by T. Damour in 300 Years of Gravitation, edited by S. Hawking and W. Israel, Cambridge
University Press.]

2. We discussed only briefly the memory and tail effects. The further-reading section in Maggiore’s book
suggests several papers on this topic, e.g., K.S. Thorne, Phys. Rev. 45 (1992) 520.

3. Tidal effects in Newtonian gravity: Ch. 1.5, 1.6 and 2.4, 2.5 in the book ”Gravity”

4. Neutron star physics: http://adsabs.harvard.edu/abs/2004Sci...304..536L

Exercises (prepared by A. Buonanno, T. Hinderer, J. Steinhoff & J. Vines):

1. Gravitational waves from pulsars [10 pts.]

Neutron stars possess a rigid crust that is 10 billion times stronger than steel and can support a
“mountain” of up to ∼few cm height. Consider a neutron star rotating with angular frequency Ω
around a principal body axis e3 and with constant principal moments of inertia I1, I2, I3. Assume that
the neutron star has a deformation such that I1 6= I2.

(a) Consider the inertia tensor Iij =
∫
d3xρ

(
r2δij − xixj

)
that is given by Iij = diag(I1, I2, I3) in the

body frame whose axes rotate with the neutron stars. Compute the components of the inertia
tensor in an inertial frame. Use the analogy between Iij and the Newtonian quadrupole moment
to obtain the power radiated in gravitational waves. Express your result in terms of the ellipticity
ε and I3, where

ε =
I1 − I2
I3

(1)

(b) Consider a neutron star that is approximated as a uniform density sphere with mass ∼ 1.4M�
and R ∼ 10km so that I3 ∼ 2

5MR2 ∼ 1045g cm2. Its rotational energy is E = I3Ω2/2. For the
Crab pulsar, the rotational period is P = 33ms. Use the balance between the energy radiated
in gravitational waves and the change in E to obtain its spin-down rate Ω̇. Show that for a
fiducial ellipticity of ε = 10−7 the rate of change in the frequency is small and thus the GWs are
approximately monochromatic over ∼few years observation time.

(c) The observed spindown rate of the Crab pulsar is Ṗ = 4.2 × 10−13s/s. Assuming that this is
caused solely by GW emission, what would the ellipticity of the Crab pulsar need to be to explain
this value?

In several pulsars, the spindown rate has been measured with pulsar timing observations and is
generally quantified by a braking index n defined by Ω̇ ∝ Ωn. For the Crab pulsar, n ≈ 2.5 (n ∼ 3
is expected for magnetic dipole radiation), while for the Vela pulsar n ≈ 1.5. Read off the braking
index from your result (b). Is GW emission the dominant mechanism for the spindown of the
Crab pulsar?

2. Newtonian quadrupolar tidal imprint in the GW phasing [10 pts.]

Consider a neutron star-black hole binary system of total mass M and reduced mass µ whose orbital
motion is described by Newtonian gravity. The Lagrangian is

L =
1

2
µṙ2 +

1

2
µr2φ̇2 +

µM

r
− 1

2
QijEij + Lint, (2)
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where Lint describes the internal dynamics of the quadrupole and the Newtonian tidal field is

Eij = −mBH∂i∂j(1/r) = −mBH(3ninj − δij)/r3, (3)

where ni = xi/r is a unit vector. Note that nini = 1 and δijδij = 3. Assume that the quadrupole is
adiabatically induced and given by

Qad
ij = −λEij , (4)

where λ is the tidal deformability parameter. The internal Lagrangian then describes only the elastic
potential energy Lad

int = −QijQij/(4λ). Throughout this exercise, assume that tidal effects are small
and can be treated as linear perturbations.

(a) Obtain the equations of motion for r and φ from the Euler-Lagrange equations.

(b) Assume that the orbit is circular (r̈ = 0 and φ̇ = Ω). Starting from the radial equation of motion,
express the radius as r(Ω) = M1/3Ω−2/3(1 + δr) and compute the linear tidal corrections δr.

(c) Calculate the energy of the system from (2). Specialize to adiabatic quadrupoles and circular
orbits, and express the energy in terms of Ω.

(d) The leading order gravitational radiation is generated by the total quadrupole of the system
QTij = Qorbit

ij + Qij . Compute the tidal contribution to the energy flux from the quadrupole
formula.

(e) In the stationary phase approximation (SPA) for the gravitational wave signal, the phasing can
be computed from the formula

d2ΨSPA

dΩ2
= 2

dE/dΩ

ĖGW

. (5)

Compute the tidal contribution to ΨSPA, to linear order in the tidal effects. Express your result
in terms of the post-Newtonian parameter x = (MΩ)2/3 = (πMfGW)2/3 and show that the tidal
phase correction scales as x5 relative to the leading order phasing.

3. Central-force problem at 1PN order [10 pts.]

In class we derived the 2-body Lagrangian at 1PN order (i.e., the Einstein-Infeld-Hoffman Lagrangian).
Starting from the 1PN-Lagrangian in the coordinates r1, r2 and velocities v1, v2 (see e.g., Eqs. (5.55)
and (5.56) in Maggiore’s book for N = 2 particles with masses m1 and m2):

(a) Derive the momenta p1 and p2. Then, introduce the variables R = r1 + r2, r = r2 − r1,
P = (p1 + p2)/2, and p = (p2 − p1)/2, and show that P is conserved.

(b) Obtain the relative-motion Hamiltonian at 1PN order in the variables r, p, M = m1 + m2 and
ν = m1m2/M

2. [Hint: in carrying out the calculation here and below keep only terms at 1PN
order! It is also strongly suggested to use Mathematica to manipulate long algebraic expressions.]

(c) Compute the binding energy E and orbital angular momentum L at 1PN order for circular orbits.
Express the final result for E and L in terms of the velocity v ≡ (MΩ)1/3, where Ω is the orbital
frequency. [Hint: Impose the circular orbit condition and derive the relation between r and Ω.
You will find a few new terms at 1PN order beyond the usual Newtonian relation M/r3 = Ω2.]

(d) Compute the periastron advance at 1PN order for nearly circular orbits. [Hint: It is more con-
venient to employ the relative-motion Lagrangian. Use the conservation of energy and angular
momentum to derive the equation for the radial perturbation around a circular orbit and com-
pute the radial frequency Ωr as function of Ω. The fractional advance of the periastron per radial
period is ∆Φ/(2π) = K(Ω)− 1, where K(Ω) = Ω/Ωr.] [optional!]
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(e) Study the stability of circular orbits using the 1PN Hamiltonian. [optional!]

Consider the polar coordinates (r, φ, pr, pφ) and a perturbation of the circular orbit defined by

pr = δpr ,

pφ = p0φ + δpφ ,

r = r0 + δr ,

Ω = Ω0 + δΩ ,

where r0, Ω0 and p0φ refer to the unperturbed circular orbit. Write down the Hamilton equations
and linearize them around the circular orbit solution. You should find

δṗr = −A0 δr −B0 δpφ ,

δṗφ = 0 ,

δṙ = C0 δpr ,

δΩ = B0 δr +D0 δpφ , (6)

where A0, B0, C0 and D0 depend on the unperturbed orbit. Determine explicitly A0, B0, C0 and
D0.

Look at solutions of Eqs. (6) proportional to eiσt and find the criterion of stability. [Hint: you
should find that there exists a combination Σ0 of A0, B0, C0 and D0 such that when Σ0 > 0 the
orbits are stable. The innermost stable circular orbit (ISCO) corresponds to Σ0 = 0].

Express Σ0 as function of v = (MΩ)1/3 and show that for any value of the binary mass ratio the
ISCO at 1PN order coincides with the Schwarzschild ISCO. [This is an accident, which does not
hold at high PN orders!]

Finally, show that Σ0 = 0 coincides with Ωr = 0. What is the physical meaning of this result?


