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1. Gravitational waves from pulsars:

(a) Power emitted in GWs:

A set of coordinates x0 rotating with the object is related to an inertial coordinate system x with
common origin at the star’s center of mass by a rotation matrix
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where � = ⌦t and ⌦ is the constant rotation frequency. The components of the inertia tensor in the
inertial coordinates are therefore obtained by the transformation
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where I

0 = diag(I1, I2, I3). Explicitly,
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Since TrI 0 = TrI = I1 + I2 + I3 = const we can use (6) directly in place of the quadrupole moment
in the quadrupole formula for the energy loss:
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Defining the ellipticity ✏ = (I1 � I2)/I3 we obtain
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(b) Spindown due to GW emission

We use the energy balance equation Ėrot = �ĖGW with Erot = I⌦2
/2 for a uniform sphere to

obtain
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Substituting the values for the Crab pulsar we find that
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Over an observation time of ⇠ 3yr⇠ 108s the change in the frequency due to GW losses is very small
and the signal remains nearly monochromatic.
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(c) Upper limit on the ellipticity

Solving Eq. (11) and ⌦̇/⌦ = �Ṗ /P for ✏, using ⌦ = 2⇡/(0.033s) and assuming that the pulsar
has M = 1.4M�, R = 10km we find that

✏

<⇠ 5.5⇥ 10�7
. (13)

In reality, the mass, radius, and moment of inertia of the Crab pulsar are uncertain and could di↵er
from the fiducial values given above, which changes the upper limit on ✏.
The braking index for GW emission is n = 5 which is much higher than the observed values for the

Crab and Vela pulsars. Pulsars also spin-down due to electromagnetic emission through magnetic
dipole radiation, for example, the Crab pulsar radiates a huge amount of power ⇠ 105L� that is
absorbed by and powers the Crab nebula. The small braking index of the Vela pulsar cannot be
attributed entirely to radiation from a constant magnetic dipole but might be due to a changing,
magnetic moment or e↵ective moment of inertia.

2. Tidal signature in the gravitational wave phasing:

(a) Orbital dynamics for adiabatic quadrupolar tides

Inserting the expressions for E
ij

and the adiabatic relation Q
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= ��E
ij

into the Lagrangian yields
an e↵ective Lagrangian that involves only the orbital variables
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From the Euler-Lagrange equations we obtain
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(b) Radius-frequency relationship

In the expression from (a) we set r̈ = 0 and expand for r = M

1/3⌦�2/3(1 + �r), with �r ⌧ 1. We
solve this equation at each order in the tidal terms. At zeroth tidal order, the equation is already
satisfied since we assumed Kepler’s law as the leading order term in r(⌦). At linear order in the
tidal e↵ects we obtain
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(c) Binding energy

The energy associated with the system is given by
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Specializing to circular orbits and using the radius-frequency relationship from (b) we find that to
linear order in the tidal terms
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(d) Energy loss

From the quadrupole formula Ė = � 1
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i. Inserting the total quadrupole (orbit plus neutron
star deformation), computing the time derivatives, and linearizing the results in the tidal e↵ects gives
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Substituting r(⌦) and truncating at linear tidal order gives
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(e) Phasing

Using (c) and (d) in the formula for d2 SPA/d⌦
2 gives
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Integrating twice with respect to ⌦ gives
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Introducing x = (M⌦)2/3 leads to
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