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HW#1 —Phys879—Spring 2017 Instructor: Alessandra Buonanno
Due before class, Tuesday, Feb. 13, 2017 Grader: Noah Sennett
Course webpage: http://www.aei.mpg.de/2000472 buonanno@umd.edu, nsennett@umd.edu

Recommended readings:

1. LIGO Scientific Collaboration and Virgo Collaboration: Observation of Gravitational Waves
from a Binary Black Hole Merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837.

2. LIGO Scientific Collaboration and Virgo Collaboration: The basic physics of the binary black
hole merger GW150914. Annalen der Physik, 529. arXiv:1608.01940.

3. A. Einstein: Über Gravitationswellen. In: Sitzungsberichte der Königlich Preussischen
Akademie der Wissenschaften Berlin (1918), 154167. (English translation available at
http://einsteinpapers.press.princeton.edu/vol7-trans/25.)

Exercises (prepared by A. Buonanno, T. Hinderer, J. Steinhoff & J. Vines):

1. Basic physics of GW150914: [20 pts.]

Numbers of equations and figures below refer to arXiv:1608.01940, which slightly differ from
the published version in Annalen der Physik.

(a) Power emitted in GWs:

Starting from Newtonian physics and Einstein’s quadrupole formulas (4) and (5), fill in
the details of the derivation of Eq. (27), the rate at which energy is emitted in the form
of GWs from a binary on a circular orbit.

In particular, give the intermediate expression for the GW strain tensor hij as a function
of time.

(b) Frequency evolution and estimating the mass scale:

Combine the previous result with more Newtonian physics to derive Eq. (28), the rela-
tionship between the orbital frequency, its rate of change, and the masses. Derive also
Eq. (8).

This makes a certain assumption to allow combining Newtonian physics (which predicts a
constant energy) with the quadrupole formula (which predicts that the energy decreases).
Explain the assumption and check its applicability in this context.

Use the result and Fig. 2 (which is essentially a Fourier transform of Fig. 1) to estimate
the chirp mass, and the total mass assuming a 1:1 mass ratio, for GW150914.

(c) Drag force instead of GWs?:

What if the bodies in a binary experienced drag forces due to a gaseous environment?
Could this explain the observed frequency-time dependence (prior to the peak), instead of
energy loss due to GW emission? Assuming the drag force acting on the orbiting bodies
is proportional to vp where v is their velocity and p is some power (which is typically 1 or
2), derive an analog of Eq. (28), up to proportionality, and go on to find the frequency as
a function of time—–i.e. find α and β for the relationships ω̇ ∝ ωα and ωβ ∝ t. Compare
these with the values for GW emission.

Extract the data points from Fig. 3, and obtain an estimate for β from the slope of a
linear fit on a log-log plot.

Does a drag force provide a viable alternative explanation of the frequency-time behavior?
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(d) Orbital separation, why BHs?:

Given the estimate of the mass scale from above, use the GW frequency and Newtonian
physics to estimate the distance between the centers of the orbiting bodies, first at the
beginning of the signal, and then at the location of the peak amplitude. Explain why the
latter estimate strongly suggests that the objects are black holes.

(e) Distance to the source:

Use the magnitude of the GW strain from Fig. 1 and your formula for the GW strain h
from Problem 1a to derive an order-of-magnitude estimate for the distance of the source
from the Earth.

How does this compare to the luminosity distance derived in Sec. 5?

2. Orders of magnitude of gravitational-wave strength for sources on the Earth: [5
pts.]

Use the leading, non-zero term in the multipolar expansion of the gravitational field, i.e., the
quadrupolar term G Ï2/(c

4 r), to estimate the amplitude of gravitational waves produced from
the following earth-based events:

• A meteorite having diameter of 2 km and hitting the ground at a speed of 25 km/sec;

• A big chunk of piezoelectric material driven to oscillation at a frequency of 100 MHz.

To derive the above results take into account that gravitational waves exist only in the so-called
wave zone, i.e., at a distance from the source which is at least equal to the reduced wavelength.

3. Multipolar expansion of the far-zone gravitational field: [5 pts.]

In the lecture the gravitational field is written in a multipolar expansion. Show that it is
dimensionless. Assuming that the gravitational field is proportional to G/r (where r is the
distance between the observer and the source, and G is the Newton constant), and that each
term of the expansion depends only on c and on derivatives of the multipole mass-moments IL
and current-moments JL, employ dimensional analysis to show that the multipolar expansion
is unique.


